
A GENERALIZATION OF ALTERNATIVE RINGSO)

BY

FRANK ROSIER

1. Introduction. In their well-known paper [3] Bruck and Kleinfeld proved that

any alternative ring must satisfy the identity

(1) (x2, y, z) = xo(x,y,z)

where the associator (x, y, z) is defined by (x, y, z) = (xy)z — x(yz) and

xoy = xy + yx. By symmetry an alternative ring must also satisfy the dual of

the above identity:

(2) (z,y,x2) = xo(z,y,x).

Let A be a ring satisfying (1) and (2) and suppose further that A has a unit

element 1. Then the relations (1) and (2) yield no identities of degree 3 which can

be obtained from (1) and (2) by setting one of the variables equal to 1 since for

any such substitution the relations (1) and (2) reduce to the trivial equation(2).

In this paper we study the class of rings which satisfy (1), (2), and

(3) (x,x,x) = 0.

From our earlier remarks it is immediate that these rings are generalizations of

alternative rings.

In §2 we show that any ring A satisfying (1), (2), and (3) must be power-

associative and, using this result we obtain an idempotent decomposition for A

as A = Ax + A1/2 + A0 where x 6 At if and only if ex + xe = 2ix for the idem-

potent e of A. In Theorem 3 we develop some fundamental relations for the

multiplicative properties of the A,. We are able to show in §3 that if A has no nil

ideals then A must, in fact, have a Peirce decomposition with respect to an idem-

potent e. That is, A is the direct sum of the subgroups Au; ij = 0,1 where x e Au

if and only if ex = fx, xe = jx. This is then used to prove the main results:

(a) Any simple ring A satisfying (1), (2), and (3) with an idempotent e j= 1 must be

associative or a Cayley-Dickson algebra over its center, (b) Any finite-dimensional

semi-simple algebra A satisfying (1), (2), and (3) has a unity element and is the

direct sum of simple algebras. In §5 we give some examples to show that these

results are in a certain sense best possible.

We suppose in the remainder of this paper that the ring A satisfies (l),(2),and(3).
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2. Preliminaries. We begin this section with the following:

Theorem 1.  A is power-associative.

Proof. Identity (3) gives (x, x, x) = 0 and this along with (1) and (2) yields

x2x2 = x 3x = xx3. We define x" inductively by x"~ 1x = x". Then we have x3 = xlxJ

for i+j = 3,0 < i,j < 3 and x4 = x'xJ for i 4- j = 4, 0 < i,j< 4. We now show

by induction that x" = x'xJ for i +j = n, 0< i,j< n. We assume that x'+J = x'xj

for / 4- j < n; 0< i,j and n 2 5. Then (1) with y = x"~2~\ z = x' becomes

(x'jc""2"',^ = xo^x"'2'1,^) = 0. Thus, x"_lx'= x2x"~2for0 < i < n - 2

so that we have xn~'x' = x" except possibly when i = n — 1. But using >> = x"-3.

z = x in (2) we obtain (x, x"-3, x2) = xo (x, x"-3, x) = 0 which gives

x"_2x2 = xx"-1 = x" since n ^ 5. Thus, x'+J = x'xJ for 0 < i,j so that/4 is pow-

er-associative.

Replacing x by x + w in (1) and (2) yields

(1) ' (x o w,y, z) = x o (w,)i,z) + wo (x, y, z)

and

(2) ' (z, y, x o w) = x o (z, y, w) + w o (z, >>, x).

Linearizing (3) leads to the identity

(3) ' (x,x, y) + (x,y,x) + (y,x,x) = 0

provided that A has characteristic ^ 2 and so, whenever necessary, we shall

assume in addition that A satisfies (3)'.

Let e be an idempotent of A. Then setting w = y = z = e in (1)' and (2)' we

find (xe + ex, e, e) = eo (x, e, e) and (e, e, ex + xe) = eo (e, e, x). In any ring we

have (xe, e, e) = (x, e, e) = (x, e, e)e and (e, e, ex) = e(e, e, x) so that the above

relations reduce to

(4) e(x, e, e) = (ex, e, e),   (e, e, xe) = (e, e, x)e.

Using the substitutions x = e,y — x,z = e and x = e, z = x, y = e in (1) and

(2) respectively we obtain

(5) (e, x, e) = eo (e, x, e),   (e, e, x) = eo (e, e, x),   (x, e, e) = eo (x, e, e).

In any ring we have

(ex, e, e) — (e, xe, e) 4- (e, x, e) = e(x, e, e) 4- (e, x, e)e

which with (4) and (5) reduces to (e, xe, e) = e(e, x, e). By symmetry we must

also have (e, ex, e) = (e, x, e)e. Identities (3)' and (4) yield:

(ex, e, e) 4- (e, ex, e) -I- (e, e, ex) = 0 = e(x, e, e) 4- (e, ex, e) 4- e(e, e, x).

But e[(x, e, e) 4- (e, x, e) 4- (e, e, x)] = 0 so that(e, ex, e) = e(e, x, e). Thus we have
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(6) (e, ex, e) - e{e, x, e) = (e, xe, e) = (e, x, e)e.

Theorem 2(3). Let e be an idempotent ofA. Then A = At + A1/2 + A0 where

x 6 At; i = 0,1 // and only if ex = xe = ix, and xeAll2 if and only if ex + xe = x.

A is the additive direct sum of the subgroups AA i = 0,1/2,1.

Proof.   Let x s_A. We set Xj = e(xe) - (e, e, x) = (ex)e + (x, e, e) (by (3)').

Then we see that

ex, — x, = e(e(xe)) — e(e, e, x) — e(xe) + (e, e, x)

: - \ > \ > -i i >\
= - (e, e, xe) - e(e, e, x) + (e, e, x)

= - eo(e,e,x) + (e,e,x) = 0

and

xye — xt = ((ex)e)e + (x, e, e)e — (ex)e — (x, e, e)
■

= (ex, e, e) + (x, e, e)e — (x, e, e)

= eo (x, e, e) — (x, e, e) = 0.

Hence ext = xte = x1. Next we set x0 = xt — (ex + xe — x) and we see that

ex0 = eXi — e(ex + xe - x) = xx + (e, e, x) — e(xe) = xx — xt = 0,

/jjjfubt nil ->J <^.j/;j!     a..i\L. "jmJ
x0e = xxe — (ex + xe — x)e = x, — (ex)e — (x, e, e) = xt — x\ = 0.

> ä '/ •/ ••) f '/     - ! 4  •   v )
Thus ex0 = x0e = 0. Finally we set x1/2 = ex + xe - 2xx. Then

II,     ..-./ vj-v«!"j'j'jii "i^v-iKoriv/ ,ui tins        jiJ<rLijl..'.ii:flu ei.rl i. J..i.1 baLivu'iq
ex,/2 + x,/2e = e(ex) + e(xe) + (xe)e + (ex)e - 4x,

= - (e, e, x) + (x, e, e) + e(xe) + (ex)e - 4xt + ex + xe

= x, + x, - 4x, + ex + xe
uoU Jill i.:.!) •>-. U .>•>).-= 1**3,3) Em; ,(>.•,..>.)-- (~) ,9 ,x} = 'v' /:   v, svr.rl

= ex + xe - 2xx = Xj/2.

It is immediate from the definitions of the xt that x = xt + x1/2 + x0. This

representation of x as the sum of the elements x^Xj^Xo is unique for if

x = xj + x1/2 + x0 = 0 we have ex + xe = 2xx + xJ/2 = 0. But then

2xx + x1/2 —x = Xj — x0 = 0. Thus e(xt — x0) = x, = 0 so that Xj = x]/2 = x0 = 0.

This completes the proof.

Now suppose xeAl/2. Then from (l),(e, x, e)= eo (e, x, e)sothat(e,x,e)e/l1/2.

Next let ex = Xj + xt/2 + x0. Then

(e, e, x) = ex - e(ex) = xt + xl/2 + x0 - Xj — ex,/2

= e(xe) = x1/2 - ex1/2 + x0 = x1/2e + x0

and

(3) Except for special characteristics, Theorem 2 and portions of Theorem 3 can be obtained

from the results of Albert [1] and Kokoris, Mew results on power-associative algebras, Trans.

Amer. Math. Soc. 77 (1954), 363-373.
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(x, e, e) = (xe)e — xe = - (ex)e — —xt — xll2e.

But (3)' implies that (e,e,x) + (x,e,e) — —(e,x,e) = —xt 4- x0g^1/2. Hence

xi = x0 = (e, x, e) = 0 for x e Al/2. Thus (e, x, e) = 0 for every xsA. We note

that we have also shown above that ex, xeeA1/2 for xeA1/2.

Let us examine some of the multiplicative properties of the Ar Let x^ yY e Av.

Then substituting x = xlt w = e, y = ylt z = e and x = e, y = xt, z = y^ in (1)'

and (1) respectively we obtain 2(x,,y1,e) = eo(x,,>'1,e)and (e,Xi,yi) = eo(e,xi,yl).

Hence

yu e)i/2 = 0> x„ y^i = (e, x,, y,)0 = °-

In a similar fashion using (2)' and (2) we find

yu e)i = (xu yue)0 = (e, xu yi)if2 = 0.

Thus(x1, yu e) = (e, xu yt) = Oso that xtyt e Av Replacing xu yt by x0, y0 e A0

we also find x0y0 e A0.

Let xte Au yl/2e Ai/2. Then substituting x = xls w = e, y = yI/2, z = e in

(1)' we find 2(xt, y1/2, e) = eo (x1; yu2, e) while setting x = e, y = y,/2, z - xx

in (2) yields (x1,>'1/2,e) = eo (xj, y1/2, e). Hence (x1,y1/2,e) = 0. Next we set

x= e,w = y1/2,y = e,z = x1 in (2)', to obtain (xl5 e,y1/2) = eo(Xl,e,y1/2)eA1/2.

Then (Xi.^.e) 4- (%e,y1/2) = (x,y1/2)e - x^y^e) 4- j^y^ - Xi(ej>i/2)

= (xiyi/2)eeAi/2. Hencex^^e^,^ 4- A0. Next we set x = e,y = xuz = y1/2

in (1) to obtain (e, x, y1/2) = eo (e, x, y1/2) so that xxyll2-e{xxyll2)e Ail2.

Thus xlyl/2e(Al + Ai/2) o (A1/2 + A0) = A1/2.

In a similar fashion y1/2X! e Al/2. Replacing xx by x0 we also find that

(*o> yi/2>e) = (e> >,i/2.x0) = 0 and x0y1/2, y1/2x06i41/2. Thus using Albert's

terminology [1] every idempotent e of A is stable.

Suppose x e A1/2. Then (3)' yields ex2 = x2e. Next using (1)' and (2)' we obtain

(x, e, x) = xo (e, e, x) + eo (x, e, x) and (x, e, x) = xo (x, e, e) 4- eo (x, e, x).Thus

xo (e, e, x) = xo (x, e, e). From (1) and (2) we obtain (x2, e, e) = xo (x, e, e) and

(e, e, x2) = xo (e, e, x). Hence (x2, e, e) = (e, e, x2). Thus

0 = 2(e,e,x2)-2(x2, e, e) = 2ex2-2e(ex2)-2(x2e)e 4- 2x2e

= 2[2ex2-2eo (ex2)] = 2e(x2)1/2 = (x2)1/2.

jrlt !.; !j  ! i:i •!  > : :-i ...
Now let xt e At, y0 e A0. Then 2(x1; e, y0) = eo (xv, e, y0) is obtained by setting

x = xlt w = e, y = e, z = y0 in (1)'. This reduces to (x1>'0)1/2= 0. Substituting

x = e, y = xuz = y0in(l) wefind(e,x1, y0) = eo (e, xt, y0). Hence (x^oX, = 0

and interchanging Xj and y0 we find (y0Xi)0 = 0. Employing (2)' and (2) we have

Cyo*i)i/2 = (yoxi)o = (xlyQ)l = 0- Combining these we have Xjy0 = y0x2 = 0

and we state
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Theorem 3. Suppose A = At + Al/2 + A0 with respect to the idempotent e

of A. Then Al and A0 are orthogonal subrings and AtAl/2 + Axt2Ai £ Alj2 for

i = 0,1. Moreover, the following special relations hold: (xiy y1/2, e) = (e, ylj2, x()

= Ofor x(eA,; i = 0,1. If x1/2, ym eA1/2 then x2l2eAx + A0 and (x1/2y1/2)1/2

— ~{y lj2Xi.l2)\12-

3. Ideals and simple rings. The following is fundamental in our development.

Theorem 4. Let if= {x\xeA1/2 and ax,xae Al/2for all aeA}. Then if

is an ideal of A and for any x e if, x2 = 0.

Proof. Let y1/2 e if, z1/2eA1/2, Xj e A. Clearly (/Ij + ^40)(^i>'i/2)

+ (xiyi/2)(Ai + Ao) = Au2- Using (1)' and (2)' we find

(7) (zi/2. xu y1/2) = eo (z1/2, xu yi/2) + z1/2o (<?, x,, yl/2),

(8) (z1/2, xu y1/2) = eo (z1/2, xu y1/2) + y1/2o (zu2, xu e).

Thus zl/2o(e,xl,yl/2) = y1/2o(z1/2,x1,e)sAi/2. Using (7) we then have

zl/2o(e,xi3yll2) = 0 and then (z1/2, xu y1/2)e A1/2. Hence Zi/afoyi/a)e Ai/2.

Interchanging z1/2 and yi/2 we find that (yi/2x1)zlj2eAi/2. Setting z = x1;

y = yl/2, w = z1/2, x = e in (2)' we find (x1; y1/2, z1/2) = eo (xu y1/2, z1/2)

(since (x^ y1/2, e) = 0). Thus (x1y1/2)z1/2 e X1/2 for y1/2z1/2 eA1/2. A similar

substitution in (1)' yields z1/2(>>i/2x1)e^1/2 so that x^^, >'i/2x1 eif. Replacing

Xi by x0 we also find x0>>1/2, y1/2x0eif.

Next we consider y1/2eif, z1/2, x1/2eX1/2. Substituting in (1)' we obtain

LVi/2. x1/2, zl/2) = eo(y1/2, x1/2, z1/2) + >>i/2 o (e, x1/2, z1/2). Since y1/2 e if,

y1/2 o (e, x1/2, zl/2)eA1/2. Thus we must have (yi/2, z1/2, Xj/2)( = 0; i = 0,1.

Hence (yi/2x1/2)z1/2 e Alj2 and, using Theorem 3 (and 2'),

(>'l/2:'Cl/2)Zl/2   =   — (Xl/2>'l/2)zl/2'    Zl/2(-'Cl/2>'l/2)  =   — zl/2(>'l/2:X:l/2) 6 ^ 1/2•

Thus Xi/2y1/2 = ->'i/2x1/2eif and if must be an ideal of A with the property

that i" S Al/2. Therefore x2 = 0 for all x e if.

We next show that A with the added condition that A possess no ideals if such

that x2 = 0 for all x e if must have a Peirce decomposition.

Theorem 5. Suppose A has no ideals if ^ 0 such that x2 = 0for all x e if.

Then for e an idempotent of A we have A = An + A10 + A0l + A00, where

x e Atj if and only if ex = ix, xe = jx.

Proof. It is well known that a necessary and sufficient condition that the

decomposition of the theorem holds in A is that

(x,e,e) = (e,x,e) = (e,e,x) = 0 for all xeA.

Since we already have (e, x, e) = 0 we can reduce the proof to showing that

(x,e,e) = (e,e,x) for xeA1/2. If xe Al/2 we have
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e(xe) = (e,e,x) = —(x,e,e) = (ex)e.

By the previous theorem we see that it suffices to show that e{xe)eSf, SC the

ideal defined in Theorem 4. This result follows from the next lemma.

Lemma.  Let A bea ring with idempotent e, and suppose x1/2j1/2e A1/2. Then

(xll2yi,2)i = l(exl/2)(yl/2e)]l >   (*i/2.yi/2)o = [(xi/2e)(eyi/2)]o ;

(ex1/2)(eyl/2),(x1/2e)(y1/2e)eAl/2.

Proof.   Identities (1) and (2) yield

(e,xU2,yll2) = eo(e,xi/2,y1/2),   (xl/2,yl/2,e) = eo(xU2,yU2,e).

Hence (c,x1/2,y1/2)1 = (e,xl/2,yi/2)0 = 0 and (x1/2,y1/2,e)1 = (x1/2,yi/2,e)0 = 0

so that

[(ex1/2)y1/2]i = (xl/2y1/2)lt [(exj/^i/zlo = 0,

ixi/2(yi/2ey]i = (xll2yl/2)i,   [x1/2(y1/2e)]0 = 0.

The lemma is immediate after we note that ex1/2 + x1/2e = x1/2.

At this juncture we are able to show that under the hypothesis of Theorem 5

the Ay satisfy the same multiplicative relations as in the alternative case and this

we proceed to do.

Since {xluyll2,e) = 0 we have

(xn,yio,e) = (xny10)e = 0,    (xn,y01,e) = (xuy01)e - xny0i = 0.

Using the substitution w = e, x = Xj j, y = e, z = y01 in (1)' results in

2(xu,e,y01) = eo(xlue,y0l) + XnO^e.yoi)

or

2xuy0i = e(xuy0i) + (xuy0le) = eo(xny01).

But Xlly0l e Al0 + A0l (by Theorem 3) so that xny01 = eo(xilyol) = 2xuy01.

Hence x^y,,! = 0. Another application of (1) yields (e,xn,y10) = eo(e,xnj10)

or

xtiyl0 - Kxn-Vio) = ^iJio) - e(e(xny10)) + (xny10)e - (e(xuy10))e.

But the right-hand member is 0 since (xlly10)e = 0. Thus, xny10 e A10,x11y01 = 0

and using (2) and (2)' we obtain y0ixn e^oi>.yioxii = 0. Replacing xn by x00

we   find   the   corresponding relations  x00y10 = y01x00 = 0, x00y01 e A0l,

yioxoo e^io-

Let x10,y10e/l10. Then (1)' yields

(xl0,e,y10) = eo(x10,e,y10) 4- x10o(«?,e,y10)

or

*ioyio = eo(xl0,e,yl0) = e(x10yl0) 4- (xl0yl0)e.
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Thus x10yl0e Al0 + A0l. Using (3)' we find x20e = ex20. Therefore x?0 = 0

and we have x10y10 = — .Vio*io e^io + ^oi- *n a similar manner we find

xoi = 0> yoixoi — ~ xoiyoi 6 Aio + Aoi-

Next suppose x10 e A10, y01 eA0i. Then (1)' becomes

(*io..Voi>e) = eo(xi0,y01,e) + xl0o(e,y0i.e)

or

OioWe - x10y0i = e(xloy0i)e - e(xl0y0l).

Hence xloy0l eAn+ Al0 + Aol and interchanging x10 and yoi we find

CVoiXio)e = e(y0ixio)e + Ooi*io)e

so that e(y01x10)e = 0 and y0i*ioe^io + ^oi + ^oo-

From the relation ex2 = x2eforall x e A10 + A01 we see that x10 o j'01 e A1 + A0.

Finally we show that (x10j>0i)io> (*io.yoi)oi, (xio.Vio)io> (^oiJ'oi)oi belong to

the ideal of Theorem 4, and hence must be zero. In order to get (x10y01)10 e 3?

it suffices to prove that (x10}>oi)iozoi> zol(x10y0i)io e ^io + ^oi- Identity (1)'

implies that

(xio.J'oi.Zoi) = eo(-xio,>'oi>Zoi) + ^10°(«.J'01.z0l)

while (2)' yields

(^io^oi^oi) = eo^io.yoi.^oi) + ZoioOciO'JWe)-

Combining these two relations we have

^io°(«,J,oi,Zoi) = zoi0(*io> J^oi.e).

But (e, y01, z01) e <410 so that the left member is zero. Hence,

ZoioOio^one) = zoi of^iojWio = 0.

Therefore [z01(x10y0i)io]o = [(*ioWi0Zoi]i = 0, and (x10y0i)io e Re-

placing z01 by z10 in the foregoing results in (x10>'01)01 e JSf. The first relation

above implies that (x10, you z01); = 0 for i = 0,1. Thus [(XioWioZoiüi

= [xioCVoiZoOoijV But the left member is zero since (xi0y01)10 e & so that

(y01z0i)01 e y. In a similar manner we see that (x10y10)10 6 =Sf. Combining these

remarks we have

Theorem 6. Suppose A satisfies the hypothesis of Theorem 5. Then for any

idempotent e of A, A = An + A10 + A01 + A00 where A^A^ = öJkAim except

when i j= j and i = k, j = m and then A2j c A}i.

In the remainder of this section we suppose that A satisfies the hypothesis of

Theorem 5.

Theorem 7.  Ai0A0i + A10 + Aol + A0lAl0 is an ideal of A.
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Proof. For the proof we need only show that Al0AQl and A0lA10 are ideals

of An and A00 respectively. Let xn e Alu yl0 e Al0, z01 eA0l. Then (2)' implies

that (x11>:y10,z01) = eo (xn, yl0, z01) e Al0 + A0l. But (xn, yl0, ZoJeA^ so

that Cxu)>io)zoi = Xn(yloz01) or An(A10A01) = ^io^oi- ln a similar fashion

we see that C^io^oiMi i c Al0A0l and, interchanging l's and O's we have the

corresponding results for A0lAi0.

Corollary 1.  Al0A0l and A01A10 are associative subrings of A.

Proof.  Using the proof of the preceding theorem we see that
. . ,     , '.I 0 n-/"1      ' 30l: ., ,•( „ , ■ I'll

OnO'io^oi))"',, = ((x11y1o)z01)H'n = (x11y10)(z01w11)

= xll(yl0(z0lwll)) = XnCOioZoiMi)-

Since every element of Al0A01 is the sum of elements of the form y10z0l we have

established the associativity of A10A01. The same proof works for A0lA10 as

soon as we interchange l's and O's.

Corollary 2. // A is simple then either e = 1 or An = Al0A01 and

Aoo = ^oi^io-

We are now in a position to state our main result.

Theorem 8. Let A be a simple ring satisfying (I), (2), and (3). Suppose A has

an idempotent e # 1. Then A is either an associative ring or a Cayley-Dickson

algebra over its center.

Proof. A ring is alternative if and only if

(9) (x,y,z)= e(o)(a(x),a(y),o(z))

for all permutations a where e (o) = 1 or — 1 as a is even or odd. We prove the

theorem by showing that (9) holds for all possible choices of x, y, z belonging to

iheAij since then Albert's result is applicable [2].

Combining Corollaries 1 and 2 of Theorem 7 we have (xu, y«, z(j) = 0, i = 0,1.

Suppose XjLyn eAlt,zl0 eA10. Then we see that Oio.Xii.yii) = (zio.^ii.^ii)

= (xn,z10,3;ii)=(>'ii,z10,x11) = 0. Next using (1)' we have 2(x11,y11,z1<))

= e°(*ii,>'ii,z10) + xuo (e, ylu zl0) = (xlu yn, z10) e A10. Thus

(x1i,yii,zlo) = (yii,xll,zl0) = 0. Replacing z10 by z0leA01 we find the corre-

sponding result. Clearly (x11,yli,z00) = (xluzoo,y11) = (z00,xn,y11) = 0 for

z00eA00. Now suppose we examine products involving xu e Alu y10, z10e A10.

If we substitute w = e, x = xu, y = yi0, z = z10 in (1)' we obtain

2(xi!, .Vio.Zio) = e°(*ii..Vio»Zio) +       (e, yl0, z10),

(xu>'io)zio = (yiozio)xn-
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Then using the fact that al0bl0 = - b10a10 we find (xuy10)z10 = -zi0(xuy10)

= LVioZio)*ii = -(zhlVio)*ii = -(xnzlo)ylo = ylQ(xuZl0). Combining these

we have(xu,,y10, z10) = 6(<7)(ff(xn), o(y10), ff(zio)) for al] Again, replacing

J'io, zio by y0l, x0l we have the corresponding results. The case x^eA^,

y106i410, z0leA0l was done in the proof of Theorem 7 as soon as we note

thatCj'io.Xn.Zo!) = OandCzo^Xu.y^) = Obysettingx = e, w = z01,y = xu,

z = yl0 in (1)'. If we replace xu by x00 the corresponding results are proved in

the same fashion.

We have reduced the proof to considering x, y, z e Ai0 + A01. First suppose

that x10,y10, zl0eAi0. Then (1)' implies that (x10, yi0, z10) = eo(x10,yi0.Zio)

+ x10o (e, yi0, z10). Equating the y400-components we obtain

(xio>'io)zio = (yioZio)xio-

A similar substitution in (2)' yields

^loC-VioZio) = ZioC^ioJ'io)-

Then noting that fllo0lo = -»io^io we see that (x10, yl0,zl0) = e(o)(<t(x10),

°~(yi o), °~(z i o)) f°r ah c- The case x0l, y0l, z0le A0iis proved in the same way. Fi-

nally weconsiderx10,z10e/l10,y01 e A0i. Then (you x10, z10) = -(y0i. z10, x10)

= (*io> z10, y0l) = —(z10, x10, y01) since yoi(xiozio) = ~~ JoiCzio^io)

= (zio^io)j'oi = -(^ioZio^oi- Consider (x10, y0l, z10) + (yol, x10, zl0)

= w10e^i0. We show that x01w10 = w10x01 = 0 for all x01 eA0i. Then Awl0

+ wi0A £ Al0 + A0l so that w10 belongs to the ideal if of Theorem 3 and hence,

must be zero.

■^oi^io = ^oiC-^io» yoi> zio) — xoi(yoi(xioZio))

= -^oiC^io, ̂ 01» zio) — C-^ioZio) (-^oiyoi)-

Since x10z10e/l01 and a01(b01c0i) = c01(a01 b01).

Setting x = x01, w = x10, y = y0i, z = z10 in (1)' yields

0 = (•*oioxio>J;oi>zio) = xoi°(-'cio>>'oi'Zio) + xio°(-^oi'yoi'zio) •

Since the >l00-component of the right member must be zero we have

0 = -*oi (xio> ^oi' z10) + (xoi> yoi> zio) A"io

= x01 (x10, y01, Zjo) + [(xoiyoi)zio] xio

= x0l(xlo, yol, z10) + (z10x10) (x01y01)

= x01 (x10, y01, z10) — (x10z10) (x0i>'oi)

= x0l w10 .
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In a similar fashion we have w10x0l = 0. Hence, from our preceding remarks

w10 = 0, so that (x10, y0l, z10) = -(y01, *io> zio)- Interchanging x10 and z10 we

obtain (z10, y0l, x10) = — (y0i, z10, Xi0). Combining these results we have

(x10,youz10) = e((j)(cr(x10),G(y01),a(zl0)) for all a. Replacing x10, z10,y0l by

Xoi> zoi> ^io we obtain (x01,y10, z01 ) = e(o)(o(x0l),a(yl0),o(z01)) and the

theorem is proved. See §5 for an example to show this result is not valid for simple

rings without idempotent e # 1.

4. Semi-simple algebras. Let A be a finite-dimensional algebra over field F

satisfying (1), (2), (3). We define the radical N of A to be the maximal nil ideal of

A. This makes sense since A is power-associative by Theorem 1. A is said to be

semi-simple if N = 0 ^ A.

Theorem 9. Let e be a principal idempotent of A. Then A1/2 + A0 £ N,

N the nil radical of A.

Theorem 10. Let A be semi-simple algebra satisfying (1), (2), and (3).

Then A has a unity element and is the direct sum of simple algebras.

Proof. The proofs of these theorems are the same as those of the corresponding

results given in [4] and we do not repeat them here.

5. Examples. We begin with

Example 1. Let A be any Lie ring. Then, since x2 = 0 and xo y = 0 for all

x, y e A, the identities (1), (2), and (3) must hold in A. Hence, there are simple

finite-dimensional nil algebras satisfying (1), (2), and (3) (the simple Lie algebras),

so that postulating the existence of an idempotent severely limits the possibilities

for A when A is simple.

Example 2. In [4] we defined a construction which gave rise to a class of simple

finite-dimensional algebras satisfying the identity (x, y, z) = (z, y, x), in which

the flexible identity (x, y, x) = 0 fails. Hence, these algebras (which possess unity

elements) cannot be alternative. A direct calculation shows that the algebra A of

this class which is given by the basis {1, x, y} where x2 = y2 = 0, xy = — yx = 1

satisfies (1), (2), and (3). Thus, Theorem 8 is in this sense the best possible result.

Example 3. Let A be an algebra over the field F with a basis {e, x, y} where

e2 = e, ex = x + y, xe = — y, ey = y, ye = x2 = y2 = xy = yx = 0. We see that

Ai — Fe, Ai/2 = Fx + Fy, A0 = 0. If z = txe + ßx + yy, a, ß, y e F then z2 = ocz

so that A is power-associative and satisfies (3). Any easy calculation reveals that

(u>, u, v) 6 Al/2 for all w,u,ve A. But then (z2, u, v) = (az, u, v) = a(z, u, v) while

zo (z, u, v) = aeo (z, u, v) = a(z, u, v). Hence, (z2, u, v) = zo (z, m, v) and (1)

holds. In a similar fashion (2) must be valid in A. We see that e(xe) = (ex)e

= — y ± 0 so that Al/2 does not decompose into A10 + A0Therefore Theorem 5

is nontrivial.
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