A GENERALIZATION OF ALTERNATIVE RINGS(})

BY
FRANK KOSIER

1. Introduction. In their well-known paper [3] Bruck and Kleinfeld proved that
any alternative ring must satisfy the identity

(l) (xz,y,z)=x0(x,y,2)

where the associator (x,y,z) is defined by (x,y,z) = (xy)z — x(yz) and
xoy = xy + yx. By symmetry an alternative ring must also satisfy the dual of
the above identity:

(2 (z,y,x*) = x0(z, y,%).

Let A be a ring satisfying (1) and (2) and suppose further that 4 has a unit
element 1. Then the relations (1) and (2) yield no identities of degree 3 which can
be obtained from (1) and (2) by setting one of the variables equal to 1 since for
any such substitution the relations (1) and (2) reduce to the trivial equation(?).

In this paper we study the class of rings which satisfy (1), (2), and
3) (x,x,x) =0.

From our earlier remarks it is immediate that these rings are generalizations of
alternative rings.

In §2 we show that any ring A satisfying (1), (2), and (3) must be power-
associative and, using this result we obtain an idempotent decomposition for 4
as A=A, + A,;; + A, where x € 4; if and only if ex + xe = 2ix for the idem-
potent e of A. In Theorem 3 we develop some fundamental relations for the
multiplicative properties of the 4;. We are able to show in §3 that if 4 has no nil
ideals then A must, in fact, have a Peirce decomposition with respect to an idem-
potent e. That is, A is the direct sum of the subgroups 4;;;i,j = 0, 1 where x € 4;;
if and only if ex = ix, xe = jx. This is then used to prove the main results:
(a) Any simple ring A satisfying (1), (2), and (3) with an idempotent e # 1 must be
associative or a Cayley-Dickson algebra over its center. (b) Any finite-dimensional
semi-simple algebra A satisfying (1), (2), and (3) has a unity element and is the
direct sum of simple algebras. In §5 we give some examples to show that these
results are in a certain sense best possible.

We suppose in the remainder of this paper that the ring A satisfies (1),(2),and(3).
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2. Preliminaries. We begin this section with the following:
THEOREM 1. A is power-associative.

Proof. Identity (3) gives (x, x, x) = 0 and this along with (1) and (2) yields
x2x?= x3x = xx>. We define x" inductively by x"~!x = x". Then we have x> = x'x’
for i+j=3,0<i,j<3and x*=x'x/ for i +j=4, 0<i,j<4. We now show
by induction that x" = x'x’ for i + j = n, 0< i, j < n. We assume that x'*/ = x'x/
for i4+j<n;0<i,jand n=5. Then (1) with y=x""2"! z=x' becomes

(2, x"" 278 x) = xo (x, x" 27, x) = 0. Thus, x" %' = x2x" *forO<i<n—2
so that we have x"~'x’ = x" except possibly when i = n—1. But using y = x"~3,
z = x in (2) we obtain (x, x"~3, x*) =xo0 (x, x" 3, x) = 0 which gives
x""%x? = xx"~! = x"since n = 5. Thus, x'*/ = x'x’ for 0 < i, j so that A is pow-
er-associative.

Replacing x by x + w in (1) and (2) yields

1y (xow,y,z) =xo(w,y,2z) + wo(x,),z)
and
(2)' (Z,y,x0W)=X0(Z,y,W)+WO(Z,}’,X)-

Linearizing (3) leads to the identity
A (x, %, 9) + (X, 9, %) + (y,x,x) =0

provided that A has characteristic # 2 and so, whenever necessary, we shall
assume in addition that A satisfies (3)’.

Let e be an idempotent of A. Then setting w =y =z = e in (1)’ and (2)' we
find (xe + ex, e, e) = eo(x, e, €) and (e, e, ex + xe) = eo (e, e, x). In any ring we
have (xe, e, e) = (x,e,e) = (x, e, e)e and (e, e, ex) = e(e, e, x) so that the above
relations reduce to

€)) e(x, e, e) = (ex,e,e), (e, e, xe) = (e, e, x)e.

Using the substitutions x = e,y = x,z=eand x = e,z = x,y = e in (1) and
(2) respectively we obtain

(5) (e,x,e)=eo(e,x,e), (e,e,x)=eo(e,e,x), (x,e,e)=eo(x,ee).
In any ring we have
(ex,e,e) — (e, xe,e) + (e,x,e) = e(x, e, €) + (e, x, e)e

which with (4) and (5) reduces to (e, xe, €) = e(e, x, ¢). By symmetry we must
also have (e, ex, e) = (e, x, e)e. Identities (3)’ and (4) yield:

(ex,e,e) + (e,ex,e) + (e, e,ex) = 0 = e(x, e, e) + (e, ex, e) + e(e, e, x).

Bute[(x,e,e) + (e, x,€) + (e, e, x)] =0 so that(e, ex, €) = e(e, x, €). Thus we have
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(6) (e, ex,e) = e(e, x, e) = (e, xe, e) = (e, x, e)e.

THEOREM 2(3). Letebeanidempotentof A. Then A = A; + A,,, + Ay where
xeA;i=0,1if and only if ex=xe=ix, and x€ A,,, if and only if ex + xe =x.
A'is the additive direct sum of the subgroups A;;i =0,1/2, 1.

Proof. Let xe A. We set x, = e(xe) — (e, e, x) = (ex)e + (x, e, €) (by (3)').
Then we see that

ex; — x, = e(e(xe)) — e(e, e, x) — e(xe) + (e, e, x)
= —(e,e,xe) —e(e,e,x) + (e, e,X)

= —eo(e,e,x)+(e,e,x) =0
and
xe —x; = ((ex)e)e + (x, e, e)e — (ex)e — (x,e,¢€)

(ex,e,e) + ’(x, e,e)e — (x,e,e)
= eo(x,e,¢) — (x,e,e) = 0.
Hence ex; = x,e = x,. Next we set xo = x; — (ex + xe — x) and we see that
exg = ex,; —e(ex + xe —x) = x; + (e, e,x) — e(xe) = x; — x; =0,
Xoe = xe — (ex + xe — x)e = x; — (ex)e — (x,e,e) = x; — x; = 0.
Thus ex, = xoe = 0. Finally we set x;,, = ex + xe — 2x,. Then

exy;; + x;,e = e(ex) + e(xe) + (xe)e + (ex)e — 4x;

—(e,e,x) + (x,e,e) + e(xe) + (ex)e — 4x; + ex + xe
=x, +Xx; — 4x; + ex + xe
=ex + xe — 2x; = X;,,.

It is immediate from the definitions of the x; that x = x; + x;,, + xo. This
representation of x as the sum of the elements x,, x;,,, X, is unique for if
X =Xx; + X5 + X =0 we have ex + xe = 2x; + x;;, =0. But then
2xy 4+ x3;2—x =Xx;—xo = 0. Thus e(x, —xo) = x; = 0so that x; = x;,, = x, = 0.
This completes the proof.

Now suppose x € A;,. Thenfrom (1), (e, x, e)= eo (e, x, e) so that (e, x,e) € 4, 5.
Next let ex = x; + x;,, + Xo. Then

(e,e,x) =ex —e(ex) = Xy + Xy, + Xg — X; — eXy),
= e(xe) = Xy;5 — exy;; + Xo = Xy ;5€ + Xg
and

(3) Except for special characteristics, Theorem 2 and portions of Theorem 3 can be obtained
from the results of Albert [1] and Kokoris, New results on power-associative algebras, Trans.
Amer. Math. Soc. 77 (1954), 363-373.
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(x,e,6) = (xe)e — xe = — (ex)e = —x; — Xye.

But (3)" implies that (e, e,x) + (x,e,€) = —(e,x,€) = —x; + xo€ A4,,,. Hence
Xy = X9 =(e,x,e) =0 for xe A;,,. Thus (e, x, e) = 0 for every x € A. We note
that we have also shown above that ex, xee 4,,, for xe 4,,,.

Let us examine some of the multiplicative properties of the A4;. Let x,, y, € 4;.
Then substituting x = x;,w=e,y=y;,z=eandx =e,y = x;,z = y, in (1)’
and (1) respectively we obtain 2(x,,y,,e) =eo(x,,y,e)and (e,x,y,) =eo(e,x;, ;).
Hence

(X15 V1s 9)1/2 =(e,x1, 1)1 = (e, %1, ¥1)0 = 0.

In a similar fashion using (2)’ and (2) we find

(x1> Y1> €)1 = (X1, ¥1,€)0 = (&, X4, Y1)1/2 = 0.

Thus(xy, y;,e) = (e, xy, y;) = Oso that x,y, € A;. Replacing x,, y, by x,, yo € 4o
we also find xyy, € 4,.

Let x, € Ay, yy,2 € Ay),. Then substituting x = x;, w=e, y = y,,,, z=e in
(1)" we find 2(xy, yy/2, €) = €0 (xy, yy)2, €) While setting x = e,y =y, z = x;
in (2) yields (xy, y;,2,€) = eo (xy, y1,2,€). Hence (x;, yy,5, €) = 0. Next we set

=e,Ww=Y; ) =ez=Xxin (2), toobtain(x,e,y,,,) = eo(x,e,y;,5) € Ay 3.
Thgn (x1,¥1720€) + (X1, €, ¥172) = (x1y172)e = x1(y1)28) + X1Y12 — x1(ey1,2)
= (x1y1/2)e€ Ay 5. Hence x,y € Ay, + Ap. Next wesetx = e,y = xy,z2 =y,
in (1) to obtain (e, x,y,/2) = eo(e,x, ;) so that x;y;,—e(x,y;,,) € Ays.
Thus x,y;,, €(Ay + Ay5) N (Ay)s + Ao) = Ay,

In a similar fashion y,,,x, € A,,,. Replacing x; by x, we also find that
(X0 Y1/2:€) = (€, Y12, X0) = 0 and Xxoyy/2, V1/2X0€ A;,,. Thus using Albert’s
terminology [1] every idempotent e of A4 is stable.

Suppose x € A, ;,. Then (3)’ yields ex? = x?e. Next using (1)’ and (2)’ we obtain
(x,e,x) = x0(e, e,x) + eo(x, e, x)and (x, e, x) = x0(x, e, €) + eo (x, e, x). Thus
xo (e, e,x) = x0 (x, e, e). From (1) and (2) we obtain (x?, ¢, e) = x0 (x, e, ¢) and
(e, e, x2) = x0 (e, e, x). Hence (x2, e, €) = (e, e, x2). Thus

0 = 2(e, e, x3)—2(x?, e, €) = 2ex?—2e(ex?)—2(x2e)e + 2x%e
= 2[2ex2—280 (exz)] = 2€(x2)1/2 = (xz)l/z.

Now let x, € 4, yo € Ag. Then 2(xy, e, yo) = eo (x4, e, Yo) is obtained by setting
X=X, WwW=e, y=e,z=y,in (1)". This reduces to (x,y,);,,= 0. Substituting
x=e, y=2Xx,z=yoin(l)ywefind (e, x;, yo) = eo (e, xy, yo). Hence (x,y,)o =
and interchanging x, and yo, we find (yox,)o = 0. Employing (2)’ and (2) we have,
(Yox1)1/2 = (¥oX1)o = (X1¥0); = 0. Combining these we have x;y, = y,x; = 0
and we state
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THEOREM 3. Suppose A = Ay + A;;; + A, with respect to the idempotent e
of A. Then A, and A, are orthogonal subrings and A;A;,, + A,,A; S A, for
i = 0,1. Moreover, the following special relations hold: (x;, y,,2,€) = (€, ¥1/2, X;)
= 0for x;€e A;; i =0,1. If X/, ¥1,2 €Ay, then xlz,zeA, + Ao and (Xy,2Y1,2)1,2
= —(V1j2X1/2)1)2-

3. Ideals and simple rings. The following is fundamental in our development.

THEOREM 4. Let & = {x|x€ A, and ax,xac A, for all ac A}. Then £
is an ideal of A and for any xe &, x* = 0.

Proof. Let y,, €%, z;,€ A, x;€A. Clearly (4, + Ao)(x1y1/2)
+ (x1¥1,2) (A + Ag) E A;,,. Using (1)" and (2)" we find

©) (zl/z’xl’ )’1/2) = eo (Zl/z,xn .V1/2) + 24,20 (e, xl’.VI/Z)a
®) (Zl/z»xl’)’uz) = €0 (21/2, X1s )’1/2) + yl/zo(zl/Z,xl’ e).

Thus z,,,0(e, X1, Y1/2) = ¥1/20(21/2, X1, €) € Ayjp. Using (7) we then have
24,20 (e, X1, y172) = 0 and then (zy,5, Xy, y1/2) € Ay/2. Hence zy2(X1Y1/2) € Ay 2.
Interchanging z,,, and y;,, we find that (yy,x,)zy,, € 41/, Setting z = x,,
Y=Yz W=2y x=e in (2)" we find (xy, 12, 21/2) = €0 (x15 Y1725 21/2)
(since (xy, yy2,€) = 0). Thus (x;yy,5)z1/2€ Ay2 for yy/221,,€ Ay)5. A similar
substitution in (1)’ yields zy,,(yy,2X;) € A2 S0 that X,y 5, V12X, € £. Replacing
x, by xo we also find xoy;,2, V1,2%X0 € Z.

Next we consider y,,, €%, zy,;, X,, € Ay;,. Substituting in (1)’ we obtain
(V125 X1/2> Z172) = €0 (¥1/2> X125 Z172) + Y1720 (e, x1/25 2172)- Since yy, € Z,
Y120 (€, X1/2, Z1/2) € A12. Thus we must have (yy,2, 212, x12i = 0;i = 0,1
Hence (yy/2%1/2)21/2 € A1,z and, using T heorem 3 (and 2'),

(Y1/2x1/z)21/2 = _(x1/2y1/2)31/2a 21/2(x1/2Y1/2) = _21/2(Y1/2x1/2)€A1/2-

Thus X,,2)1/2 = —Y1/2%1/2 € £ and £ must be an ideal of A with the property
that & < 4, ,,. Therefore x> = 0 for all xe &.

We next show that A with the added condition that A possess no ideals % such
that x2 = 0 for all x € & must have a Peirce decomposition.

THEOREM 5. Suppose A has no ideals £ # 0 such that x> = 0 for all xe Z.
Then for e an idempotent of A we have A = Ay, + Ao + Aoy + Ago, Where
x € A;; if and only if ex = ix, xe = jx.

Proof. It is well known that a necessary and sufficient condition that the
decomposition of the theorem holds in A is that

(x,e,e) = (e,x,e) = (e,e,x) = 0 for all x € 4.

Since we already have (e, x,e) = 0 we can reduce the proof to showing that
(x,e,e) =(e,e,x) for xe 4;,. If xe A/, we have
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e(xe) =(e,e,x) = —(x,e,e) = (ex)e.

By the previous theorem we see that it suffices to show that e(xe) e &, £ the

ideal defined in Theorem 4. This result follows from the next lemma.

LEMMA. Let A bearing with idempotent e, and suppose X,,,y,,, € Ay,,. Then
(x1/2Y172)1 = [(ex1,2)(¥1,20)]1 5 (x1/2Y172)0 = [(x1/2€)(ey1/2)]o 5
(exy/2)(ey1/2)s (x1/2)(y1,28) € 4y

Proof. Identities (1) and (2) yield
(e>x1/z’)’1/2) =e O(e’xl/Z’yI/Z)’ (x1/2’)’1/2’e) =e0 (xl/Z’yl/Zae)~

Hence (e,xl/z’yl/z)l = (eaxl/z,)’uz)o =0 and (x1/2ayl/2,e)1 = (x”z,yl,z,e)o =0
so that

[(exl/z).l’uz]x = (xl/z}’x/z)la [(exl/z))’uz]o =0,
[xl/z(J’1/2e)]1 = (x1/2y1/2)1a [xl/z(J’1/2e)]o =0.

The lemma is immediate after we note that ex,,, + x;,,e = xy,.

At this juncture we are able to show that under the hypothesis of Theorem 5
the A;; satisfy the same multiplicative relations as in the alternative case and this
we proceed to do.

Since (xy4,y1,2,€) = 0 we have

(X11:V10:0) =(X11Y10)e =0,  (X11,V01,€) = (X{1Y01)€ — X;1V0; = 0.

Using the substitution w =e, x = x;, y = e, z = y4, in (1)’ results in

2(x11,€,¥01) = €0(xy1,€,¥01) + X110 (e, €, yo1)
or

2x11Y01 = e(X11Y01) + (X11V01€) = €0 (X11Y01)-
But x,yo; € Ajo + Aoy (by Theorem 3) so that x,,yo; = €0(x11yo1) = 2X;1Yo;-
Hence x;,yo; = 0. Another application of (1) yields (e, x,,¥10) = €0(e,X;1,V10)
or

X11Y10 — €(X11V10) = e(x11Y10) — e(e(x11Y10)) + (X11¥10)e — (e(x{1V10))e.
But the right-hand member is O since (x,y,0)e = 0. Thus, x ;5,0 € 410> X11 Vo1 =0
and using (2) and (2)’ we obtain y,,x,, € Aoy, ¥10%1; = 0. Replacing x,; by x4,
we find the corresponding relations Xq0¥10= Yo1X00 =0, Xo0Vo1 € 401>

Y10%Xo00 € 410-
Let x49,y10 € Ayo- Then (1)’ yields

(x105€,¥10) = €0 (X10,€,¥10) + X100(€,€,¥10)
or

X10Y10 = €0 (X10,€,¥10) = e(X10¥10) + (X10¥10)e-
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Thus x,0¥10€ Ao + Ag;. Using (3)’ we find xZye = ex?,. Therefore x2 =0
and we have x;4y;0 = —V 0X10€ Ao + 4p;. In a similar manner we find
X51 =0, Yo1X01 = = Xo1Vo1 € A1o + Aoy

Next suppose X;o € A;gs Vo1 € Ag1- Then (1)' becomes

(X10:Yo1,€) = €0 (X109, Yo1,€) + X100(€, Yo1.©)
or
(X10¥01)€ = X10Y01 = €(X10Y01)€ — e(X10Yo1)-

Hence x,0yo; € 411 + 419 + Ap; and interchanging x,, and y,, we find

(Yo1X10)e = e(yo1X10)e + (Yor1X10)e

so that e(yo,x;0)e = 0 and yo;x,0€ 4o + Aoy + Ago-
From the relation ex? = x2eforall xe A, + A, Wesee that x, 0 yo; € 4, + Aq.
Finally we show that (x,0¥01)10» (X10¥01)o1> (X10¥10)10» (X01¥01)o1 belong to
the ideal & of T heorem 4, and hence must be zero. In order to get (x;0V01)10 €L
it suffices to prove that (x,0¥01)10Z01> Z01(X10Y01)10 € A10 + Ao;- Identity (1)’

implies that
(X10:Y015Z01) = €0 (X10,Yo1>Z01) + X100 (€, Yo15Z01)

while (2)’ yields

(X10sYo1,Z01) = €0 (X105 Yo15Z01) + Z010 (X105 Vo1, €)-

Combining these two relations we have

X100 (€, Yo15201) = 201° (X105 Yo1,©)-

But (e, yo1, Zo1) € 410 so that the left member is zero. Hence,
210 (X105 Yo1,€) = Zo1 ©(X10¥01)10 = 0.

Therefore [z1(x10Y01)10]o = [(X10¥01)10%01]1 = 0, and (x;oyo1)10€ L. Re-
placing zy, by z,, in the foregoing results in (x;0y¢;)0; € £. The first relation
above implies that (X;¢,Yo1sZ201); =0 for i=0,1. Thus [(X;0¥01)10Z01]s
= [x10(Vo1Z01)01]1- But the left member is zero since (x;0¥01)10€ £ so that
(¥01201)01 € Z- In a similar manner we see that (xoy,¢);0 € . Combining these
remarks we have

THEOREM 6. Suppose A satisfies the hypothesis of T heorem 5. T hen for any
idempotent e of A, A = A;; + Ayo + Ao1 + Ao Where A;; Ay, = 0, Ay, except
when i #jand i =k, j = m and then A} < A,

In the remainder of this section we suppose that A satisfies the hypothesis of
T heorem 5.

THEOREM 7. AlOAOI + A“) + A01 + A01A10 is an ideal Of A.
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Proof. For the proof we need only show that A,,A4,; and A4,,4, are ideals
of A, and Ay, respectively. Let x;; € Ay, ¥10 € A1g> Zo1 € Ao Then (2) implies
that (X1, ¥10 Zo1) = €0 (X11, V105 Zo1) € Ao + Aoy But (X1, yy0, 701)5/111 S0
that (x,,¥10)Zo1 = *¥11(V10Z01) OF Ay1(A19Ao1) S Ajodos- In a similar fashion
we see that (4;040;)A;; S A 040, and, interchanging 1’s and 0’s we have the
correspondmg results for 4y A ,.

COROLLARY 1. A, Ay, and Ay A, are associative subrings of A.
Proof. Using the proof of the preceding theorem we see that
(x11(V10ZoIWry = ((x11Y10)2Z00)W11 = (X11¥10) (Zo1W11)
= x11(¥10(Zo1Wi 1)) = X11((¥10Zo)W11)-

Since every element of 4,44, is the sum of elements of the form y,,z,, We have
established the associativity of A;,4¢;. The same proof works for Ay 4, as
soon as we interchange 1’s and 0’s.

COROLLARY 2. If A is simple then either e =1 or Ayy = AjyAq, and
Ago = Ag1410- '

We are now in a position to state our main result.

THEOREM 8. Let A be a simple ring satisfying (1),(2), and (3). Suppose A has
an idempotent e # 1. Then A is either an associative ring or a Cayley-Dickson
algebra over its center. ‘

Proof. A ring is alternative if and only if

® (x,¥,2) = &(0)(a(x), a(y), 0(2))
for all permutations o where ¢(6) = 1 or —1 as o is even or odd. We prove the
theorem by showing that (9) holds for all possible choices of x, y, z belongmg to
the 4;; since then Albert’s result is applicable [2]. '
Comblnmg Corollaries 1 and 2 of T heorem 7 we have (x;, yi, z;) = 0, i = 0,1
Suppose Xy 1,11 € Ay11,210 € A1o- Then we see that (250, X115 Y11) = (210,115 X11)
=(Xy1,210:¥11) = (P11, Z10:%11) = 0. Next using (1)’ we have 2(x1y,¥11,Z210)
= eo(xi, V11,2100 + X110(e Y1 210) = (X115 V11> Z10) €410 Thus
(X115 Y11>210) = (P11,X11.210) = 0. Replacing z,, by zy; € 4, we find the corre-
sponding result. Clearly (x;1,11,Z00) = (X11,Z005 ¥11) = (200, X11,¥11) = 0 for
Zo0 € Ago- Now suppose we examine products involving x,; € Ay, Y10, 210 € 410
If we substitute w = e, X = X{{, ¥ = V10, Z = Z;0 in (1)’ we obtain

2(X11, Y10> Z10) = €0 (X11, Y105 Z10) + X110 (&, Y105 Z10)>

(X11Y10)Z10 = (V10Z10)%11-
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Then using the fact that a,ob;o = — by, We find (x;;¥10)Z10 = —Z10(X11 V10)
= (y10Z10%11 = —(Z10¥100%11 = —(X11210)¥10 = Y10(¥11Z10). Combining these
we have (X;1, V10> Z10) = €(0)(a(xy,), 0(¥10), 6(z40)) for all 6. Again, replacing
V10> Z10 DY Yo1» Xo1 We have the corresponding results. The case x,; € 4y,
V10 € A1os Zo1 € Aoy Was done in the proof of Theorem 7 as soon as we note
that (¥, X115 Zo1) = 0and (2o, X115 ¥10) = O by setting x = e, w = 291,y = X131,
z = y,0 in (1)". If we replace x,; by x,, the corresponding results are proved in
the same fashion.

We have reduced the proof to considering x, y, z€ Ao + Ag;. First suppose
that Xy, Y10, Z10 € A1o. Then (1)” implies that (x1o, Y105 Z10) = €0 (X105 Y10>Z10)
+ X100 (e, 105 Z10)- Equating the 4y-components we obtain

(X10Y10)210 = (Y10Z10)X10-

A similar substitution in (2)" yields

%10(V10Z10) = Z10(X10Y10)-

Then noting that a,ob;o = —b,oa;0 We see that (X, Y10, Z10) = €(0) (6(X10),
6(¥10), 0(z10)) for all a. The case x4, Vo1, Zo1 € Aoy is proved in the same way. Fi-
nally weconsider X0, 210 € 410, Yo1 € Aoy- Then (o1, X105 210) = —(Yo1> Z105 X10)
= (X100 Z10» Yor) = —(Z10> X105 Vo1) SinC€ Yo1(X10Z10) = —Yo1(Z10%10)
= (zy0%100Y01 = —(X10Z10)Y01- Consider (x10, Yo1» Z10) + (Vo1 X105 Z10)
= Wy € Ayo. We show that xg,w;q = wyoXo; = O for all xo; € Ag;. Then Awy,
+ wyod S Ajo + Ao, so that w, belongs to the ideal &£ of T heorem 3 and hence,
must be zero.

Xo1Wio = X01(X105 Yo1s Z10) — x01(¥01(X10210))
= X01(X10, Yo1» Z10) — (X10210) (X01Yo01)-

Since X920 € Aoy and dao;(boy co1) = €o1(aoy boy)-
Setting x = Xq;, W = X;0, Y = Vo1, Z = 230 in (1) yields

0 = (X010 X109, Yo15210) = X01° (X105 Yo15Z10) + X100 (X01>Yo1>210) -
Since the A,,-component of the right member must be zero we have
0 = Xo1 (X105 Yo1> Z10) + (X015 Yo1s Z10) X10
= Xo1 (X10> You» Z10) + [(X01¥01)Z10] X10
= Xo1 (X105 Yo1> Z10) + (Z10%10) (X01Y01)

= Xo1 (X105 Yo1> Z10) — (X10210) (X01Y01)

= Xo1 W10
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In a similar fashion we have w 4xo; = 0. Hence, from our preceding remarks
wio = 0, s0 that (x,9, Y015 Z10) = —(Vo1> X105 Z10)- Interchanging x,, and z,, we
obtain (z,0, Vo1 X10) = —(Vo1» Z10> X10)- Combining these results we have
(X105 Yo1> Z10) = €(0) (6(x10), 6(yo1), 0(z10)) for all 0. Replacing x;¢, 210,Y01 bY
Xo1> Zo» V1o W€ obtain (Xo, V10, Zo1) = €(0)(a(Xo1), 0(y10), 6(201)) and the
theorem is proved. See §S for an example to show this result is rot valid for simple
rings without idempotent e # 1.

4. Semi-simple algebras. Let A be a finite-dimensional algebra over field F
satisfying (1), (2), (3). We define the radical N of A4 to be the maximal nil ideal of
A. This makes sense since A4 is power-associative by Theorem 1. A is said to be
semi-simple if N = 0 # A.

THEOREM 9. Let e be a principal idempotent of A. Then A, + Ay < N,
N the nil radical of A.

THEOREM 10. Let A be semi-simple algebra satisfying (1), (2), and (3).
Then A has a unity element and is the direct sum of simple algebras.

Proof. The proofs of these theorems are the same as those of the corresponding
results given in [4] and we do not repeat them here.

5. Examples. We begin with

ExaMPLE 1. Let 4 be any Lie ring. Then, since x? = 0 and x o y = 0 forall
x,y € A, the identities (1), (2), and (3) must hold in A. Hence, there are simple
finite-dimensional nil algebras satisfying (1), (2), and (3) (the simple Lie algebras),
so that postulating the existence of an idempotent severely limits the possibilities
for A when A is simple.

EXAMPLE 2. In[4]we defined a construction which gaveriseto aclass of simple
finite-dimensional algebras satisfying the identity (x, y, z) = (z, y, x), in which
the flexible identity (x, y, x)=0 fails. Hence, these algebras (which possess unity
elements) cannot be alternative. A direct calculation shows that the algebra 4 of
this class which is given by the basis {1, x, y} where x> = y> =0, xy = —yx = 1
satisfies (1), (2), and (3). Thus, Theorem 8 is in this sense the best possible result.

ExAMPLE 3. Let A be an algebra over the field F with a basis {e, x, y} where
e =eex=x+yxe=—yey=y ye=x*=y?=xy=yx =0 Weseethat
Ay =Fe, Ay, =Fx+ Fy, Ay =0.1fz = oe + Bx + yy, a, B, y€ F then 2% = az
so that A is power-associative and satisfies (3). Any easy calculation reveals that
(w,u,v)e A, ), for all w,u,ve A. But then (z2, u, v) = (az, u,v) = a(z, u, v) while
zo(z,u,v) = aeo (z,u,v) = a(z, u,v). Hence, (z%,u,v) =zo(z,u,v) and (1)
holds. In a similar fashion (2) must be valid in 4. We see that e(xe) = (ex)e
= —y # Osothat 4;,, does not decompose into 4, + Ay,. Therefore Theorem 5
is nontrivial.
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