A GENERALIZATION OF ALTERNATIVE RINGS(1)

BY
FRANK KOSIER

1. Introduction. In their well-known paper [3] Bruck and Kleinfeld proved that any alternative ring must satisfy the identity

$$
\begin{equation*}
\left(x^{2}, y, z\right)=x \circ(x, y, z) \tag{1}
\end{equation*}
$$

where the associator (x, y, z) is defined by $(x, y, z)=(x y) z-x(y z)$ and $x \circ y=x y+y x$. By symmetry an alternative ring must also satisfy the dual of the above identity:

$$
\begin{equation*}
\left(z, y, x^{2}\right)=x \circ(z, y, x) \tag{2}
\end{equation*}
$$

Let A be a ring satisfying (1) and (2) and suppose further that A has a unit element 1 . Then the relations (1) and (2) yield no identities of degree 3 which can be obtained from (1) and (2) by setting one of the variables equal to 1 since for any such substitution the relations (1) and (2) reduce to the trivial equation $\left({ }^{2}\right)$.

In this paper we study the class of rings which satisfy (1), (2), and

$$
\begin{equation*}
(x, x, x)=0 . \tag{3}
\end{equation*}
$$

From our earlier remarks it is immediate that these rings are generalizations of alternative rings.

In $\S 2$ we show that any ring A satisfying (1), (2), and (3) must be powerassociative and, using this result we obtain an idempotent decomposition for A as $A=A_{1}+A_{1 / 2}+A_{0}$ where $x \in A_{i}$ if and only if $e x+x e=2 i x$ for the idempotent e of A. In Theorem 3 we develop some fundamental relations for the multiplicative properties of the A_{i}. We are able to show in $\S 3$ that if A has no nil ideals then A must, in fact, have a Peirce decomposition with respect to an idempotent e. That is, A is the direct sum of the subgroups $A_{i j} ; i, j=0,1$ where $x \in A_{i j}$ if and only if $e x=i x, x e=j x$. This is then used to prove the main results: (a) Any simple ring A satisfying (1), (2), and (3) with an idempotent $e \neq 1$ must be associative or a Cayley-Dickson algebra over its center. (b) Any finite-dimensional semi-simple algebra A satisfying (1), (2), and (3) has a unity element and is the direct sum of simple algebras. In $\S 5$ we give some examples to show that these results are in a certain sense best possible.

We suppose in the remainder of this paper that the ring A satisfies (1),(2), and(3).
Received by the editors March 17, 1963.
(1) Research supported by National Science Foundation Grant No. GP-280.
${ }^{(2)}$ We refer the reader to [7] for information pertinent to this remark.

2. Preliminaries. We begin this section with the following:

Theorem 1. A is power-associative.
Proof. Identity (3) gives (x, x, x) $=0$ and this along with (1) and (2) yields $x^{2} x^{2}=x^{3} x=x x^{3}$. We define x^{n} inductively by $x^{n-1} x=x^{n}$. Then we have $x^{3}=x^{i} x^{j}$ for $i+j=3,0<i, j<3$ and $x^{4}=x^{i} x^{j}$ for $i+j=4,0<i, j<4$. We now show by induction that $x^{n}=x^{i} x^{j}$ for $i+j=n, 0<i, j<n$. We assume that $x^{i+j}=x^{i} x^{j}$ for $i+j<n ; 0<i, j$ and $n \geqq 5$. Then (1) with $y=x^{n-2-i}, z=x^{i}$ becomes $\left(x^{2}, x^{n-2-i}, x^{i}\right)=x \circ\left(x, x^{n-2-i}, x^{i}\right)=0$. Thus, $x^{n-i} x^{i}=x^{2} x^{n-2}$ for $0<i<n-2$ so that we have $x^{n-i} x^{i}=x^{n}$ except possibly when $i=n-1$. But using $y=x^{n-3}$. $z=x$ in (2) we obtain $\left(x, x^{n-3}, x^{2}\right)=x \circ\left(x, x^{n-3}, x\right)=0$ which gives $x^{n-2} x^{2}=x x^{n-1}=x^{n}$ since $n \geqq 5$. Thus, $x^{i+j}=x^{i} x^{j}$ for $0<i, j$ so that A is pow-er-associative.

Replacing x by $x+w$ in (1) and (2) yields

$$
\begin{equation*}
(x \circ w, y, z)=x \circ(w, y, z)+w \circ(x, y, z) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(z, y, x \circ w)=x \circ(z, y, w)+w \circ(z, y, x) . \tag{2}
\end{equation*}
$$

Linearizing (3) leads to the identity

$$
\begin{equation*}
(x, x, y)+(x, y, x)+(y, x, x)=0 \tag{3}
\end{equation*}
$$

provided that A has characteristic $\neq 2$ and so, whenever necessary, we shall assume in addition that A satisfies (3)'.

Let e be an idempotent of A. Then setting $w=y=z=e$ in (1)' and (2)' we find $(x e+e x, e, e)=e \circ(x, e, e)$ and $(e, e, e x+x e)=e \circ(e, e, x)$. In any ring we have $(x e, e, e)=(x, e, e)=(x, e, e) e$ and $(e, e, e x)=e(e, e, x)$ so that the above relations reduce to

$$
\begin{equation*}
e(x, e, e)=(e x, e, e), \quad(e, e, x e)=(e, e, x) e \tag{4}
\end{equation*}
$$

Using the substitutions $x=e, y=x, z=e$ and $x=e, z=x, y=e$ in (1) and (2) respectively we obtain

$$
\begin{equation*}
(e, x, e)=e \circ(e, x, e), \quad(e, e, x)=e \circ(e, e, x), \quad(x, e, e)=e \circ(x, e, e) \tag{5}
\end{equation*}
$$

In any ring we have

$$
(e x, e, e)-(e, x e, e)+(e, x, e)=e(x, e, e)+(e, x, e) e
$$

which with (4) and (5) reduces to (e, xe,e) $=e(e, x, e)$. By symmetry we must also have $(e, e x, e)=(e, x, e) e$. Identities (3)' and (4) yield:

$$
(e x, e, e)+(e, e x, e)+(e, e, e x)=0=e(x, e, e)+(e, e x, e)+e(e, e, x)
$$

But $e[(x, e, e)+(e, x, e)+(e, e, x)]=0$ so that $(e, e x, e)=e(e, x, e)$. Thus we have

$$
\begin{equation*}
(e, e x, e)=e(e, x, e)=(e, x e, e)=(e, x, e) e . \tag{6}
\end{equation*}
$$

Theorem 2(${ }^{3}$). Let e be an idempotent of A. Then $A=A_{1}+A_{1 / 2}+A_{0}$ where $x \in A_{i} ; i=0,1$ if and only if $e x=x e=i x$, and $x \in A_{1 / 2}$ if and only if $e x+x e=x$. A is the additive direct sum of the subgroups $A_{i} ; i=0,1 / 2,1$.

Proof. Let $x \in A$. We set $x_{1}=e(x e)-(e, e, x)=(e x) e+(x, e, e)\left(\right.$ by $\left.(3)^{\prime}\right)$. Then we see that

$$
\begin{aligned}
e x_{1}-x_{1} & =e(e(x e))-e(e, e, x)-e(x e)+(e, e, x) \\
& =-(e, e, x e)-e(e, e, x)+(e, e, x) \\
& =-e \circ(e, e, x)+(e, e, x)=0
\end{aligned}
$$

and

$$
\begin{aligned}
x_{1} e-x_{1} & =((e x) e) e+(x, e, e) e-(e x) e-(x, e, e) \\
& =(e x, e, e)+(x, e, e) e-(x, e, e) \\
& =e \circ(x, e, e)-(x, e, e)=0 .
\end{aligned}
$$

Hence $e x_{1}=x_{1} e=x_{1}$. Next we set $x_{0}=x_{1}-(e x+x e-x)$ and we see that

$$
\begin{aligned}
& e x_{0}=e x_{1}-e(e x+x e-x)=x_{1}+(e, e, x)-e(x e)=x_{1}-x_{1}=0 \\
& x_{0} e=x_{1} e-(e x+x e-x) e=x_{1}-(e x) e-(x, e, e)=x_{1}-x_{1}=0
\end{aligned}
$$

Thus $e x_{0}=x_{0} e=0$. Finally we set $x_{1 / 2}=e x+x e-2 x_{1}$. Then

$$
\begin{aligned}
e x_{1 / 2}+x_{1 / 2} e & =e(e x)+e(x e)+(x e) e+(e x) e-4 x_{1} \\
& =-(e, e, x)+(x, e, e)+e(x e)+(e x) e-4 x_{1}+e x+x e \\
& =x_{1}+x_{1}-4 x_{1}+e x+x e \\
& =e x+x e-2 x_{1}=x_{1 / 2} .
\end{aligned}
$$

It is immediate from the definitions of the x_{i} that $x=x_{1}+x_{1 / 2}+x_{0}$. This representation of x as the sum of the elements $x_{1}, x_{1 / 2}, x_{0}$ is unique for if $x=x_{1}+x_{1 / 2}+x_{0}=0$ we have $e x+x e=2 x_{1}+x_{1 / 2}=0$. But then $2 x_{1}+x_{1 / 2}-x=x_{1}-x_{0}=0$. Thus $e\left(x_{1}-x_{0}\right)=x_{1}=0$ so that $x_{1}=x_{1 / 2}=x_{0}=0$. This completes the proof.

Now suppose $x \in A_{1 / 2}$. Then from (1), $(e, x, e)=e \circ(e, x, e)$ so that $(e, x, e) \in A_{1 / 2}$. Next let $e x=x_{1}+x_{1 / 2}+x_{0}$. Then

$$
\begin{aligned}
(e, e, x) & =e x-e(e x)=x_{1}+x_{1 / 2}+x_{0}-x_{1}-e x_{1 / 2} \\
& =e(x e)=x_{1 / 2}-e x_{1 / 2}+x_{0}=x_{1 / 2} e+x_{0}
\end{aligned}
$$

and
(3) Except for special characteristics, Theorem 2 and portions of Theorem 3 can be obtained from the results of Albert [1] and Kokoris, New results on power-associative algebras, Trans. Amer. Math. Soc. 77 (1954), 363-373.

$$
(x, e, e)=(x e) e-x e=-(e x) e=-x_{1}-x_{1 / 2} e .
$$

But (3)' implies that $(e, e, x)+(x, e, e)=-(e, x, e)=-x_{1}+x_{0} \in A_{1 / 2}$. Hence $x_{1}=x_{0}=(e, x, e)=0$ for $x \in A_{1 / 2}$. Thus $(e, x, e)=0$ for every $x \in A$. We note that we have also shown above that $e x, x e \in A_{1 / 2}$ for $x \in A_{1 / 2}$.

Let us examine some of the multiplicative properties of the A_{i}. Let $x_{1}, y_{1} \in A_{1}$. Then substituting $x=x_{1}, w=e, y=y_{1}, z=e$ and $x=e, y=x_{1}, z=y_{1}$ in (1)' and (1) respectively we obtain $2\left(x_{1}, y_{1}, e\right)=e \circ\left(x_{1}, y_{1}, e\right)$ and $\left(e, x_{1}, y_{1}\right)=e \circ\left(e, x_{1}, y_{1}\right)$. Hence

$$
\left(x_{1}, y_{1}, e\right)_{1 / 2}=\left(e, x_{1}, y_{1}\right)_{1}=\left(e, x_{1}, y_{1}\right)_{0}=0 .
$$

In a similar fashion using (2)' and (2) we find

$$
\left(x_{1}, y_{1}, e\right)_{1}=\left(x_{1}, y_{1}, e\right)_{0}=\left(e, x_{1}, y_{1}\right)_{1 / 2}=0
$$

Thus $\left(x_{1}, y_{1}, e\right)=\left(e, x_{1}, y_{1}\right)=0$ so that $x_{1} y_{1} \in A_{1}$. Replacing x_{1}, y_{1} by $x_{0}, y_{0} \in A_{0}$ we also find $x_{0} y_{0} \in A_{0}$.

Let $x_{1} \in A_{1}, y_{1 / 2} \in A_{1 / 2}$. Then substituting $x=x_{1}, w=e, y=y_{1 / 2}, z=e$ in (1)' we find $2\left(x_{1}, y_{1 / 2}, e\right)=e \circ\left(x_{1}, y_{1 / 2}, e\right)$ while setting $x=e, y=y_{1 / 2}, z=x_{1}$ in (2) yields $\left(x_{1}, y_{1 / 2}, e\right)=e \circ\left(x_{1}, y_{1 / 2}, e\right)$. Hence $\left(x_{1}, y_{1 / 2}, e\right)=0$. Next we set $x=e, w=y_{1 / 2}, y=e, z=x_{1}$ in (2)', to obtain $\left(x_{1}, e, y_{1 / 2}\right)=e \circ\left(x_{1}, e, y_{1 / 2}\right) \in A_{1 / 2}$. Then $\left(x_{1}, y_{1 / 2}, e\right)+\left(x_{1}, e, y_{1 / 2}\right)=\left(x_{1} y_{1 / 2}\right) e-x_{1}\left(y_{1 / 2} e\right)+x_{1} y_{1 / 2}-x_{1}\left(e y_{1 / 2}\right)$ $=\left(x_{1} y_{1 / 2}\right) e \in A_{1 / 2}$. Hence $x_{1} y_{1 / 2} \in A_{1 / 2}+A_{0}$. Next we set $x=e, y=x_{1}, z=y_{1 / 2}$ in (1) to obtain $\left(e, x, y_{1 / 2}\right)=e \circ\left(e, x, y_{1 / 2}\right)$ so that $x_{1} y_{1 / 2}-e\left(x_{1} y_{1 / 2}\right) \in A_{1 / 2}$. Thus $x_{1} y_{1 / 2} \in\left(A_{1}+A_{1 / 2}\right) \cap\left(A_{1 / 2}+A_{0}\right)=A_{1 / 2}$.

In a similar fashion $y_{1 / 2} x_{1} \in A_{1 / 2}$. Replacing x_{1} by x_{0} we also find that $\left(x_{0}, y_{1 / 2}, e\right)=\left(e, y_{1 / 2}, x_{0}\right)=0$ and $x_{0} y_{1 / 2}, y_{1 / 2} x_{0} \in A_{1 / 2}$. Thus using Albert's terminology [1] every idempotent e of A is stable.

Suppose $x \in A_{1 / 2}$. Then (3)' yields $e x^{2}=x^{2} e$. Next using (1)' and (2)' we obtain $(x, e, x)=x \circ(e, e, x)+e \circ(x, e, x)$ and $(x, e, x)=x \circ(x, e, e)+e \circ(x, e, x)$. Thus $x \circ(e, e, x)=x \circ(x, e, e)$. From (1) and (2) we obtain ($\left.x^{2}, e, e\right)=x \circ(x, e, e)$ and $\left(e, e, x^{2}\right)=x \circ(e, e, x)$. Hence $\left(x^{2}, e, e\right)=\left(e, e, x^{2}\right)$. Thus

$$
\begin{aligned}
0 & =2\left(e, e, x^{2}\right)-2\left(x^{2}, e, e\right)=2 e x^{2}-2 e\left(e x^{2}\right)-2\left(x^{2} e\right) e+2 x^{2} e \\
& =2\left[2 e x^{2}-2 e \circ\left(e x^{2}\right)\right]=2 e\left(x^{2}\right)_{1 / 2}=\left(x^{2}\right)_{1 / 2} .
\end{aligned}
$$

Now let $x_{1} \in A_{1}, y_{0} \in A_{0}$. Then $2\left(x_{1}, e, y_{0}\right)=e \circ\left(x_{1}, e, y_{0}\right)$ is obtained by setting $x=x_{1}, w=e, y=e, z=y_{0}$ in (1)'. This reduces to $\left(x_{1} y_{0}\right)_{1 / 2}=0$. Substituting $x=e, y=x_{1}, z=y_{0}$ in (1) we find $\left(e, x_{1}, y_{0}\right)=e \circ\left(e, x_{1}, y_{0}\right)$. Hence $\left(x_{1} y_{0}\right)_{0}=0$ and interchanging x_{1} and y_{0} we find ($\left.y_{0} x_{1}\right)_{0}=0$. Employing (2)' and (2) we have $\left(y_{0} x_{1}\right)_{1 / 2}=\left(y_{0} x_{1}\right)_{0}=\left(x_{1} y_{0}\right)_{1}=0$. Combining these we have $x_{1} y_{0}=y_{0} x_{1}=0$ and we state

Theorem 3. Suppose $A=A_{1}+A_{1 / 2}+A_{0}$ with respect to the idempotent e of A. Then A_{1} and A_{0} are orthogonal subrings and $A_{i} A_{1 / 2}+A_{1 / 2} A_{i} \subseteq A_{1 / 2}$ for $i=0,1$. Moreover, the following special relations hold: $\left(x_{i}, y_{1 / 2}, e\right)=\left(e, y_{1 / 2}, x_{i}\right)$ $=0$ for $x_{i} \in A_{i} ; i=0,1$. If $x_{1 / 2}, y_{1 / 2} \in A_{1 / 2}$ then $x_{1 / 2}^{2} \in A_{1}+A_{0}$ and $\left(x_{1 / 2} y_{1 / 2}\right)_{1 / 2}$ $=-\left(y_{1 / 2} x_{1 / 2}\right)_{1 / 2}$.
3. Ideals and simple rings. The following is fundamental in our development.

Theorem 4. Let $\mathscr{L}=\left\{x \mid x \in A_{1 / 2}\right.$ and $a x, x a \in A_{1 / 2}$ for all $\left.a \in A\right\}$. Then \mathscr{L} is an ideal of A and for any $x \in \mathscr{L}, x^{2}=0$.

Proof. Let $y_{1 / 2} \in \mathscr{L}, \quad z_{1 / 2} \in A_{1 / 2}, \quad x_{1} \in A$. Clearly $\left(A_{1}+A_{0}\right)\left(x_{1} y_{1 / 2}\right)$ $+\left(x_{1} y_{1 / 2}\right)\left(A_{1}+A_{0}\right) \subseteq A_{1 / 2}$. Using (1)' and (2)' we find

$$
\begin{align*}
& \left(z_{1 / 2}, x_{1}, y_{1 / 2}\right)=e \circ\left(z_{1 / 2}, x_{1}, y_{1 / 2}\right)+z_{1 / 2} \circ\left(e, x_{1}, y_{1 / 2}\right), \tag{7}\\
& \left(z_{1 / 2}, x_{1}, y_{1 / 2}\right)=e \circ\left(z_{1 / 2}, x_{1}, y_{1 / 2}\right)+y_{1 / 2} \circ\left(z_{1 / 2}, x_{1}, e\right) . \tag{8}
\end{align*}
$$

Thus $z_{1 / 2} \circ\left(e, x_{1}, y_{1 / 2}\right)=y_{1 / 2} \circ\left(z_{1 / 2}, x_{1}, e\right) \in A_{1 / 2}$. Using (7) we then have $z_{1 / 2} \circ\left(e, x_{1}, y_{1 / 2}\right)=0$ and then $\left(z_{1 / 2}, x_{1}, y_{1 / 2}\right) \in A_{1 / 2}$. Hence $z_{1 / 2}\left(x_{1} y_{1 / 2}\right) \in A_{1 / 2}$. Interchanging $z_{1 / 2}$ and $y_{1 / 2}$ we find that $\left(y_{1 / 2} x_{1}\right) z_{1 / 2} \in A_{1 / 2}$. Setting $z=x_{1}$, $y=y_{1 / 2}, w=z_{1 / 2}, x=e$ in (2)' we find $\left(x_{1}, y_{1 / 2}, z_{1 / 2}\right)=e \circ\left(x_{1}, y_{1 / 2}, z_{1 / 2}\right)$ (since $\left(x_{1}, y_{1 / 2}, e\right)=0$). Thus $\left(x_{1} y_{1 / 2}\right) z_{1 / 2} \in A_{1 / 2}$ for $y_{1 / 2} z_{1 / 2} \in A_{1 / 2}$. A similar substitution in (1)' yields $z_{1 / 2}\left(y_{1 / 2} x_{1}\right) \in A_{1 / 2}$ so that $x_{1} y_{1 / 2}, y_{1 / 2} x_{1} \in \mathscr{L}$. Replacing x_{1} by x_{0} we also find $x_{0} y_{1 / 2}, y_{1 / 2} x_{0} \in \mathscr{L}$.

Next we consider $y_{1 / 2} \in \mathscr{L}, z_{1 / 2}, x_{1 / 2} \in A_{1 / 2}$. Substituting in (1)' we obtain $\left(y_{1 / 2}, x_{1 / 2}, z_{1 / 2}\right)=e \circ\left(y_{1 / 2}, x_{1 / 2}, z_{1 / 2}\right)+y_{1 / 2} \circ\left(e, x_{1 / 2}, z_{1 / 2}\right)$. Since $y_{1 / 2} \in \mathscr{L}$, $y_{1 / 2} \circ\left(e, x_{1 / 2}, z_{1 / 2}\right) \in A_{1 / 2}$. Thus we must have $\left(y_{1 / 2}, z_{1 / 2}, x_{1 / 2}\right)_{i}=0 ; i=0,1$. Hence $\left(y_{1 / 2} x_{1 / 2}\right) z_{1 / 2} \in A_{1 / 2}$ and, using Theorem 3 (and 2^{\prime}),

$$
\left(y_{1 / 2} x_{1 / 2}\right) z_{1 / 2}=-\left(x_{1 / 2} y_{1 / 2}\right) z_{1 / 2}, \quad z_{1 / 2}\left(x_{1 / 2} y_{1 / 2}\right)=-z_{1 / 2}\left(y_{1 / 2} x_{1 / 2}\right) \in A_{1 / 2} .
$$

Thus $x_{1 / 2} y_{1 / 2}=-y_{1 / 2} x_{1 / 2} \in \mathscr{L}$ and \mathscr{L} must be an ideal of A with the property that $\mathscr{L} \subseteq A_{1 / 2}$. Therefore $x^{2}=0$ for all $x \in \mathscr{L}$.

We next show that A with the added condition that A possess no ideals \mathscr{L} such that $x^{2}=0$ for all $x \in \mathscr{L}$ must have a Peirce decomposition.

Theorem 5. Suppose A has no ideals $\mathscr{L} \neq 0$ such that $x^{2}=0$ for all $x \in \mathscr{L}$. Then for e an idempotent of A we have $A=A_{11}+A_{10}+A_{01}+A_{00}$, where $x \in A_{i j}$ if and only if $e x=i x, x e=j x$.

Proof. It is well known that a necessary and sufficient condition that the decomposition of the theorem holds in A is that

$$
(x, e, e)=(e, x, e)=(e, e, x)=0 \text { for all } x \in A
$$

Since we already have $(e, x, e)=0$ we can reduce the proof to showing that $(x, e, e)=(e, e, x)$ for $x \in A_{1 / 2}$. If $x \in A_{1 / 2}$ we have

$$
e(x e)=(e, e, x)=-(x, e, e)=(e x) e .
$$

By the previous theorem we see that it suffices to show that $e(x e) \in \mathscr{L}, \mathscr{L}$ the ideal defined in Theorem 4. This result follows from the next lemma.

Lemma. Let A be a ring with idempotent e, and suppose $x_{1 / 2}, y_{1 / 2} \in A_{1 / 2}$. Then

$$
\begin{aligned}
\left(x_{1 / 2} y_{1 / 2}\right)_{1}=\left[\left(e x_{1 / 2}\right)\left(y_{1 / 2} e\right)\right]_{1}, \quad\left(x_{1 / 2} y_{1 / 2}\right)_{0}=\left[\left(x_{1 / 2} e\right)\left(e y_{1 / 2}\right)\right]_{0} ; \\
\left(e x_{1 / 2}\right)\left(e y_{1 / 2}\right),\left(x_{1 / 2} e\right)\left(y_{1 / 2} e\right) \in A_{1 / 2} .
\end{aligned}
$$

Proof. Identities (1) and (2) yield

$$
\left(e, x_{1 / 2}, y_{1 / 2}\right)=e \circ\left(e, x_{1 / 2}, y_{1 / 2}\right), \quad\left(x_{1 / 2}, y_{1 / 2}, e\right)=e \circ\left(x_{1 / 2}, y_{1 / 2}, e\right) .
$$

Hence $\left(e, x_{1 / 2}, y_{1 / 2}\right)_{1}=\left(e, x_{1 / 2}, y_{1 / 2}\right)_{0}=0$ and $\left(x_{1 / 2}, y_{1 / 2}, e\right)_{1}=\left(x_{1 / 2}, y_{1 / 2}, e\right)_{0}=0$ so that

$$
\begin{array}{ll}
{\left[\left(e x_{1 / 2}\right) y_{1 / 2}\right]_{1}=\left(x_{1 / 2} y_{1 / 2}\right)_{1},} & {\left[\left(e x_{1 / 2}\right) y_{1 / 2}\right]_{0}=0,} \\
{\left[x_{1 / 2}\left(y_{1 / 2} e\right)\right]_{1}=\left(x_{1 / 2} y_{1 / 2}\right)_{1},} & {\left[x_{1 / 2}\left(y_{1 / 2} e\right)\right]_{0}=0 .}
\end{array}
$$

The lemma is immediate after we note that $e x_{1 / 2}+x_{1 / 2} e=x_{1 / 2}$.
At this juncture we are able to show that under the hypothesis of Theorem 5 the $A_{i j}$ satisfy the same multiplicative relations as in the alternative case and this we proceed to do.

Since $\left(x_{11}, y_{1 / 2}, e\right)=0$ we have

$$
\left(x_{11}, y_{10}, e\right)=\left(x_{11} y_{10}\right) e=0, \quad\left(x_{11}, y_{01}, e\right)=\left(x_{11} y_{01}\right) e-x_{11} y_{01}=0 .
$$

Using the substitution $w=e, x=x_{11}, y=e, z=y_{01}$ in (1)' results in

$$
2\left(x_{11}, e, y_{01}\right)=e \circ\left(x_{11}, e, y_{01}\right)+x_{11} \circ\left(e, e, y_{01}\right)
$$

or

$$
2 x_{11} y_{01}=e\left(x_{11} y_{01}\right)+\left(x_{11} y_{01} e\right)=e \circ\left(x_{11} y_{01}\right) .
$$

But $x_{11} y_{01} \in A_{10}+A_{01}$ (by Theorem 3) so that $x_{11} y_{01}=e \circ\left(x_{11} y_{01}\right)=2 x_{11} y_{01}$. Hence $x_{11} y_{01}=0$. Another application of (1) yields $\left(e, x_{11}, y_{10}\right)=e \circ\left(e, x_{11}, y_{10}\right)$ or

$$
x_{11} y_{10}-e\left(x_{11} y_{10}\right)=e\left(x_{11} y_{10}\right)-e\left(e\left(x_{11} y_{10}\right)\right)+\left(x_{11} y_{10}\right) e-\left(e\left(x_{11} y_{10}\right)\right) e .
$$

But the right-hand member is 0 since $\left(x_{11} y_{10}\right) e=0$. Thus, $x_{11} y_{10} \in A_{10}, x_{11} y_{01}=0$ and using (2) and (2)' we obtain $y_{01} x_{11} \in A_{01}, y_{10} x_{11}=0$. Replacing x_{11} by x_{00} we find the corresponding relations $x_{00} y_{10}=y_{01} x_{00}=0, x_{00} y_{01} \in A_{01}$, $y_{10} x_{00} \in A_{10}$.

Let $x_{10}, y_{10} \in A_{10}$. Then (1)' yields

$$
\left(x_{10}, e, y_{10}\right)=e \circ\left(x_{10}, e, y_{10}\right)+x_{10} \circ\left(e, e, y_{10}\right)
$$

or

$$
x_{10} y_{10}=e \circ\left(x_{10}, e, y_{10}\right)=e\left(x_{10} y_{10}\right)+\left(x_{10} y_{10}\right) e .
$$

Thus $x_{10} y_{10} \in A_{10}+A_{01}$. Using (3) we find $x_{10}^{2} e=e x_{10}^{2}$. Therefore $x_{10}^{2}=0$ and we have $x_{10} y_{10}=-y_{10} x_{10} \in A_{10}+A_{01}$. In a similar manner we find $x_{01}^{2}=0, y_{01} x_{01}=-x_{01} y_{01} \in A_{10}+A_{01}$.

Next suppose $x_{10} \in A_{10}, y_{01} \in A_{01}$. Then (1)' becomes

$$
\left(x_{10}, y_{01}, e\right)=e \circ\left(x_{10}, y_{01}, e\right)+x_{10} \circ\left(e, y_{01}, e\right)
$$

or

$$
\left(x_{10} y_{01}\right) e-x_{10} y_{01}=e\left(x_{10} y_{01}\right) e-e\left(x_{10} y_{01}\right)
$$

Hence $x_{10} y_{01} \in A_{11}+A_{10}+A_{01}$ and interchanging x_{10} and y_{01} we find

$$
\left(y_{01} x_{10}\right) e=e\left(y_{01} x_{10}\right) e+\left(y_{01} x_{10}\right) e
$$

so that $e\left(y_{01} x_{10}\right) e=0$ and $y_{01} x_{10} \in A_{10}+A_{01}+A_{00}$.
From the relation $e x^{2}=x^{2} e$ for all $x \in A_{10}+A_{01}$ we see that $x_{10} \circ y_{01} \in A_{1}+A_{0}$.
Finally we show that $\left(x_{10} y_{01}\right)_{10},\left(x_{10} y_{01}\right)_{01},\left(x_{10} y_{10}\right)_{10},\left(x_{01} y_{01}\right)_{01}$ belong to the ideal \mathscr{L} of T heorem 4 , and hence must be zero. In order to get $\left(x_{10} y_{01}\right)_{10} \in \mathscr{L}$ it suffices to prove that $\left(x_{10} y_{01}\right)_{10} z_{01}, z_{01}\left(x_{10} y_{01}\right)_{10} \in A_{10}+A_{01}$. Identity (1)' implies that

$$
\left(x_{10}, y_{01}, z_{01}\right)=e \circ\left(x_{10}, y_{01}, z_{01}\right)+x_{10} \circ\left(e, y_{01}, z_{01}\right)
$$

while (2)' yields

$$
\left(x_{10}, y_{01}, z_{01}\right)=e \circ\left(x_{10}, y_{01}, z_{01}\right)+z_{01} \circ\left(x_{10}, y_{01}, e\right) .
$$

Combining these two relations we have

$$
x_{10} \circ\left(e, y_{01}, z_{01}\right)=z_{01} \circ\left(x_{10}, y_{01}, e\right) .
$$

$\operatorname{But}\left(e, y_{01}, z_{01}\right) \in A_{10}$ so that the left member is zero. Hence,

$$
z_{01} \circ\left(x_{10}, y_{01}, e\right)=z_{01} \circ\left(x_{10} y_{01}\right)_{10}=0
$$

Therefore $\left[z_{01}\left(x_{10} y_{01}\right)_{10}\right]_{0}=\left[\left(x_{10} y_{01}\right)_{10} z_{01}\right]_{1}=0$, and $\left(x_{10} y_{01}\right)_{10} \in \mathscr{L}$. Replacing z_{01} by z_{10} in the foregoing results in $\left(x_{10} y_{01}\right)_{01} \in \mathscr{L}$. The first relation above implies that $\left(x_{10}, y_{01}, z_{01}\right)_{i}=0$ for $i=0,1$. Thus $\left[\left(x_{10} y_{01}\right)_{10} z_{01}\right]_{1}$ $=\left[x_{10}\left(y_{01} z_{01}\right)_{01}\right]_{1}$. But the left member is zero since $\left(x_{10} y_{01}\right)_{10} \in \mathscr{L}$ so that $\left(y_{01} z_{01}\right)_{01} \in \mathscr{L}$. In a similar manner we see that $\left(x_{10} y_{10}\right)_{10} \in \mathscr{L}$. Combining these remarks we have

Theorem 6. Suppose A satisfies the hypothesis of Theorem 5. Then for any idempotent e of $A, A=A_{11}+A_{10}+A_{01}+A_{00}$ where $A_{i j} A_{k m}=\delta_{j k} A_{i m}$ except when $i \neq j$ and $i=k, j=m$ and then $A_{i j}^{2} \subseteq A_{j i}$.

In the remainder of this section we suppose that A satisfies the hypothesis of Theorem 5.

Theorem 7. $A_{10} A_{01}+A_{10}+A_{01}+A_{01} A_{10}$ is an ideal of A.

Proof. For the proof we need only show that $A_{10} A_{01}$ and $A_{01} A_{10}$ are ideals of A_{11} and A_{00} respectively. Let $x_{11} \in A_{11}, y_{10} \in A_{10}, z_{01} \in A_{01}$. Then (2)' implies that $\left(x_{11}, y_{10}, z_{01}\right)=e \circ\left(x_{11}, y_{10}, z_{01}\right) \in A_{10}+A_{01}$. But $\left(x_{11}, y_{10}, z_{01}\right) \in A_{11}$ so that $\left(x_{11} y_{10}\right) z_{01}=x_{11}\left(y_{10} z_{01}\right)$ or $A_{11}\left(A_{10} A_{01}\right) \subseteq A_{10} A_{01}$. In a similar fashion we see that $\left(A_{10} A_{01}\right) A_{11} \subseteq A_{10} A_{01}$ and, interchanging 1 's and 0 's we have the corresponding results for $A_{01} A_{10}$.

Corollary 1. $A_{10} A_{01}$ and $A_{01} A_{10}$ are associative subrings of A.
Proof. Using the proof of the preceding theorem we see that

$$
\begin{aligned}
\left(x_{11}\left(y_{10} z_{01}\right)\right) w_{11} & =\left(\left(x_{11} y_{10}\right) z_{01}\right) w_{11}=\left(x_{11} y_{10}\right)\left(z_{01} w_{11}\right) \\
& =x_{11}\left(y_{10}\left(z_{01} w_{11}\right)\right)=x_{11}\left(\left(y_{10} z_{01}\right) w_{11}\right) .
\end{aligned}
$$

Since every element of $A_{10} A_{01}$ is the sum of elements of the form $y_{10} z_{01}$ we have established the associativity of $A_{10} A_{01}$. The same proof works for $A_{01} A_{10}$ as soon as we interchange 1 's and 0 's.

Corollary 2. If A is simple then either $e=1$ or $A_{11}=A_{10} A_{01}$ and $A_{00}=A_{01} A_{10}$.

We are now in a position to state our main result.
Theorem 8. Let A be a simple ring satisfying (1), (2), and (3). Suppose A has an idempotent $e \neq 1$. Then A is either an associative ring or a Cayley-Dickson algebra over its center.

Proof. A ring is alternative if and only if

$$
\begin{equation*}
(x, y, z)=\varepsilon(\sigma)(\sigma(x), \sigma(y), \sigma(z)) \tag{9}
\end{equation*}
$$

for all permutations σ where $\varepsilon(\sigma)=1$ or -1 as σ is even or odd. We prove the theorem by showing that (9) holds for all possible choices of x, y, z belonging to the $A_{i j}$ since then Albert's result is applicable [2].

Combining Corollaries 1 and 2 of Theorem 7 we have $\left(x_{i i}, y_{i i}, z_{i i}\right)=0, i=0,1$. Suppose $x_{11}, y_{11} \in A_{11}, z_{10} \in A_{10}$. Then we see that $\left(z_{10}, x_{11}, y_{11}\right)=\left(z_{10}, y_{11}, x_{11}\right)$ $=\left(x_{11}, z_{10}, y_{11}\right)=\left(y_{11}, z_{10}, x_{11}\right)=0$. Next using (1)' we have $2\left(x_{11}, y_{11}, z_{10}\right)$ $=e \circ\left(x_{11}, y_{11}, z_{10}\right)+x_{11} \circ\left(e, y_{11}, z_{10}\right)=\left(x_{11}, y_{11}, z_{10}\right) \in A_{10}$. Thus $\left(x_{11}, y_{11}, z_{10}\right)=\left(y_{11}, x_{11}, z_{10}\right)=0$. Replacing z_{10} by $z_{01} \in A_{01}$ we find the corresponding result. Clearly $\left(x_{11}, y_{11}, z_{00}\right)=\left(x_{11}, z_{00}, y_{11}\right)=\left(z_{00}, x_{11}, y_{11}\right)=0$ for $z_{00} \in A_{00}$. Now suppose we examine products involving $x_{11} \in A_{11}, y_{10}, z_{10} \in A_{10}$. If we substitute $w=e, x=x_{11}, y=y_{10}, z=z_{10}$ in (1)' we obtain

$$
\begin{aligned}
2\left(x_{11}, y_{10}, z_{10}\right) & =e \circ\left(x_{11}, y_{10}, z_{10}\right)+x_{11} \circ\left(e, y_{10}, z_{10}\right), \\
\left(x_{11} y_{10}\right) z_{10} & =\left(y_{10} z_{10}\right) x_{11} .
\end{aligned}
$$

Then using the fact that $a_{10} b_{10}=-b_{10} a_{10}$ we find $\left(x_{11} y_{10}\right) z_{10}=-z_{10}\left(x_{11} y_{10}\right)$ $=\left(y_{10} z_{10}\right) x_{11}=-\left(z_{10} y_{10}\right) x_{11}=-\left(x_{11} z_{10}\right) y_{10}=y_{10}\left(x_{11} z_{10}\right)$. Combining these we have $\left(x_{11}, y_{10}, z_{10}\right)=\varepsilon(\sigma)\left(\sigma\left(x_{11}\right), \sigma\left(y_{10}\right), \sigma\left(z_{10}\right)\right)$ for all σ. Again, replacing y_{10}, z_{10} by y_{01}, x_{01} we have the corresponding results. The case $x_{11} \in A_{11}$, $y_{10} \in A_{10}, z_{01} \in A_{01}$ was done in the proof of Theorem 7 as soon as we note that $\left(y_{10}, x_{11}, z_{01}\right)=0$ and $\left(z_{01}, x_{11}, y_{10}\right)=0$ by setting $x=e, w=z_{01}, y=x_{11}$, $z=y_{10}$ in (1)'. If we replace x_{11} by x_{00} the corresponding results are proved in the same fashion.
We have reduced the proof to considering $x, y, z \in A_{10}+A_{01}$. First suppose that $x_{10}, y_{10}, z_{10} \in A_{10}$. Then (1)' implies that $\left(x_{10}, y_{10}, z_{10}\right)=e \circ\left(x_{10}, y_{10}, z_{10}\right)$ $+x_{10} \circ\left(e, y_{10}, z_{10}\right)$. Equating the A_{00}-components we obtain

$$
\left(x_{10} y_{10}\right) z_{10}=\left(y_{10} z_{10}\right) x_{10} .
$$

A similar substitution in (2)' yields

$$
x_{10}\left(y_{10} z_{10}\right)=z_{10}\left(x_{10} y_{10}\right)
$$

Then noting that $a_{10} b_{10}=-b_{10} a_{10}$ we see that $\left(x_{10}, y_{10}, z_{10}\right)=\varepsilon(\sigma)\left(\sigma\left(x_{10}\right)\right.$, $\left.\sigma\left(y_{10}\right), \sigma\left(z_{10}\right)\right)$ for all σ. The case $x_{01}, y_{01}, z_{01} \in A_{01}$ is proved in the same way. Finally we consider $x_{10}, z_{10} \in A_{10}, y_{01} \in A_{01}$. Then $\left(y_{01}, x_{10}, z_{10}\right)=-\left(y_{01}, z_{10}, x_{10}\right)$ $=\left(x_{10}, z_{10}, y_{01}\right)=-\left(z_{10}, x_{10}, y_{01}\right)$ since $y_{01}\left(x_{10} z_{10}\right)=-y_{01}\left(z_{10} x_{10}\right)$ $=\left(z_{10} x_{10}\right) y_{01}=-\left(x_{10} z_{10}\right) y_{01}$. Consider $\left(x_{10}, y_{01}, z_{10}\right)+\left(y_{01}, x_{10}, z_{10}\right)$ $=w_{10} \in A_{10}$. We show that $x_{01} w_{10}=w_{10} x_{01}=0$ for all $x_{01} \in A_{01}$. Then $A w_{10}$ $+w_{10} A \subseteq A_{10}+A_{01}$ so that w_{10} belongs to the ideal \mathscr{L} of T heorem 3 and hence, must be zero.

$$
\begin{aligned}
x_{01} w_{10} & =x_{01}\left(x_{10}, y_{01}, z_{10}\right)-x_{01}\left(y_{01}\left(x_{10} z_{10}\right)\right) \\
& =x_{01}\left(x_{10}, y_{01}, z_{10}\right)-\left(x_{10} z_{10}\right)\left(x_{01} y_{01}\right)
\end{aligned}
$$

Since $x_{10} z_{10} \in A_{01}$ and $a_{01}\left(b_{01} c_{01}\right)=c_{01}\left(a_{01} b_{01}\right)$.
Setting $x=x_{01}, w=x_{10}, y=y_{01}, z=z_{10}$ in (1)' yields

$$
0=\left(x_{01} \circ x_{10}, y_{01}, z_{10}\right)=x_{01} \circ\left(x_{10}, y_{01}, z_{10}\right)+x_{10} \circ\left(x_{01}, y_{01}, z_{10}\right)
$$

Since the A_{00}-component of the right member must be zero we have

$$
\begin{aligned}
0 & =x_{01}\left(x_{10}, y_{01}, z_{10}\right)+\left(x_{01}, y_{01}, z_{10}\right) x_{10} \\
& =x_{01}\left(x_{10}, y_{01}, z_{10}\right)+\left[\left(x_{01} y_{01}\right) z_{10}\right] x_{10} \\
& =x_{01}\left(x_{10}, y_{01}, z_{10}\right)+\left(z_{10} x_{10}\right)\left(x_{01} y_{01}\right) \\
& =x_{01}\left(x_{10}, y_{01}, z_{10}\right)-\left(x_{10} z_{10}\right)\left(x_{01} y_{01}\right) \\
& =x_{01} w_{10} .
\end{aligned}
$$

In a similar fashion we have $w_{10} x_{01}=0$. Hence, from our preceding remarks $w_{10}=0$, so that $\left(x_{10}, y_{01}, z_{10}\right)=-\left(y_{01}, x_{10}, z_{10}\right)$. Interchanging x_{10} and z_{10} we obtain $\left(z_{10}, y_{01}, x_{10}\right)=-\left(y_{01}, z_{10}, x_{10}\right)$. Combining these results we have $\left(x_{10}, y_{01}, z_{10}\right)=\varepsilon(\sigma)\left(\sigma\left(x_{10}\right), \sigma\left(y_{01}\right), \sigma\left(z_{10}\right)\right)$ for all σ. Replacing x_{10}, z_{10}, y_{01} by x_{01}, z_{01}, y_{10} we obtain $\left(x_{01}, y_{10}, z_{01}\right)=\varepsilon(\sigma)\left(\sigma\left(x_{01}\right), \sigma\left(y_{10}\right), \sigma\left(z_{01}\right)\right)$ and the theorem is proved. See $\S 5$ for an example to show this result is not valid for simple rings without idempotent $e \neq 1$.
4. Semi-simple algebras. Let A be a finite-dimensional algebra over field F satisfying (1), (2), (3). We define the radical N of A to be the maximal nil ideal of A. This makes sense since A is power-associative by Theorem $1 . A$ is said to be semi-simple if $N=0 \neq A$.

Theorem 9. Let e be a principal idempotent of A. Then $A_{1 / 2}+A_{0} \subseteq N$, N the nil radical of A.

Theorem 10. Let A be semi-simple algebra satisfying (1), (2), and (3). Then A has a unity element and is the direct sum of simple algebras.

Proof. The proofs of these theorems are the same as those of the corresponding results given in [4] and we do not repeat them here.

5. Examples. We begin with

Example 1. Let A be any Lie ring. Then, since $x^{2}=0$ and $x \circ y=0$ for all $x, y \in A$, the identities (1), (2), and (3) must hold in A. Hence, there are simple finite-dimensional nil algebras satisfying (1), (2), and (3) (the simple Lie algebras), so that postulating the existence of an idempotent severely limits the possibilities for A when A is simple.

Example 2. In [4] we defined a construction which gave rise to a class of simple finite-dimensional algebras satisfying the identity $(x, y, z)=(z, y, x)$, in which the flexible identity $(x, y, x)=0$ fails. Hence, these algebras (which possess unity elements) cannot be alternative. A direct calculation shows that the algebra A of this class which is given by the basis $\{1, x, y\}$ where $x^{2}=y^{2}=0, x y=-y x=1$ satisfies (1), (2), and (3). Thus, Theorem 8 is in this sense the best possible result.
Example 3. Let A be an algebra over the field F with a basis $\{e, x, y\}$ where $e^{2}=e, e x=x+y, x e=-y, e y=y, y e=x^{2}=y^{2}=x y=y x=0$. We see that $A_{1}=F e, A_{1 / 2}=F x+F y, A_{0}=0$. If $z=\alpha e+\beta x+\gamma y, \alpha, \beta, \gamma \in F$ then $z^{2}=\alpha z$ so that A is power-associative and satisfies (3). Any easy calculation reveals that $(w, u, v) \in A_{1 / 2}$ for all $w, u, v \in A$. But then $\left(z^{2}, u, v\right)=(\alpha z, u, v)=\alpha(z, u, v)$ while $z \circ(z, u, v)=\alpha e \circ(z, u, v)=\alpha(z, u, v)$. Hence, $\left(z^{2}, u, v\right)=z \circ(z, u, v)$ and (1) holds. In a similar fashion (2) must be valid in A. We see that $e(x e)=(e x) e$ $=-y \neq 0$ so that $A_{1 / 2}$ does not decompose into $A_{10}+A_{01}$. Therefore Theorem 5 is nontrivial.

Bibliography

1. A. A. Albert, Power-associative rings, Trans. Amer. Soc. 64 (1948), 552-593.
2. ——, On alternative rings, Canad. J. Math. 4 (1954), 129-135.
3. R. H. Bruck and Erwin Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878-890.
4. E. Kleinfeld, F. Kosier, J. M. Osborn, and D. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473-483.
5. E. Kleinfeld, Associator dependent rings, Arch. Math. 13 (1962), 203-212.
6. Frank Kosier, On a class of non-flexible algebras, Trans. Amer. Math. Soc. 102 (1962), 299-318.
7. Frank Kosier and J. M. Osborn, Nonassociative algebras satisfying an identity of degree three, Trans. Amer. Math. Soc. 110 (1964), 484-492.

University of Wisconsin, Madison, Wisconsin

