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0. Introduction. One line of attack on the problem of computing the unstable

homotopy groups of spheres is to attempt to construct the elements whose re-

duced product filtration exceeds 1. The classical Hopf construction associates

with a map Sm x S'"1 -> S" of type (a,/?) an element of 7tm+I(S"+1). The indeter-

minacy of the construction is the suspension subgroup in the sense that the ele-

ments associated with any two maps of the same type differ by a suspension.

However, it was proved by I. M. James [8] that the filtration of the element

obtained does not exceed 2. In [3] I defined a generalization of the Hopf con-

struction which can yield elements of arbitrarily large filtration. Thus, for example,

let d denote the homotopy boundary homomorphism and let a e 7t,„(S"_2),

ßent(S"^1,S"-2) be elements^) such that the Whitehead product [a,<3/T] is

trivial. Then there exists a map F:Sm x S'-1-+Sr_2 of type (a,dß). Applying

the construction we obtain an element c(F)ejim+t(Sn+1) with indeterminacy

equal to the subgroup of filtration r — 2. As always the problem is to prove

nontriviality. To this end we study a homomorphism

equivalent to a special case of the "relative Hopf homomorphism" of H. Toda

[14]. If r = 2 then H reduces to the generalized Hopf invariant H* of P. J. Hilton

[5]. Our main theorem may be stated as follows.

Let n be even and let r = ps be a power of a prime p=2. Let

nr_i:S"_1,Sr''_2 -» S(r_1)", * be a map of degree 1, let E denote suspension and

suppose that (h^J^ß = Eß". Let

where (/>: 7cm(S^,)-»7tm+1(S"+1) denotes the James canonical isomorphism [6],

and / is induced by the injection S"_2 -* S^. Let {c(F)} denote the coset of c(F) in

7im+t(Sn+1)/4>i7im+l^(S"r.2). Then we have:

Theorem 0.2. (a) // (i) x is of order pw, (ii) x = pkE20, where 6 e 7rm+(_2(Sr""2)

and E30 generates nm+t + 2(Sr" + 1 ; p), then {c(F)} is of order p", where

v ̂  min(s — k, w).
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0) S" denotes the c«-skeleton of the reduced product complex S£ of the n-sphere.

(0.1) tf:7^i,S^2)^7ri + 1(Sr")

(4>i%)oEm^ß"enm + l{S'%
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(b)   If x = pkir„ then {c(F)} is of order pv, where vii s — k.

For example, using the formula 4.4 due to Toda it is easy to prove that

[«2, [«2j P~1 ] = 0 e n2p-2(Sp-2)- Applying 0.2(b) we recover the nonzero elements

of 7r2p(S3). Our main application of 0.2 is however as follows. Let

ate 7t2Kp-i) + 2(S3) 0 ^ 1) be the elements of order p described by Toda in [16].

Then we prove for all m + t ^ p the existence of maps of type

(^[hm]P"1o£2m(p-1,-4a()

whose Hopf construction elements are nontrivial. Using the computations due

to Toda of the stable groups we are able to compute the orders of the p-compo-

nents of the unstable groups of the <j-stem for q < 2p(p — 1). Let p be an odd

prime and let [r, n] denote the p-primary component of nr(S"). We obtain(2)

Theorem 0.3.

(a) [2*(p - 1) 4- 2m - s, 2m + 1] =0   (m ̂  1, 1 ̂  t £ p, 2 £ s ̂  2p- 3);

(b) (i)  [2r(p-l)4-2m-l,2m4-l] = Zp (1^/^p-l, l^m^t-1);

(ii) [2t(p-l)4-2m-l,2m4-1] =    0(1 ̂  t g p-l,m ^ t);
(iii) [2p(p-l)4-l,3] = Zp; "

(iv) [2p(p-l)4-2m-l,2m4-l] = Zp,orZp+Zp (2^m^p-l)j

(c) (i)  [2t(p-l)4-2ro,2m4-l] = Z„   (1 g t g p-1, m £ 1);

(ii) [2p(p-1) 4- 2m,2m 4- 1] = Zp2   (m ^ 2);

(iii) [2p(p-l) + 2, 3] = Zp.

1. The relative Hopf invariant. Let K= K0 U er be a finite cell complex

which is the result of attaching an r-cell e" to the subcomplex K0. Let 6:K->KVSr

be a map which shrinks an (r — l)-sphere contained in er, is such that the com-

position of 0 with the projection on to Sr is a map of degree one and such that

the composition of 0 with the projection on to K is homotopic to the identity

map. Then we recall that the relative Hopf invariant due to Toda [14] is a homo-

morphism H' such that the diagram

_ Q'_
i     ~ : i

nq(K V Sr,K)^L_ nq(K V Sr)<-      nq+l(K x Sr,K V Sr)

-->Kq+l(K#Sr)

is commutative where j is an injection, d is the homotopy boundary, x is induced

by the collapsed product identification and Q' is a left inverse of ;'<3.

(2) 0.3 agrees with and slightly extends the recent computations of Toda in Composition

methods, Annals of Mathematics Studies No. 49, Princeton Univ. Press, Princeton, N. J.; H. H.

Gershenson has proved that the possibility Zp + Zp in (b) (iv) can be deleted.
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Let V and S" denote the n-element and n-sphere as represented in [7]. We

shall assume that orientations for V, S" and products have been chosen as in [7].

Then the homotopy boundary homomorphism d:nn{X,A)^> n^^A) is defined

accordingly. Let S denote the reduced suspension function in the category of

based spaces and based maps. Let t, be the preferred generator of n^S1)

so that if y6it„(X) then

Ey = y#i1en„ + 1(X#S>) = n„+l(SX).

If <xe 7t,_1(S',_1) and a' ent(V,Sq~1) are elements such that <x = du' then,

again following James, we shall denote by a*:nq_1(X)-+n,_l(X) and

a**:nq(X,A)-*7i,(X,A) the operators determined by composition with a and a'.

We recall that

(1.1) a** = (-l),+'(Ea)*: nq{X,*)^ n,(X,*)

It is well known [17] that a* and a** are homomorphisms if a is a suspension

element. The following lemma is easily proved using 1.1 and the definition of H'.

Lemma 1.2.  H'a**=(E2a)*H'.

Let h:K,K0-*Sr, * be a map of degree one on er. Applying an argument

essentially due to Toda we obtain the following theorem in which the square

brackets refer to the Blakers-Massey generalized Whitehead product defined in

[1]. Let i:nn(K0)-+nn(K) denote the injection.

Theorem 1.3.  // aenm(K0) and ßen,(K,K0) then

H'[a,ß-\ = (ioc)#h*ßeKm+,(K#Sr).

Proof. Let jfc denote the product defined in [1; 5]. Then we have /(/a h^ß)

= iot#h+ß. In view of the commutativity of the diagram it is thus sufficient to

prove that jd(ict a|c hitß)= 0*[a,/?]. This however follows from [1, 5.7, 3.10]

and the definition of 6.

Now suppose that a and ß are such that [a,dß] =0e7tm + (_2(X0). Then there

is a map F:SmxS'~1-*K0 of type (ot,dß). Let

(1.4) P':(SmxS'_1)U(*xl/')->^

be an extension of F such that F'(*,x)= g(x) (x e V') where g: F^S'-1 -♦ K, K0

represents ß. Let   be a characteristic map for the (m + t)-ce\\ of Sm x V' and let

(1.5) y = {F^\Sm+'-1}enm+t_1(K).

Then we have the theorem:

Theorem 1.6. jy = [on,ß] enm+t_1(K,K0).

Proof. Let £'+_1 and £'__1 be the 'Northern' and 'Southern' hemispheres of

S'-1. We can certainly replace F by a homotopic map with the property that
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(1.7) F(x,y) = F(x, *) if (x,y) e Sm x E^\

Then the injection V'-*(Smx S'"1) u(* x V') followed by F' is a map

(F,,S,.")*.*+"1)**(*.^o.*). Let "Am:(l/m,Sm-1)-*(Sm,*) be a map of degree

one and let (7"' x 7')' =(Sm_i x F')u(Fmx S'"1). Then <p:(Vm x V*)'^K

represents y where

(1.8) +~F,(tyaxl).\(VmxVty).

However, if A = (Sm~ix V')U(VmxE'+1) then it follows from the definition

[1, 3.1] that 4>\A represents [a,/?]. Vm x E'S1 is the face of V'x V' comple-

mentary to A and <p(Vm x E'S1) £ K0. Since A and (Vm x V')' are required

to be oriented coherently, 1.6 follows from [10, 22.1].

2. Reduced products. Let A be a countable CW-complex with but one 0-cell

at the base-point *. The reduced product complex Aw [6] is a space whose points

are equivalence classes of finite sequences of points of A. Let A„(n ^ 0) denote

the subcomplex determined by the sequences with n terms or fewer, A0 being

identified with * and Ai with A. Let £2 be the space of based loops on SA,

let o.SQ^SA be the map such that <r(x,f) = x(0 and let q)l:A00-*Sl be a

canonical map in the sense of [6]. Then if i/f = oS(4>i) we recall that

(2.1) <j> = ir>*E:Tiq(A00)^niq+1(SA)

is the canonical isomorphism of James. We shall also denote by the maps

from S(A„) to S(A) which agree with \p.

Let ctenm(A„), ß' e 7rf _ 1(^4B) be elements whose Whitehead product

[a,/?'] 6 7tm+(_2(v4„) vanishes. Then there is a map F:Sm x S'~l An of

type {i,ß'). The generalization of the Hopf construction described in [3] as-

sociates with F the element

(2.2) c(F) = WS(F)n)*ienm+t(SA),

where t denotes the orientation class of S(Sm#S'~1) and w is a homotopy

right inverse of the suspension of the collapsed product identification
X:SmxS'-1-+Sm#S'-1.

n^A^) is filtered by the subgroups inq(A„) and the reduced product filtration

in nq + l(SA) is that induced by cf>. The following lemma (on which we shall not

rely) is a consequence of the definition 2.2.

Lemma 2.3. If aenm+t(SA) then there exists a map G:Smx S' 1 -> A„ of

type (ct,ß') such that c(G) = a if and only if the filtration of a — c(F) does not

exceed n.

Now let A = Sn,K = Snr-1,K0*-S"r-2. Then 77' as defined in 1 is a homo-

morphism
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H'-. 7t,(sr"_,, s;_ 2) - tc4+!(s;_, # s(r-1 )n).

Let

(2:4) ff = A,H^b,(S^A"-2)-*Wsr").
■

where A is the map defined by the diagram

sf"_1#s(r-1)n = s;_, #s'#s<,_1)"_1= s(srn_,)#s(r-1)n"1

'\   1 >n hq .: Lm   tit i. U a x 1i
A 1

\ 4-
Srn '       = S(S")#S(f_1)""1

. ■ 1 j ti i.:q;,.m<.a%.N ß a A .in = ys <J<s9lnu'*aJi..a a ,in'Z) ...t wi.i? .i.fH
in which the equalities denote orientation preserving homeomorphisms and

\p#l the collapsed product map. Let aenm(Snr^2), ß en,{S".i,S".2) then we

have: i

Theorem 2.5.   // h*ß=Eß", where ß" e 7r,_1(S(r_1)"~1) then

Hfaß] =(-l)kE(r~1)n~l((j)ia)oEm+1ß",

where k =n(m + l)(r - l) + mt — 1.
>W  (a lo i3w>q io to ••••!..• :,o< • otiiirUii I i ad   1  "V |    r ?j f J
Proof. Applying 1.3, 2.1 and finally [7, 3.5] we obtain

ff[«,/J] = l*(ia#ß"#h)

= (-1)' 1A*(ia# «i#/0 „| .looi*i

= (-lr^iaW

= (-l)*E(,_1*-1(0ia)o£"+1/r.

Now suppose that F:Sm x S'-1-> S^_2 is a map of type (a, dp1) and let

y e 11,,,+,-^S*-.,) be defined by 1,5. Then we assert that

(2.6) Qiy = + c(F).

A proof of a special case can be found in [4, p. 248-9](3). The argument is

quite general, however, and in the present situation yields>!2y6<.l■'! is>wcl aril

Let hr:S",Snr.l-*Sr", * be a map of degree I. We shall also denote by hr

any map and any homomorphism induced by any map which agrees with a

cellular approximation of the combinatorial extension hr:S"x -»S£" of hr. (See

[6, p. 173].) Let p be a prime and let ^p denote the class of all finite Abelian

groups of order prime to p. We shall require the following result of [2].

Lemma 2.7.  // n is even and r = p9 then there'are % ̂ isomorphisms

K-.niSlX-d-niSO (i>0).
? r       r I t < "J ' .     „s]-' = T„»]\ van      f"(-.c ,1-1] yfi

(3) There is a misprint in [4, p. 249, line 5]: (£")*< generates the summand n2p{S2p).
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3. The E-H-Q sequence. Let n be even, let r be a power of a prime p ^ 2.

Then, in view of 2.7, (phr: ji9(S^,S"_ t) -* 7c, + 1(Sr"+1) certainly defines an iso-

morphism of the p-components. Let ß, denote the characteristic class of the

fn-cell of S" and also its image under injection in nt„_l(S1:,S"_i). Let

fc:7r,+ 1(Sr"+1)-+7r,J(S^,Sr"_1) be the homomorphism such that

ka = ($«,)"1 a if the order of a is a power of p,

(3.1) = 0 if a is of finite order prime to p,

= pr if a = tfn + 1.

Then since nq+1(Srn + 1) is finite unless q = rn, k is a ^-isomorphism. Let

be a class of Abelian groups. We recall that a sequence Gt -A G2^> G3 is

^-exact at G2 in the sense of Spanier [12] if <p2<P\. = 0 and if the homology group

at G2 is in     Let 77r = (t>hrj<h~l, Qr-dk and let Er = <j>i. It follows easily

that the sequence

(3.2) - nq{S% t)       *,+^S"*')       tv t(S™ +l)        tt,_ t(s:_,) -

is ^-exact.

Let a e 7t9_ i(Sr"~') be of infinite order or else of order a power of p. We

require the lemma:

Lemma 3.3.   QrE^ct = (-^[ijo a.

Proof.  In the following diagram, i' is an injection, 0 a map of degree 1 and

P = (bnT)*.
0 h

7I,_ !(S"_ t)] <-7r9(S",S"_i)-^^(S™) - —,

/crn~ 1\
)< ■nq{V S     )->nq(S )

(-!)*£

0

^/+1(s":+1).

The lower rectangle is commutative, for let ß' enq(Vrn,Srn~ ) and let /i = dp".

Then d+ß' = ß**irn = (-Vf(Eß)*irn = (-\)qEß. The other portions of the dia-

gram are also commutative and the lemma follows from the definition of Qr.

Let A be defined by the commutative diagram

(3.4) Qr 77

«,+ 1(S"+1)-=*n<(S").

By [14, 5.9"] we have 7[t„]r =/•[{„,«,_!] and hence applying 3.3, 1.2 and 2.5

we obtain:
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Lemma 3.5. // ye7r9_2(S"'~2) is of infinite order or else of order a power

of p then AE3y = - rE2y.

Proof of Theorem 0.2. Let i" denote the injection nm+t_1(S?-2)-*nm+t-i(S?-i)-

Then by the exactness of the homotopy sequence of the pair (Sr"_ ,,Sr" 2) we

have

kernel; = i'7tm+(_1(SP"_2).

Moreover, by the ^-exactness of the E-H-Q sequence we have p"y e kernel Er

if and only if p"y e Qrnm+t+1(Srn+1). Since, by 2.6, c(F) = ± Ery, it follows that

to prove 0.2(a) we have to show that

(3.6) puyti'nm+t-1(S;-2) + Qrnm+t + 1(Sn+l) (v<mm(s-k,w)).

Now combining 1.6 and 2.5 we obtain

(3.7) Hjy = + E(,-1)"-1((/>ia)oEm+1jß" - ± *

and if the conditions of 0.2(a) are satisfied then 3.5 implies that

AE30 = -rE26 = -psE20

and hence that

(3.8) p"x = pk+vE2d^Anm+t+i(Srn+i)     (v < min(w, s - fc)).

3.6 follows from 3.7 and 3.8. If t = pkirn then Anrni.1(Srn+1) is generated by p*ir„

and the assertion of 3.6 holds for v < s — k. This completes the proof.

Let y?"e7t,_1(S(r_1)"_1). For our main application of 0.2(a) we need the

lemma:

Lemma 3.9. (a) dß"**^, = KT^/T, (b) {hr-^ß"**Pr-i - (-W-
Since a/if_! = [t„]r l, 3.9(a) follows from  the definition of ß"**. But

(hr-i)tpr-i = ttP-i)„ and hence we obtain 3.9(b) on applying 1.1.

4. The double suspension. Let p be an odd prime. The following lemma is

due to J. C. Moore [11].

Lemma 4.1. E2:[q,2m — 1]->•[<? + 2,2m + 1] is an isomorphism if

q < Imp — 3 and an epimorphism if q = 2mp — 3.

In the case q =2mp — 3 the kernel of E2 is Zp or 0 according as the modp

Hopf invariant is trivial or not. (See the exact sequence on p. 147 of [15, II].)

It follows from the result of Liulevicius [9] that the former is the case for m> 1.

Let ip-! denote the homomorphism induced by the injection S2m-» Sp1™ j. To

obtain further information Toda [14] developed a technique for studying the

homomorphisms Ep and
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ip.1E:iq + 2m-l,2m-V\^nt+2m(S2,1i;p)

whose composition is E2. As we shall see this is particularly effective in the range

2m(p - 1) ̂  q < 2m(p2 - 1) - 4.

Let n ^4 be even and let P-Sp_i be the space of loops on S"p-1 based at *. S"-1

is canonically imbedded in QSP_! and 7.8(ii) of [14] defines an isomorphism

ffp:nq.l(aSHp.l, S"-i;p)-+{q,pn-Y\.

Let n:7t?(Sp_!)->• nq_l{Q.Sp_l) be the natural isomorphism. Then if m >1 we

have a sequence

i [<?4-2m + l,2mp-l]        [q + 2m-l,2m-l] l2^i nq + lm{S2p^;p)l,

where / = d(//p)_1 and J = HpjQ, which is exact in the range q > 2m(p— 1)

since the corresponding groups in the homotopy sequence of (O.S2,'ü1,S2m~1)

are finite if q >2m(p— 1). Suppose that m > 1 and 2m(p— 1) < q < 2m(p2— 1) — 4.

Then applying 4.1 we obtain the commutative diagram

G(w 4- 2)

X

[q + 2m- 1,2m - 1]-

(4'2)     l''-i£ r
G(w 4-1)-^» »t4+2m(S^1;p)        [g4-2m + l,2m + l]-^» G(w)

J

G(w 4- 1)

where w = q— 2m(p — 1), and in which G(q) denotes the p-component of the

stable group of the q-stem. We remark that the horizontal sequence of 4.2 applies

also in the case m = 1.

We shall assume the following information concerning the stable groups

extracted from [15, 4.15].

Lemma 4.3.

G(2t(p-l)-s) =0 (lgtgp,3gjg2p-2);

G(2t(p-l)-2) = 0  (l^t=p-l);    G(2p(p-l)-2) = Zp;

G(2t(p-1)-1) = Zp(l^iSp-l); G(2p(p-l)-l)=ZpJ.

Proof of Theorem 0.3. We are concerned with the p-components of the groups of

the g-stem (odd-dimensional spheres only) for q<2p(p — 1). Thus we already

know the stable p-component and using the result [14, 4.2]
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(4.4) B, + 2(Sj-i;p) = G(q-2p + 3) (l^q<2p2-5)

we have a clue (via the E-H-Q sequence) to [q + 3,3]. When these extremes

are trivial and the groups G(w) and G(w + 1) of diagram 4.2 are trivial (m ^ 1),

all double suspensions are epimorphisms and hence isomorphisms and all p-com-

ponents are trivial. That such considerations yield 0.3(a) we leave to the reader.

The idea of the remainder of the proof is as follows. Using 0.3(a) we prove trivial

many Whitehead products. When the conditions of 0.2(a) are satisfied, corre-

sponding Hopf construction elements appear in the cokernels of E2. Thus for

certain stems we are able to obtain a lower bound for the product of the orders

of the successive cokernels of E2. However, using diagram 4.2 we obtain an

upper bound and when the bounds are equal all can be settled.

Consider the Whitehead products

(4-5) f., = lh»,lh^P+1oE2m<>-»-%]enASp2),

where z =2(m 4- i)(p -1) 4- 2m - 3. We first prove:

Lemma 4.6.  £Mit = 0 if m + t ^ p.

We have, by [14, 4.2] and 0.3(a), that

«2(r+i)(p-i)-i(^-2;p) * G(2t(p-l)) (tgp-1)

and hence 4.3 implies that = 0 (1 p-1). If m > 1 we have, by [14,4.6],

that

nz{SlnL2;p) * [2(m + 0(p-l)4-2m-4,2m-l] 4- G(2(r 4- l)(p-l)-2(p-m))

(m 4-1 g p).

Since it follows from 0.3(a) that the first summand is trivial and from 3.3 that

the second is trivial, we have proved 4.6. The formulae 3.9 now enable us to

apply 0.2(a). We need merely observe that t = £2mp_3a( is of order p and

that F/r generates [2mp 4- 2r(p-l),2mp 4- 1] » G(2r(p-1)-1). Thus the con-

ditions of 0.2(a) are satisfied with w = s = l, k = 0 and it follows that the elements

ß„tte[2(m + t)(p- 1)4- 2m - 1,2m + 1]      (2^m + t|p)

obtained by applying the Hopf construction to maps of type

(<2.,[.2J'"1oE*-1H«t)

are nonzero and of filtration p — 1.

Suppose that 1 ̂  t ^ p — 1. We proceed to examine the groups of the

(2((p-l)-2)-stem and prove

Lemma 4.7.

f 0 (m ̂  0,
[2t(p-1)4- 2m -1,2m 4-1] = \

Up (m = l,m = t-1).
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The case m = t of 4.7 follows from 4.3 for here we are in the stable range.

If m = t-1 the remark following 4.1 implies that the kernel of

E*:[2t(p- 1) +2m-1,2m + 1] G(2t(p-1)-2) = 0 is Zp. If m = 1, 4.4 and

4.3 imply that n2t(p-i}(Sl^l;p) = Zp. Moreover, the image of a generator under

the homomorphism

EP: n2t(p.,}(SP_,;p) -» [2t(p-1) + 1,3]

has to be /?, ,. The required result follows from the fact that Ep is an epimor-

phism which can be deduced from the vanishing of the appropriate group in

the E-H-Q sequence.

Lemma 4.7 includes the cases m = 1, m = f-l of 0.3(b)(i). Let T be the prod-

uct of the orders of the cokernels and K the product of the orders of the kernels

of the homomorphisms

E2:[2f(p-l) + 2m-l,2m + 1] -> [2f(p-1) + 2m + l,2m+3]

(4-8) (l = m = ,-2).

Since ßm<t-m (2 _ m _ t — 1) make contributions to the cokernels we have

r = p"2.

The groups G(w + 2) with w = 2f(p — 1) —2, t < p are trivial. Thus diagram 4.2

implies that the factors i^Eare monomorphisms, and, since G(2t(p— 1)— l) = Zp,

the orders of the kernels of the factors £p are at most p. Hence we have

K g p'~2.

However 4.7 implies that T = K and hence T = K = p'~2. Thus the kernel and

cokernel of each £2 is Zp. The remaining cases of 0.3(b)(i) follow immediately.

We now study the (2p(p — 1) — 2)-stem and obtain the following analogue of

Lemma 4.7.

Lemma 4.9.

Zp (m = p),
[2p(p-l) + 2m-l,2m + l] =

Z2orZp + Zp   (m = p-l,m = 2).

If m _ p we are in the stable range. The case m = p — 1 of 4.9 follows from the

fact that the kernel of E*: [2p* - 3,2p - 1] -> [2p* -l,2p+ 1] is Zp and hence

[2p2 — 3, 2p — 1] is an extension of Zp by Zp.

The case m = 2 we postpone and remark that the assertion 0.3(b)(iv) follows

from 4.9 and an argument (which we leave to the reader) exactly similar to the

one given above showing that the kernels and cokernels of the intermediate

double suspensions are all Zp.

To complete the proof of 4.9 we first prove

Lemma 4.10. (a) [2p(p-l) + l,3] = Zp={/?l p_1},(b) /^„.^A^ofi2"-Vl5

where A#0(modp).
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By 4.4 and 4.3, 7t2p(p_u(Sp_ t ;p) « G(2(p-1)2-1) = Zp, which is generated

by the stable suspension of ap_j. 4.10(b) now follows from the fact that the iso-

morphism 4.4 is induced by composition with the element ac' of n2p-i(S2,-1) such

that Epa'= a,. Moreover on examining the appropriate group in the E-H-Q

sequence we find that Ep maps on to [2p(p — 1) + 1,3] which proves 4.10(a)

and 0.3(b)(iii).

We next observe from diagram 4.2 using our knowledge of the stable groups

that

<P-iE:[2p(p-l)+ 1,3] -> 7r2p(p_u+2(Sp_1;p) = G (say)

is a monomorphism with cokernel no larger than Zp. Since ß2,P-2 na& filtration

p — 1 it follows that the cokernel is precisely Zp and hence that G is an extension

of Zp by Zp. It only remains to prove that Ep : G -» [2p(p — 1) + 2,5] is a mono-

morphism (it is certaintly onto) or equivalently that the image of

Qp:G(2(p — 2)(p — 1)—l) = Zp-> G is the zero of G. Now the iterated suspension

of <Xp_2 generates G(2(p-2)(p-1)-1). Thus, by Lemma 3.3, it will be sufficient

to prove:

Lemma 4.11.   [t4]po£4p_4ap_2 =0eG.

Suppose 4.11 is false. Then 4.10(b) implies that £2ajO£2p_1ap_, =0. Thus

the toric element

y = {E2ctuE2p~iap_uPik+3}enk+4{Si),

where k = 2p(p — 1), is defined. Moreover by [15, 4.17(ii)] its stable suspension

is a generator of G(k- 1) = Zp2, which implies that the order of y is at least p2.

Now [fe + 2,3] contains the nonzero element ap and since nk+l(Sl-i;p) = 0

and [fe +2,2p +1] = ZP it follows that [fc+2,3] =ZP = {ap}. On examining

the relevant groups in 4.2 we find that ip-iE: [fe + 2,3] -> nk+3(Sp_1 ;p)

is an isomorphism and hence that nk + 3(S*^1;p)=Zp. We can conclude that

/YpV^0e[/c + 4,4p+l] = {£4p"2ap_2}

and hence that Qp£4p_2ap_2 = [<4] po £4p_4ap_2 = 0, which contradicts the

assumption. The proof of 4.9 and 0.3(b) is now complete.

It only remains to prove 0.3(c). We have already seen that [2t(p—l) + 2,3] =Zp

in the case t = p. The case 1 < t < p which is similar we leave to the reader and

the result is well known if f = 1. 0.3(c)(i) and (ii) may be deduced from 4.3 and

the lemma:

Lemma 4.12. If t = p and m _ 3 or if t < p and m _ 2 then

E2: [2t(p — 1) 4- 2m —2, 2m — 1] -* [2((p—1) + 2m, 2m + 1] isan isomorphism.

If m > t, 4.12 follows from 4.1. If m ^ t we may refer to diagram 4.2 from

which we easily obtain that the factors ip-iE are isomorphisms and that the
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factors Ep are monomorphisms. However in our study of the (2t(p— 1) — 2)-stems

(t ^ p) we saw that the kernel of

EP: n2t(p.!, + 2m_ 2(S2pm!; p) ^ [2t(p-1) + 2m -1, 2m + 1]

is Zp if r < p and 2gm^f-l or if t = p and 3 ^ m ^ p - 1. Since

G(2(t — m)(p — 1) — 1) = Zp, the exactness of the E-H-Q sequence implies

that the corresponding homomorphisms Qp are nontrivial and that the Ep factors

in the (2r(p— 1) — l)stems are epimorphisms and hence isomorphisms, which

proves 4.12.
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