
GROTHENDIECK GROUPS OF ORDERS IN
SEMISIMPLE ALGEBRAS

BY

A. HELLER AND I. REINER(i)

Introduction. Let R be a noetherian domain with quotient field F, and let A

be an i?-algebra which is finitely generated and torsion free as .R-module. Define

the F-algebra A* to be F®RA. We may form the Grothendieck groups K°iA),

K°iA*), K°iA), the last of which is obtained from the category of .R-torsion

.¿-modules (see §1 for the definitions of these groups).

On the other hand, we may define a Whitehead group KliA*). We shall set up a

homomorphismA:.^1^*)-»!^ iA). If A* is semisimple, we obtain an exact

sequence

K \A*) à K°iA) -> K°iA) -* K°iA*) -> 0.

This result is applied to the case where A = RG, the group n ig of a finite group

G over a Dedekind ring R of characteristic 0. If F is a splitting field for G, we are

able to compute K°iA) explicitly in terms of the arithmetic of R and the de-

composition matrices of G.

In a recent paper [5], Swan (using different methods) has independently ob-

tained a number of striking results on the structure of K°iA).

Throughout this paper, all rings are left noetherian and have unity elements.

All modules are left, finitely generated modules. The ring of rational integers

is denoted by Z.

1. Grothendieck groups. 1. Let A be a ring, and let si be the free abelian group

generated by the symbols (M), where M ranges over all ¿-modules. Define sf0

as the subgroup of sf generated by elements of the form

iM)-iM')-iM"),

where 0->M'->M->M"-»0 ranges over all short exact sequences of ¿-modules.

Then set K°iA) = s//s/0, the Grothendieck group of A. We use [M] to denote

the image of M in K°iA).

2. If A is a ring with minimum condition, then the Jordan-Holder theorem

is valid for ¿-modules. Consequently, if {Mu -,M„} is a full set of irreducible

¿-modules, then K°(¿) is the free Z-module with free Z-basis [Af1],-",[JVfn].
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3. Returning to the general case, we wish to show that if M and N are A-mod-

ules, then [M] = [N] in K°iA) if and only if M and N have the same composition

factors, in some sense. More precisely, we prove

Lemma 1. Let M and N be A-modules. Then [Af] = [N~\ in K%A) if and only

if there exist two exact sequences

(1) 0->l/->M©Jf->F-*0, 0-►[/-► N© If->F-»0,

for some choice of A-modules U, V and W.

Proof. If there exist modules U, V, W for which the sequences in (1) are exact

then clearly [M] = [AT] in K°iA).

Conversely, suppose that [M] = [N] in K°iA), and write K°iA) = sé/s/0,

using the notation of §1.1. Then

(M)-(AT) = I ±{iX)-(X')-iX")},
x

where 0 -> X' -> X -> X" -* 0 is exact. Therefore

(2)    (M) + I {(x'() + ixi)} + I iYj) = (jv) + I (x,.) + Z {(y;) + (y/)}
• / « j

holds true in s4, with 0-*X\-*Xi-+X'l-+0 exact for each ^andO-^y/^y^y/^O

exact for each j. It follows from the definition of sé that any term (T) which

occurs on the left-hand side of equation (2) with some multiplicity t, say, must

also occur on the right-hand side with multiplicity i. Set X = ¿Z9X¡, X''= T,@Xir,

and so on. The preceding shows that

M©Ä"©z"©ysN©z©y©y".

Let If be a module isomorphic to both of the above.

Since W s N © X © Y' © Y", there is an embedding of X' © Y' in If with

quotient module N ®X" @ Y". Thus there exists an exact sequence

o-»x'©y->M©jf-»M©N©x"©y"->o.

Analogously, there exists another such exact sequence with M and N interchanged.

This completes the proof of the lemma.

4. We next introduce Bass' version of the Whitehead group KxiÄ) (see

[1]). Let A be a ring, and consider the category whose objects are pairs

(M, p) consisting of an 4-module M and an automorphism p of M. By a map

qb : (JVf, p) -» (N, v) of one such object into another, we mean an element

qb e HomAiM,N) such that qbp = vqb. Consider a sequence

(3) 0->iL,X)-^iM,p) -^iN,v)->0

of objects and maps in this category. Then the sequence is exact in this category

ifandonlyif0->L-£ M^* JV-> Ois exact in the usual sense.
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(For the orientation of the reader, we remark that if one regards c6 as an embed-

ding of L in M, and ip as the canonical projection of M onto M/L, then the exact-

ness of (3) simply means that p is an automorphism of M which maps L onto

itself, thereby inducing an automorphism X of L and an automorphism v of the

factor module M/L.)

Let á? be the free abelian group with generators (A/,p), where M ranges over

all ¿-modules, and p ranges over all automorphisms of M. Define H8Q as the

subgroup of á? generated by the elements

(M,p)-(L,A)-(iV,v)

gotten from all exact sequences given by (3), together with all elements of the form

(M,pp')-(M,p)-(M,p').

NowletX1(¿) = @/8Q. Wedenote by[M,p]theimageof(M,p)inK1(¿).

If lM is the identity automorphism of M, then trivially

[M,1M] = 0,   \M,p-l-\= -\M,pl

Thus every element of K\A) is of the form [Ai,p] for some M and some auto-

morphism p thereof.

If ¿ is a direct sum of the rings Ax, • • •, ¿„, then clearly

K\A)^K\Ax)®...®K\An).

5. Let F be a field, and let F* be the multiplicative group of nonzero elements

of F. For an F-module V, an automorphism c/> of V is just a nonsingular linear

transformation on V. Let det </> denote the determinant of this transformation.

We have K\F)^F*, where K\F) is written additively, F* multiplicatively.

The isomorphism is given by [F",<&] -*detcb.

Now suppose that A is a full matrix algebra over F, and let X be a fixed

irreducible ¿-module. Each ¿-module is isomorphic to XM for some «, where Xw

denotes the direct sum of n copies of X. Furthermore, Hom^(X,X) = F. Hence

if M = X(n), and if p is an automorphism of M, then p may be represented by a

nonsingular n x n matrix Tip.) with entries in F. The categories of ¿-modules

and F-modules are isomorphic, and we have also

K\A)^F*,

the isomorphism being given by [M, p] -> det T(p).

2. Algebras over naethcrian domains. 1. Let R be a noetherian commutaiive

integral domain, with quotient field F. If M is a torsion free R-module, we may

form the F-module F<S)RM, denoted by FM for brevity. Let A be an .R-algebra

which is finitely generated and torsion free as R-module, and set ¿* = FA, an

F-algebra.
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The additive groups K°(A), K°iA*) and K\A*) have already been defined in §1.

If {X*,---,X*} is a full set of irreducible A*-modules, then K°iA*) is just the free

Z-module with Z-basis [XÎ], •••,[X„*].

2. Let Cf denote the category of B-torsion-free A-modules. If we restrict our-

selves to this category, we obtain a Grothendieck group K°iA). To each MeCf

corresponds an element [M]y e K°A[A). The proof of Lemma 1, §1.3, remains un-

changed. Hence if M,NeCf, then [Aíjy = [N~\f in X°(A) if and only if there

exist exact sequences (1) for some choice of U, V, W e C¡.

Using a procedure due to Swan [4], we show at once that X°(A)s.rv0(A).

The desired isomorphism K°(A) -» K°iA) is given by [M]y -» [Ai], Ai e C¡, and

the inverse map n0 : K°(A) -> K°fiA) may be obtained as follows : Let Af be any

A-module, and choose an exact sequence

0->X->y->Af-*0

with y a projective A- module. Then X and Y are in Cf, and we define

voM-[*]/-[*]/■
BySchanuel's lemma, the image i/0[Af] is independent of the choice of X and Y.

It is easily seen that if

(4) 0-*l/->F->Ai->0

is exact, with U,Ve Cs, then also

aM]=[f]/-[c/]/.

3. To each MeCf there corresponds an A*-module FM. It is easily verified

that the map [Af]r -> [FM] gives a mapping 0 of X?(A) onto K°iA*).

4. Next, we introduce the category C, of all B-torsion A-modules. If we restrict

ourselves to this category, we obtain a Grothendieck group X,°(A). To each

M eC, corresponds an element [Ai], e /Cf°(A). Since each short exact sequence

from C, is a short exact sequence of A-modules, the map [Ai], -► [Ai] gives a

mapping of K(°(A) into X°(A). Composing this map with the map n0 defined

above, we obtain a mapping n : K°t (A) -> X°(A). Indeed, if AieCr, choose any

exact sequence (4) with U, V e Cs, and then

»?([M]1) = [F]/-[[/]/.

5. Suppose hereafter that A* is semisimple. Following Swan [4], we show the

exactness of

(5) K%A) -2-> K%A) -2-» K\A*)-> 0.

Indeed, it is trivial that 9r\ = 0. On the other hand, let x e ker 0, and write

x = [Af]/ - [A7]/for some M,NeCf. From 0x = 0 we obtain [FAÍ] = [FA/]in

K°iA*). Since A* is semisimple, this implies that FAÍ = FN. Replacing N by a
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module isomorphic to it does not change [N]/; so we may assume that FM = FN,

and that JVcM. But then M/N is an R-torsion module, and there is an exact

sequence

0-*N-*M-*M/N->0.
Therefore

x = M/ - [#], = r¡i[M/Nl) e image of n.

This completes the proof of the exactness of (5).

6. Now let M,N eCf be any modules for which FM = FN. Define

<6> wot-[ignf],-[t^],.«:«*

which is meaningful since F(jv/ nJV) = FM = FN. For any module IcMnN

such that FX = F(Mn N), we have

which readily implies that

r    M    1        [M] [MniVl

(7) «w-ia-ra.-
Lemma   2.    Lei   L, M, N e Cf   be   such   that   FL = FM = FN.   Then

[L//M-] + [M//N] = [L//JV].

Proof. Choose X = L r\M r\N. Then [L//M~] = [L/X], - [M/X]„ with analo-

gous formulas for [M//N] and [L//N]. The result now follows from formula (7).

Lemma 3. Let there be given modules L¡, M¡, N¡eCf and exact sequences

0 ->L( <r>,> M,
<A¡

>N, -> 0,      i = 1,2.

Leí L* = FLi,  and so  on.  Suppose there exist  isomorphisms k:L\^L*2,

p:M* = M2, v:N* = N* for which the following diagram is commutative:

0 -> L\ -^U Mí -^» N* -*  0

->LÎ
ci* n

->  0.

Then

[M2//pMx-¡ = [L^/AL!] + [N2//vNxl

Proof. The map cb* induces a mapping L2 -» M2/iM2 n p.Mx), and the kernel

of this mapping is easily found to be L2 n 1LX. Thus, there is an isomorphism of
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L2/(L2r>XLí) into M2/(M2 C\pMx). Analogously, there is a homomorphism of

this latter module onto N2/(N2 n vNx). A routine computation then shows the

exactness of

0h      L2 Ai2 N2
~* L2n XLX ~* M2 n pM ! ~* N2rwNl~* '

Consequently

2

\~\t      [L2nALj(+  U.nwvJ,[ Aí2 n pM

An analogous formula holds with the numerators M2,L2,N2 replaced by pMx,

XLX, vNx, respectively. This implies the desired result.

7. We shall proceed to  construct a  homomorphism  A :Kl(A*)-*K°(A).

Using the notation of §1.4, write /^(A*) = ®/ää0, and define

AiM*,p*) = [_p*M//M],

where Ai e C¡ is chosen so that FAÍ = Ai*. Then A is well defined, since if also

FN = M*,Ne Cf, then

[ít*Aí//Aí] - \_p*N//N} = [p*M//p*N] - [AÍ//JV] = 0,

the latter equality true because p* is an automorphism of Af*.

We now prove that A annihilates ßS0, and hence induces a map of /^'(A^into

K,°(A). Consider first a generator of 380 of the form

(M*,p*p*2) -(M*,p*x) - (M*,p*2).

Choose MeCf such that FAf = Ai*. Then A maps the above generator onto

[p*xp*2M//M-\ - [/ifM//Ai] - [ptM/m,

which is zero because [p*p2M//p*W] = [/i*Ai//Ai].

Second, consider a generator of á?0 of the form

b0 = (M*,p*)-(L*,X*)-(N*,v*),

where

(8) 0->(L*,X*)-^->(M*,p*)-^(N*,v*)->0

is exact. Let Af e Cf be such that FAf = Ai*, and set L = qb ~ xAi, N = i¡/M. Then

we have the exact sequence

qb             i]/
0-> L —-* M —-^ N-> 0,

which (when tensored with F) gives the exact sequence

0 -=► L* —^-> Ai* —^ N* -> 0.
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Since the sequence (8) is exact, there is a commutative diagram

[August

0

0

-»  L* <t>

-»  L

»  M*
i>

»  N* -*  0

->  M" -»  N" »   0.
c6 ^

By Lemma 3, §2.7, we have

\_p*M//M} - [A*L//L] - [v*JV//IV] = 0.

But the left-hand side of the above equation is precisely A(ft0), which completes

the proof that A( J>0) = 0.

We shall use the same symbol A to denote the map of K\A*) into X,°(¿).

8. Let us now prove the exactness of

(9)
A     _.n. ..     n     „n. ..     9

K\A*)-> K°,iA) —i-> K%A)-> K°iA*)-> 0.

To begin with, we verify that «A = 0.  For let [M*,p*] e K\A), and choose

MeCf such that FM = M*. By definition,

A[M*,p*] = [p*M//M].

Choose X = Mn p*M, so that FX = FM. Then

= o,

since p*M = M.

On the other hand, let us show that kern cimage of A. For let x e kerw, and

write x = [M], — [N], for M,NeCt. Choose exact sequences

0-► A"-► X-+M->0,   0-+Y'-> Y->N-*0,

with A-, X', Y, Y'eCf. Then

0 = «x = [X]/-[X']/-[F]/ + [r]/,

so [X © Y'1f = [X' © Y]r in K?(¿). By §2.2, there exist modules U,V,We Cf
and exact sequences

0-*U->X®Y'®W^V-+0,   0-+U-+X'®Y®W-+V^0.
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Tensoring with F, and setting U* = FU, V* = FV, we obtain the exact sequences

0 _> u* -» F(X ®Y'®W)-*V*-+0,

0->U*->F(X'®Y ®W)->V-*0.

But all short exact sequences of A*-modules must split, since A* is assumed semi-

simple, and so there is an automorphism p* of F(X® Y' ® W) for which the

following diagram is commutative.

0

0

-> u*

-*   U*

F(X®Y'®W)

p"

-* F(X'@Y®W)

->   V* -*   0

Ik.

->  F ■*   0,

the l's denoting identity maps. Since the restriction of an identity map is again

an identity map, it now follows from Lemma 3, §2.6, that

[_p*(x © y © w)//íx' © y © w)~] = o.

But then

[ix © y © w)//p*(x © y © if)] = [(x © y © jf)//(x' © y © vr¡\.

Now the left-hand expression lies in the image of A, while that on the right is

equal to

rx©y©if i     c^r
[x'©y©ifjt    [x'

®Y®W

■],-[r].-[f].-M'-M'-:Y'®W

This completes the proof that the sequence (9) is exact.

3. Group rings. 1. In this section we choose R as a Dedekind domain of

characteristic 0, with quotient field F. (For example, R might be the ring of all

algebraic integers in an algebraic number field F.) Let G be a finite group, and set

A = RG, its group ring. Assume throughout this section that F is a splitting field

for G, so that A*( = FG) is a direct sum of full matrix algebras over F. We may

choose A-modules Zi,...,Z„eCy (the category of B-torsion-free A-modules)

such that if we set Zf = FZh then {Z*, ■•■,Z*} is a full set of irreducible A*-

modules.

2. Let P be a (nonzero) prime ideal of R, and set K=R/P, Â = A/PA. Then

A is a iÇ-algebra, and K°(Ä) is a free Z-module with free Z-basis [Fj], •••, [?,„],

where F\, •••, Fm are a full set of irreducible A-modules.

The decomposition numbers d[¡ are non-negative integers such that 7¡ occurs

with multiplicity d¡j as composition factor of the A-module Z¡/PZ¡. Therefore

(10) [J|] = 1 dfjiTj-] in K°iÄ), 1 < i < n.
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When P does not divide the order of G, the decomposition matrix id? is just the

identity matrix.

For arbitrary P, Brauer [2; 3] has shown that m^n, and that the G.C.D. of the

m x m minors of the decomposition matrix (d£) is equal to 1. Therefore we may

solve equations (10) for the [f,-] in terms of the [Z,/PZJ, and so there exist

rational integers e£- (not necessarily unique) such that

[f,.]= Eef, [g-]  in K°iA),   l£J¿ in.

Furthermore, we have \_Zi//PkZ¡'] = k [Z.-/PZ,] in K°iÂ), for each rational integer

k. Therefore every element of K°iÄ) is expressible as a sum

i = l

3. Now let P range over the prime ideals of R, and as in §2, let X,°(¿) be the

Grothendieck group of the category of R-torsion ¿-modules. Since each such

module is a direct sum of its P-primary components, we have

*?««»!*•(£).

Hence, using the results of the preceding paragraph, every element of K°iA) is

expressible as a sum

n

£ {J¡Z¡//Z¡],     J¡ = fractional P-ideal in K.
> = t

4. We set ß — multiplicative group of fractional P-ideals in K, and let

ßn = ß x ■■■ xß in factors). Then there is a homomorphism t :#n-> K°iA)

given by

<Ju-Jn) = DW/zj + - + [JÄ//Z.],

and we have just shown that risa surjection.

Using the notation of the exact sequence (9), let us set a = r\x. Then

ff(Jls.••,/„)= t{\Jfàr-\ïùf}>
i = l

and the kernel of 9 equals the image of n, which in turn equals the image of o\

Now K°(¿*) is a free Z-module, so by the exactness of (9), we have

(11) K%A) S X°(¿*) © image of a,

the above being an isomorphism of additive groups. Furthermore,

image of cr £ f/ker a.
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Thus, to compute the additive structure of K°(A), it suffices to determine ker a.

We shall compute this kernel explicitly.

5. If R is a principal ideal ring, then each J¡ eß is of the form Ra¡ for some

a¡ e F, and thus

[JriZi]/ = [aiZi]/ = [Z,]/,

since ajZjSZ,-.   In this case we see that the image of a is 0, and so

K°f(A) s K°(A*) as additive groups.

6. If R is not necessarily a principal ideal ring, the above argument still shows

that the kernel of a contains f'¿, defined as

/o = {(Ju~-3n)e/n: each J,is principal}.

We now make use of the decomposition matrices (d?) defined in §3.2. When P

divides the order of G, the matrix (dfj) is not a square matrix, and so there exist

rational integers qx,---,q„ (not all zero) such that Z¡g;É^ = 0 for all j. But then

Z [Z,.//P"Z,.] = Z q,
i i

Set

DP = i(P*\-,Pq")ef : Z q,dfj = 0for all/j.

Then the preceding remarks imply that i(DP) = 0 for each P. Indeed, since

K?(A) s Z®K°(A/PA), we have shown that

kert = Yl Dp-
p

Note that DP = {1} whenever P does not divide the order of G.

5. Next, from the relation a = nx we conclude that ker<7 => kerz. Combining

this fact with the observation of §3.6, we have

ker o-^fo ■ kerr.

We shall now prove that in fact

(12) ker<7=,/S • kerr.

To begin with, since Fis a splitting field for G, we may write A* = A* ©••■ ®A*

where each Af is a full matrix algebra over F. For each i, the A*-module Z* is then

an irreducible Af-module. Let F# be the multiplicative group of the field F. By

the discussion of §1.5, we have

K\A*)^ Z ®/C1(A?)sF# x •■• x F* in factors).
¡ = i

We may thus define a map p : /CJ(A*) -*ßn by

pia1,---,a„) = iRaí,---,Ra„),     a^F*.

= Z^f/^Oin/^A).
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Indeed, av (as element of /^(¿*)) represents the pair [Z*,a*], where a* is the

automorphism z -* axz, z e Z* Then

A[ZÎ,aî] = [a1Z1//Z1] = T(Pa1,P,-,P)

= xpiax,l,.-,l).

Corresponding results hold for a2,-..,a„, which shows that A = tp. We therefore

have a commutative diagram

KliA*) —r-> K° iA) -> K°iA) —t-± K°(A*) -►  0.
A ! n 9 j

0

Using this diagram, a routine argument shows that kercr=(kerr) (image of p).

However, the image of p is precisely the group f0 defined in §3.6. This com-

pletes the proof of formula (12), and so we have determined the structure of

KjiA) (and thus of K0(¿)) as additive group.

6. Let us investigate briefly what happens in the nonsplitting field case. Let

P0 be the ring of all algebraic integers in an algebraic number field F0, and set

¿0 = R0G, ¿o = F0G. The semisimple algebra A* need not be a direct sum of

full matrix algebras. Nevertheless, there is an exact sequence

K\A*0) - K°iA0) -» K°fiA0) J^K°iA*0) -> 0,

so again

K%A0)s K°iA*)®ker90

as additive groups. We shall show that ker0o is a finite abelian group.

To begin with, we observe that K°(¿0) is finitely generated asZ-module. For

let V*,.-.,V* be a full set of irreducible ¿*-modules. For each i, consider the

set of ¿0-modules W which are P0-torsion-free and satisfy F0W= Vf. By the

Jordan-Zassenhaus theorem, there are only a finite number of nonisomorphic

¿0-modules in this set, say Wn,---,Wit¡. But then it is easily seen that the elements

{\W^feK%A0): l^j^U,   l^i^s}

are a set of generators of the Z-module K°(¿0). (They are surely not a Z-basis,

however.)

It follows then that kerö0 is also finitely generated as Z-module, so we need

only show that kerö0 is a torsion module. We begin by choosing a finite extension

F of F0 which is a splitting field for G, say (F : F0) = k. Let R be the integral

closure of R0 in F; then R is a Dedekind ring with quotient field F, and we have
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R ^ R0®---®R0®J      (fcsummands)

as B0-modules, where J is some ideal in B0.

For each B0-torsion-free A0-module Ai, define a[Af] = [R®«0Af], thereby

obtaining a map a:K°f(A0)-yK°f(A). Analogously, there is a map a*:K°iA*)

-» X°(A*). On the other hand, every A-module can be viewed as an A0-module,

so there are maps ß : KJiA) -* K°f(A0), ß* : K°(A*) -> K\A%), and we have a com-

mutative diagram

K%A) —^ K°iA*)

a

K°A

Let xeker0o; then axeker0, so there exists a positive integer q such that

q ■ ax = 0, and therefore q • ßccx = 0. However,

HXI = j?[B®RoM] = (fe-l)[Af] + [JAi] in K°fiA0).

Choose a positive integer h such that J1' is principal. Then the above implies that

h • ¿?a[Aí] = hk[M~\, and thus

0 = h ■ q ■ ßxx = qhkx.

This completes the proof that ker0o is a finite abelian group. We shall not attempt

to obtain an explicit computation for this group.

Remark.   Since K1 is functorial the sequence (4) extends to a sequence

/C1(A)^X1(A*)-^/C°(A) -♦ K°(A) -> K°(A*) -+ 0.

This extended sequence is not in general exact. Indeed if A = Z[í]/(í2 — 1), the

group ring of a group of order 2, then K\A*) = Q* x Q* and the kernel of A

is {( ± 2k, ± 2~k)}. But Kl(A) is easily seen to be just the four-group.
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