THE TOPOLOGY OF CERTAIN SPACES
OF PATHS ON A COMPACT SYMMETRIC
SPACE(")

BY
LAWRENCE CONLON(?)

Introduction. In this paper we apply the theory of Bott and Samelson [6] to
the study of the integral singular homology of certain spaces of paths on a compact
symmetric space. It should be noted that a special case of one of our theorems
(Theorem 2.1) has been obtained independently by S. Araki and will appear
in his forthcoming study of the Bott-Samelson K-cycles associated to symmetric
spaces [2]. Some of the technical lemmas involved in the proof of Theorem 2.2
are also known to Araki, but are used by him for quite different purposes.

The spaces of paths to be considered are those associated to the variationally
complete group actions described by Hermann in [7]. Thus if G is a compact
connected Lie group and K, H are symmetric subgroups (for our purposes a
symmetric subgroup is the full fixed point group of an involutive automorphism
of G) then we let N be a K-orbitin G/ H and set Q = Q(G/ H; x, N), the space
of paths in G/ H which start at the point x and terminate on N. Our principal
results will be a complete determination of the K-cycles in Q (cf. [6, pp. 969-972])
and, as an application of this, the formulation of a necessary and, sufficient con-
dition that the singular homology H,(Q) be free of torsion.

Any effective application of the Bott-Samelson theory to Q will require a de-
scription of the distribution and defects of the K-orbits in G/ H. For the case
K = H it is known (cf. [6]) that such a description is provided by a maximal
torus of G/ K together with a certain ‘‘diagram”’ of singular subtori determined
by the root system of G/K. We generalize this situation to the ‘‘symmetric
triad’’ (G; K, H) by selecting a geodesically imbedded torus T in G/ H which
meets all the K-orbits and meets them orthogonally (cf. [8]), the singular points
of which again fall into a finite union of subtori. Some propositions of Siebenthal
proven in [12] then provide the key to a complete description of these singular

Received by the editors April 1, 1963.

(1) The results in this paper are from my doctoral dissertation, submitted to Harvard
University in January, 1963. T am especially grateful to Professor Raoul Bott who directed this
research and whose advice was very helpful in the preparation of this paper. I am also grateful to
the referee for many helpful suggestions.

(2) During this research the author held a National Science Foundation Graduate
Fellowship.

228



TOPOLOGY OF SPACES OF PATHS 229

subtori. More precisely, these propositions enable us to define certain affine
functionals on the universal covering t of T. These functionals (called the roots
of the triad (G; K, H)) determine a diagram of singular hyperplanes p of t, each
having a positive multiplicity m(p), and this diagram plays a role in the general
context entirely analogous to that played by the usual root diagram in the case
K = H. The precise theorem is:

THEOREM 1.1. Let Yet and y = exp(Y)e T. Then the defect d(y) (i.e., the
non-negative difference between the dimension of the K-orbit of y and the
maximal dimension of any K-orbit) is the number of singular planes, counted
with multiplicity, which contain Y.

This material is developed in §I.

These root diagrams enable us to prove a complete structure theorem for the
Bott-Samelson K-cycles in Q. If P = (py, -+, p,) is a finite sequence of singular
planes from the diagram in {, then the K-cycle

FP=K1 XKT e XKT (Kr/KT)

is defined by taking K; as the subgroup of K which leaves exp(p;) pointwise fixed
and K the subgroup of K which leaves T pointwise fixed. Set P; = (py, **-, py),
i <r,and I; = I'p,. The structure theorem for I'p can now be stated.

THEOREM 2.1. There is a sequence of locally trivial fibrations

T > T, 3eee >T; = Sm(p1)
T, -1 Tia

with the fiber of m; homeomorphic to the sphere S™®P. Each fibration n, admitsa
canonical global cross-section s;. The sphere-bundle

ri—-—>l—‘,_ 1
T

is isomorphic to the associated unit sphere bundle of a vector bundle E; + 1
(where 1 denotes the trivial line bundle) over T';_,. Here we have

E; =Ky Xgp Xgp Kioy Xg W

where V, is the orthogonal complement of 1 in ¥; (the respective Lie algebras of
K and K;) and the left action of K1 on V, is the adjoint action.

This is the theorem which Araki [2] also obtains, though he considers only the
important case K = H.

Theorem 2.1 is proven in §II. The remainder of that section is devoted to a
study of the topology of I',. We give particular attention to the orientability of
I'p, approaching this question by a study of the Whitney classes w,(E;). We are
led to define a “‘regularity’’ condition on (G; K, H) by requiring certain relations
among the roots of the triad. The exact formulation of this condition must be
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postponed until these root systems have been discussed in greater detail, but the
theorem which motivates the definition can be given here.

THEOREM 2.2. If(G; K, H) is regular, then every I'p is homologically torsion-
free(and so, in particular, is orientable). Conversely, if the regularity condition
is not fulfilled, then some I'p is nonorientable.

In §III we apply these considerations to a study of the torsion in H,(Q). It is
well known from the Morse theory that if each transversal geodesic segment in Q
has even Morse index, then H,(Q) has only even dimensional classes and no
torsion. By the variational completeness of the action of K on G/ H together
with Theorem 1.1, this condition is equivalent to demanding that all singular
planes in t have even multiplicity. One might conjecture that whenever this con-
dition fails, torsion will occur in H,(Q), but this turns out to be false. Theorem 2.2
together with Theorem 1 of [6] assures us that whenever (G; K, H) is regular the
group H,(Q) will be free-abelian, and there are a number of examples of regular
triads whose root diagrams contain planes of odd multiplicity, even of multi-
plicity one. On the other hand, if the triad fails to be regular, then an argument
using the K-cycles will exhibit the presence of nonzero two-torsion in H.(Q).
This will complete the proof of the following theorem:

THEOREM 3.1. H,(Q) is torsion-free if and only if (G; K, H) is regular.

§III will be concluded by a brief discussion of the case K = H.

In all that follows we suppose a choice once and for all of a left and right
invariant Riemannian metric on G. This yields an invariant inner product {,)
in the Lie algebra g of G. If U is a Lie subgroup of G we denote by U, the identity
component of U.

I. The roots of (G; K, H).

1. A special case. Before we can define the root system of a triad it is neces-
sary to investigate a certain special class of symmetric triads. Let A be any auto-
morphism of G and considerin G x G the following symmetric subgroups:

D = {(x,x):xe G},
D, = {(x, A(x)): xe G}.
These are the respective fixed point groups of the involutions
x,9) = (3, %),
(x, ) = (A7 (), A())-

Projection onto the first coordinate defines an isomorphism of D, with G and the
mapof G x Gto Gdefined by(x, y) » yx - definesadiffeomorphism of (G x G)/D
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with G. Under these identifications the action of D, on (G x G)/ D becomes the
action of G on itself defined by

x'y=A(Xx)yx !, forallx,yeG.

We call this the A-twisted action of G on itself.

Let £, be the subalgebra of g left pointwise fixed by 4 and let t, be a maximal
abelian subalgebra of 4. It is not hard to show (and will follow from Propositicn
1.4) that the orbits of the above action all meet the torus T, = exp(t,) and meet it
orthogonally. Thus to carry out the program sketched in the introduction for the
special case of A-twisted actions we must describe the singular subtori of T.
For this we will use a suitable family of affine functionals on t,. These have been
defined by Siebenthal [10] although for a different purpose and from a somewhat
different point of view.

We will give a restatement of Siebenthal’s results (the reference is [10], Chapter
II, §3, and Chapter III, §1) suitably modified to fit our context. To carry out the
modifications for himself the reader need only note that for a suitable finite
extension H of G the automorphism A of G becomes the action Ad(x) on the
identity component H, = G for a suitable x € H. Siebenthal’s propositions are:

PROPOSITION S-1(p. 56). T, is contained in a unique maximal torus T of G.
Hence T is invariant under A.

PROPOSITION S-2 (p. 62). The roots of G relative to T fall into equivalence
classes consisting of those roots whose restrictions to t, are equal.
A~ permutes the elements of such a class cyclically.

Each of these equivalence classes will be called a cycle. If ey, ...,e, are the
2-planes in m =t* (t denotes the Lie algebra of T in g) corresponding to the
elements of a cycle C, then E =e; + ... + ¢, is invariant under 47 !.

PROPOSITION S-3 (pp. 62-63). For E as above there is another orthogonal
decomposition E = E| + --- + E, into oriented 2-planes, each invariant under
A™" and under A(T,) and such that the action of A™* on each E; is rotation
through 2n(u + (j — 1)/ k). Here 0 < u <1/k and u depends only on E. If
Y et, and y=exp(Y), then Ad(y)rotates each E; through +2r0(Y), the choice

of sign being the same for all j, where 0 is the common restriction of the elements
of Cto t,.

These propositions lead us to define functionals w;; on t, as follows. For each E
as in the above proposition choose ¢ to be the linear functional on t, such that
Ad(y) rotates each E; through 27¢(Y) (y and Y as above). Let ¢, ---, ¢, be the
resulting set of functionals. Let k; be the number of roots which restrict to ¢,.

Let u; be the number u of Proposition S-3 for the E corresponding to ¢;. Then
define
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(1.1) wy=¢;+u+(—1D/k;, i =1,-,h;j=1-k,.

DEerFINITION.  The singular planes of t, are the hyperplanes w;;= 0 (mod 1).
Each plane is given multiplicity equal to the number of forms w;; which are
identically integral on it.

The following proposition should now be fairly evident:

ProposITION 1.1. If Yet,is contained in exactly r singular planes (counted
with multiplicity), if y = exp(Y), and if G, = {x€G: A(X)yx~' = y}, then
dim(G,) = dim(t,) + 2r.

This, then, provides a complete description of the dimensions of orbits under
the A-twisted actions. Before extending this result to the general case we will
state one more proposition which will be useful in what follows. The proof is
practically immediate from the propositions of Siebenthal quoted above.

PROPOSITION 1.2. Those functionals w;; for which w;;(0) = 0 are the roots
of t, relative to t,.

2. The general case. Let J and L be involutive automorphisms of G with
fixed point groups H and K respectively. The corresponding Lie subalgebras are
b and f and we have orthogonal decompositions

g=hom,
g=t®p.
Set A =JL.
ProposiTiON 1.3. I, =INh@®p Nnm.

Proof. Clearly f, contains this algebra. Now L(f,) = {,, since if X e, then
JL(X) = X and so LJL(X) = L(X). This gives 4~ 'L(X) = L(X). Similarly
J(,) = £,. The formula JL(X) = X alsoimplies J(X) = L(X), so that restrictions
of these two involutions to ¥, agree. We denote by o this involution of f,. The + 1
eigenspace of ¢ is clearly contained in fNh and the —1 eigenspace in p Nm.
Therefore ¥, is contained in the direct sum of these two spaces and so equality
holds. Q.E.D.

The symmetric space obtained by dividing (K,), (the identity component of
the fixed point group of A) by the fixed point group of ¢ is diffeomorphically
imbedded in (K,), as exp(p Nm), as is well known (cf. [4, pp. 329-330], for
instance). Thus taking a maximal abelian subalgebra t of p N m we obtain a maxi-
mal torus Tc exp(p Nm) and this is a geodesically imbedded torus (not in
general maximal) in exp(m) ~ G/H. Now t may be extended to a maximal abelian
subalgebra t, of , by adding on a suitable abelian subalgebraof f N).Ont, we
have the system (1.1) of affine functionals w;; Consider the nonconstant restric-
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tions of these functionals to t. Identify any two functionals if they give rise to the
same family of integral hyperplanes in t (thus ¢ and 0 are identified if and only
if @ = n + 0 for some integer n). The resulting functionals are called the roots
of the triad (G; K, H). Each root ¢ is assigned multiplicity m(¢) equal to the
numberof w;;’s which restrict to ¢. The integral planes ¢ = 0 (mod 1) are called
the singular planes. A singular plane p is given multiplicity m(p) equal to the sum
of the multiplicities of roots ¢ for which ¢(p) is an integer.

PROPOSITION 1.4. The torus T< G/H described above meets all the K-orbits
and meets them orthogonally. If Yet lies on no singular plane, then the tangent
space to T at y = exp(Y) is the orthogonal complement of the tangent space to
the K-orbit of y at y(3).

Before proving this proposition we must describe certain isometries of G/H.
The imbedding

G/H ~exp(m) < G

can be explicitly described via the map n: G— G defined by n(x) = J(x)x ™.
This map is constant along the left cosets of H and defines an imbedding

Ns:G/H->G

whose image is exp(m) (cf. [4, p. 330]). That is to say, the orbit of the identity
under the J-twisted action of G on itself is just exp(m). The map n, carries the
standard action of G on G/ H over to the J-twisted action of G on exp(m). In
particular, the action of K in which we are interested takes this form. Finally,
given y e exp(in) we can map exp(in) isometrically onto itself so as to map y to e
(the identity of G) as follows. Since y = s(1) for a suitable geodesic s on exp(in)
through e, we can choose y'/2 = s(3) e exp(m). Then the map

(1.2) x = y-llzxy-l/z — J(yl/z)xy—l/z

is as desired. Relative to this transformation of exp(m) the action of K is carried
over to the action (still J-twisted) of y'/?Ky~'/2, This latter group is the fixed
point group of the involution Ad(y"/*)(L)Ad(y "'/*)= L,.

Now if in (1.2) we choose y e T, then this transformation restricted to T is just
group translation by y~ ' (choosing y'/*e T, of course). L is replaced by L,, J
remains the same, and 4 = JLis replaced by

(1.3) A,=JL, =Ad(y™!)-4
since y € exp(p Nm). The reader will easily check (making use of (1.3)) that if
(3) I am grateful to the referee for pointing out to me that the construction of T and a proof

that T meets all the K-orbits and is orthogonal to them has already been given by Hermann in
[8]. He also pointed out the general relevance of [9] to this section.
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Yetand y = exp(Y), then the new diagram of singular planes in t is the translate
by —Y of the old diagram.

Now we prove Proposition 1.4. If X €f, Yep Nm, then we have
JX-X,Y) =-2(X,Y) =0.

Conversely, if Yem, X efandif 0=(JX — X,Y), then —2{X,Y) = 0 and so
Yep Nm. This proves that p Nm is the normal to the K-orbit of e at e and it
follows by Morse theory that every K-orbit in exp(im) meets exp(p Nm). Now
for any such orbit let b be a point of the orbit in exp(p Nm). b lies on some
maximal torus of exp(p Nm) and so by the conjugacy theorem for maximal
tori in a symmetric space (cf. [6, p. 1020]) there is xe K NH such that
J(x)bx ™! = xbx e T. This proves that every orbit meets T. It also proves that
the orbit of e meets T orthogonally at e. Now using a basic transformation (1.2)
we see that the orbit of any y € T meets T orthogonally at y. There remains only
the last assertion of the proposition. We may assume Y=0, y =e. Then the
assumption on Y implies (by Proposition 1.2) that the roots of f, relative to t,
all vanish identically on t. The symmetric space exp(p Nnt) must therefore reduce
to its maximal torus, so p Nm =t. Since p Nm is the normal to the K-orbit of e
at e, the proof is complete.

Itis now easy to prove Theorem 1.1. Again we can suppose Y=0, y =e. Let K,
be the subgroup of K which stabilizes e. Then K,c H and so K, equals KN H.
It follows thatf,= N §. In particular, if no singular plane of the diagram contains
0, then by Proposition 1.2 ;=N | and the orbit of e has dimension = dim(K)
— dim(Ky). By Proposition 1.4 this is an orbit of maximal dimension. Thus,
in general, the defect d(e) of the K-orbit of e is dim(K,) — dim(K7). Since always
K, < H, we see that this number is also the defect of the orbit of e in exp(p Nm)
under the adjoint action of exp(f Nb). But this latter defect is the sum of the
multiplicities of the singular planes of the diagram for the symmetric space
exp(p Nm) which contain 0. By Proposition 1.2 these singular planes are also
the singular planes of the diagram for the triad (G; K, H) which contain 0 and
their multiplicities are the same in both diagrams. This proves the theorem.

We add one more definition concerning the root diagram of (G; K, H) which
will be useful in §II.

DEFINITION. Letbe a root of (G; K, H) relative to t. Let 8 be the linear part
of 0. Then the basic translation h, is defined as the vector in t which is orthogonal
to the null-plane of § and satisfies 8(h,) = 2.

It should be noted that by a suitable transformation (1.2) it may be supposed
that 0 = 8. Then h, becomes a basic translation for the root diagram in t of the
symmetric space exp(p Nm) (cf. [4, p. 331]). Then itis well known that exp(h,) =e.
Extending t, to a Cartan subalgebra t’ of g we see that h, must lie in the central
lattice of t’. Thus (h,) is an integer for every root ¥ of g relative to t’. Now for
any root ¢ of (G; K, H), @ is the restriction tot of a root of g int’. Thus:
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PROPOSITION 1.5. If ¢, 0 are roots of (G; K,H), then ¢(hy) is an integer.
The integers obtained in this way are called the Cartan integers of (G; K,H).

3. An example: the Cayley plane. The compact exceptional group F,
admits H = Spin(9) and K =(Sp(3) x SU(2))/Z, as symmetric subgroups.
W= F,/Spin(9) is the Cayley projective plane, a symmetric space of rank one.
Consequently, the torus T< W which serves as fundamental domain for the
action of K must be of dimension one. The root diagram for the triad can be
shown to consist of the four functionals x, x + %, 2x, 2x + 4 (where x is a real
variable) with respective multiplicities 4,4, 3,4. The singular subtori of T = S*
are four points equally spaced around the circle and with respective multiplicities
7,4,7,4.The two singular points of defect 7 lie on a common K-orbit as do the
two of defect 4. Let N, be the singular orbit of defect 4 and let N, be the one
with defect 7. Set Q; equal to Q(W; y, N;) where y is a point of T of zero defect.

The above information together with standard Morse theory techniques shows
that Q, is obtained, up to homotopy type, by attaching a 7-cell to a point, then an
11-cell to this, and finally higher cells to this. Thus

T (W, Ny) = m(Qy) = m(S7), i <10.
From this together with the homotopy exact sequence of a pair we obtain
T(N)=n(W)=0, i<7,

the second equality being well known for the Cayley plane. Now dim(W) = 16,
so dim(N,) = 11. The acyclicity of N, in dimensions less than 7 together with
Poincaré duality shows that N, has the homology groups of the sphere S!!.
By Smale’s proof of the generalized Poincaré conjecture [13], it follows that
N, =S

Similar reasonings on the other singular orbit N, reveal that N, is an eight
dimensional manifold with homology groups

Z, i=0,4,8,

H(N2) = 0, otherwise.

Presumably N, is the quaternion projective plane.

II. The Bott-Samelson K-cycles. We retain the notations of the previous
section with a few additions. If p is a singular plane in t we denote by K, the
subgroup of K whose action leaves exp(p) pointwise fixed. Following Bott and
Samelson [6] we define for each finite sequence P = (py,-:-, p,) of singular planes
the manifold

Fp=K; Xg, Ky Xy X g, (K,/Ky)

where for brevity we have written K; = K. Such a manifold we call a K-cycle.
For Q as in the introduction and se€Q a geodesic segment transversal to the
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K-orbits, the K-cycle I'; as defined in [6, p. 970], can be assumed to be of the
form I'p without any loss of generality. It is our intention in this section to examine
carefully the geometric and topological structure of the K-cycles I'p. The motiva-
tion for this discussion has already been explained in the introduction.

Our geometric result is Theorem 2.1 and our main topological result is Theorem
2.2. The statement of Theorem 2.2 contains the term ‘‘regular’’ which we are
finally prepared to define.

DerINITION. The symmetric triad (G; K, H)is said to be regular if and only if
for every pair ¢, 6 of roots of the triad with mutliplicities m(¢) odd and m(6) = 1,
the Cartan integer @(h,) is even.

1. The manifold K,/Ky. In carrying out the computation of K,/Kr we
may assume (via a transformation (1.2)) that O e p. One consequence of this
assumption is that the functionals (1.1) on t, which are identically integral on p
are actually linear and so are roots of f, relative to t, (cf. Proposition 1.2). Let
¢4,+++, P, be the distinct ones that vanish on p but not on all of {, and let R be the
set of roots of f, relative to t, which are integral linear combinations of the roots
¢,. Identify R with a subset of t, via the invariant inner product. Finally set

7, =span{R,e,: « € R}

where e, is the 2-plane in f, orthogonal to t, and invariant under ad(t,). The
following lemma is proven easily from general Lie theory:

LemMmA 2.1. 1y, is a semi-simple Lie subalgebra of . In fact, y, is a compact
form. The involution o defined by L and J in ¥, restricts to an involution 1 of
7p- Thus there is an orthogonal decomposition y,=%, @ m, where ¥, is the fixed
point algebra of T and m_ the —1 eigenspace.

LemMMmA 2.2. exp(m,) is a symmetric space of rank one.

Proof. Evidently [y,,p] =0. Thus if ! is maximal abelian in m,, p@®! is
abelian in p Nm. Since t is maximal abelian in p Nm it follows that dim(l) = 1.
Q.E.D.

Now set K, =exp(f,).

Lemma 23. K,/K,NKp=S™P,

Proof. ByLemma 2.2 and the conjugacy of maximal tori in a symmetric space
the adjoint action of K, on m_ is transitive on the one-dimensional subspaces.
Furthermore it is well known that given X em_ there is y € K, such that Ad(y)X
= — X (the Weyl group is generated by the reflections in the singular planes
which pass through 0). Thus Ad(K,) is transitive on the unit sphere in m,. Now
choosing X e m, Nt of unit length, we see that the stabilizer of X in K, is K, N K.
The dimension of the quotient K,/ K, N K has to be the multiplicity of {0} as a
singular plane in span{X}. This number is m(p) since R is identified with the roots
of y, and the elements of R which fail to vanish on span{X} are ¢, -+, ¢,. Q.E.D.
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Now by dimensionality considerations and the Brouwer theorem of invariance
of domain it follows immediately that the inclusion K, < (K,), induces a
homeomorphism

(Kp)o/(Kpo NKr = Sm@,

This result would be adequate for our ultimate purposes since only the principal
component of I'p affects the topology of Q, but the following proposition is more
satisfying and does simplify matters somewhat(%).

PROPOSITION 2.1. Kj intersects every component of K, hence K,/ Ky = S,

Proof. Let ye K,. The proposition will be proven by finding u € (K,), such
that uy e Kr. Since 0 € p we have K, = H and so Ad(y)t =t’ is also a maximal
abelian subalgebra of p Nm and centralizes p. The subgroup (K ), of (K)o which
centralizes p is evidently invariant under the involution ¢ and so contains a sym-
metric space in which both T and T’ =exp(t’) are maximal tori. The identity
component of the tixed point group of ¢ in (K,), is (K,)o, and so we can find
x € (K,)o such that Ad(x)t’ =t. Finally, we recall that for X em, Nt as in the
proof of Lemma 2.3 there is ze K, = (K,), such that Ad(z)X = —X. Thus
either x or zx will be the desired element u € (K,),. Q.E.D.

Return for a moment to the example involving the Cayley plane (§I,3). The
nonsingular K-orbits are all difffomorphic to K/ K;. We can now see that this
is a fiber bundle over K/ K,=N, = S'! (where m(p) = 4) with fiber K,/ Ky = S*.

2. The structure of T'p. It is now fairly easy to prove Theorem 2.1. For the
proof that I'p is an iterated fiber bundle over K,/ K with fibers K;/ K1 and with
canonical global cross-sections s; the reader is referred to [6, p. 997]) By Proposi-
tion 2.1 these fibers are the spheres S™®*)

Now for a singular plane p through the origin, Proposition 2.1 gives a canonical
map

. K,->m,

whose image is the unit sphere in m . It is easy to see that n inducesan isomorphism
n, of V, the orthogonal complement of ¥; in f,, onto the tangent plane to this
sphere at X em,Nt. The translation A in m, defined by

AY)=Y-X

takes this tangent plane to the orthogonal complement of span{X} in m,. For
x € Ky it is easy to see that

(4) In my thesis I defined the K-cycle corresponding to P to be the principal component of
I'p and obtained Theorem 2.1 for that object. From Proposition 2.1, however, it is clear that
T'p is always connected. I am indebted to Professor Araki for communicating to me a proof of
this fact for the case K = H. His proof inspired the proof given here for the general case.



238 LAWRENCE CONLON [August
At (Ad(X)Z) = Ad(x)An,(Z)

for all Z e V. Finally note that Ad(Ky) leaves X fixed. These observations make
itclear that if O € p;, then for E; as in the statement of Theorem 2.1 there is a vector
bundle isomorphism

Ei+ 1 zKl XKT"' XK Ki—l XKT(mf)

T
and the sphere bundle I'; - I';_, is the associated unit sphere bundle. The hypoth-
esis 0 e p; is removed by noting that a transformation (1.2) replaces each K;
with Ad(b)K; and V; with Ad(b)V; (where be T) and since b commutes with
everything in K; we obtain a homeomorphism of base spaces which lifts to an
isomorphism of the vector bundles. This completes the proof of Theorem 2.1.

3. The topology of T'p. The Gysin sequence together with the cross-sections s;
proves the following:

PROPOSITION 2.2. If all the vector bundles E; are orientable, then, setting
m(i) = m(pi)a
H*(FP) ~ H*(Sm(l)) ®® H*(Sm(r))'

In particular, T'p is an orientable manifold. In any case this formula always
holds mod 2.

We shall soon develop criteria for the orientability of the E;, but first let us
briefly consider the cohomology ring of I',. We will not completely identify
this ring, but we will give an interesting partial identification. If all the E; are
orientable, then in what follows we suppose integer coefficients; otherwise we
work mod 2. By Proposition 2.2 the fibers in the successive fibrations =; are all
totally nonhomologous to zero relative to the suitable coefficient ring. Thus:

PROPOSITION 2.3. With suitable coefficients there is a class x;e H™(T)
such that

H¥T) = n*H*(T;_ ) + x; 0 n*H*(Li-y),
where m;* is injective.

Since the maps m;* are injective we will drop reference to them in the future.
It follows that x; can be considered as elements of H*(I'p) and that as such they
generate this ring. In fact, the entire ring structure will be determined by the

relations

2
xi = a,-xi + bi

where a;,b;e H*(I';_;). We may choose x; such that s;*(x;) = 0 (s; the canonical
cross-section) and then the above relations take the form

2.1 x} =ax,
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In the case in which all the E; are orientable, the choice of the integral classes x;
is also a choice of orientation for each E;. We may therefore speak of the Euler
class X(E;) and view it as an element in H*(I'p). Likewise the top Whitney class
W) (E;) will be viewed as an element in H¥*(I'p; Z,).

PROPOSITION 2.4. If all the E; are orientable, then in the basic relations(2.1)
ai = X(E,). OtherWise ai = Wm(i)(Ei)'

Proof. First assume all E; orientable. Consider the sequence of spaces

0T,y 3 T, B Ty/5(T ) -0
where 7 is the identification map. There is a natural identification
T(E) ~ T/ si(Ti- 1)

where T(E;) is the Thom space of the vector bundle E;. Using the fact that
m;0s5; =1, we deduce an exact sequence
*
-~ n* Si
0> H*(T(E;)) —> H¥T HX(T,;_ 0,
~ B¥(T(E) (,)<__—1;> (Ti-p) -

where A* stands for reduced cohomology and =;* splits the sequence. There is a
unique class U € H"(T(E,)) such that »*(U) = x, and by standard theory the
Thom isomorphism
¢t HY(T;— 1) » H* " (T(E)
can be defined by
¢(@)=n*a)vU
which makes sense via the identification
H*(T(E))) ~ H¥(T;,54(T;_ ).
By definition the Euler class is
X(E)=¢- (Uu U)
(cf. [11, p. 41]). Thus
m*$(X(E)) = x7,
T*(X(E)) = n*(m*(X(E))v U)
= 7*X(E))v x;.

This gives the desired formula. The same argument always works mod 2 and
gives the second assertion. Q.E.D.
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It should be remarked that the mod 2 part of this proposition is a special case
of a theorem of W. S. Massey [10, Theorem III, p. 274].

The next step in computing the cohomology ring would be an explicit determi-
nation of these characteristic classes in terms of the generators x;, but this seems
to be very complicated in the general case. For a determination (with coefficients
Z, and in some cases Z) of the cohomology ring of the K-cycles which occur in
the case K = H, the interested reader is referred to [2].

4. The vector bundles E;. It is important to obtain conditions under which
the K-cycles are all orientable. By Proposition 2.2 it will be sufficient to find
conditions under which the vector bundles E, are all orientable.

Let p be a singular plane int, 0 € p. Consider the roots of ¥, relative to t, which
vanish on p but not identically on . We may orient these roots so that their
restrictions to t all have the same sign. It is well known (cf. [1], for instance) that
there are at most two distinct restrictions 6, 26 of these roots to t. If @ is the only
restriction of these roots we write m(26) = 0. From the table at the end of [1], it
can be seen that one of the following situations always holds:

I.  m(6) even, m(260) = 0.

II. m(6)> 1 and is odd, m(260) = 0.

III. m(0) is even, m(26) is odd.

IV. m(0) =1, m(26) =0.

DEFINITION. A singular plane pintissaid to be of type I, I, III, or IVaccording
to which of the above situations occurs when p is moved to the origin via a
transformation (1.2).

The separation of types IT and IV may strike the reader as a bit arbitrary, but,
as we shall see, it is only the presence of planes of type IV that can introduce
nonorientability into the K-cycles.

Now for each possible type of p we describe the system of roots of ¥, relative
tot, which vanish on p (0 € p) but not identically on t.

1. The distinct roots with restriction 0 are 6,,:--,0,, — (8,),--, — a(8,).

II. The distinct roots with restriction 6 are ¢,0,,-:-,0,, — 6(0,),--, — a(8,)
where ¢ = — a(d).

III. The distinct roots with restriction 6 are 6,,---,0,,—a(0,),-+, — a(6,) and
those with restriction 20 are ¢, ¢4, -+, .., — 6(Py), -+, — 0(¢,,) Where ¢ = — ().

IV. ¢ restricts to 0 and ¢ = — o().

These assertions are readily seen using the fact that the system of roots in
question is closed under the involution o.

LEMMA 2.4. Let ¢ be a root of ¥, relative to t,. Let e, be the 2-plane in 1,
corresponding to ¢. If o(@) = § then e, is pointwise fixed under o. If o(¢p) = — ¢,
then ey is spanned by X, Y, such that o(X,) = — X,, o(Y) = ¥,

Proof. In both cases, a(e,) = ;. If a(¢) = ¢ and if e, is not pointwise fixed
under o, then thereis a —1 eigenvector X # 0in e,. But evidently ¢(t) = 0 and so
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[X,t] = 0, contradicting the fact that t is maximal abelianinp Nm. Fora(¢)=—¢
we may choose X, Y, as nonzero mutually orthogonal eigenvectors of o ine,
with eigenvalues ¢,,¢, respectively. Necessarily ¢; = +1. We may suppose Z, et
such that Y, =[Z,,X,]. Then

82Y¢ = U(Y¢) = [ - Z¢,31X¢] = —'81 Y;).

Therefore ¢, = —¢, and we may suppose ¢, = — 1, g, =1. Q.E.D.

Now for ¢ as in II, III, or IV we take Y} as in Lemma 2.4. For case I we set
Y,=0. For a any root let X, Y, be an orthonormal basis of e, Set
X(0) =X, +a(X,), Y(0) =Y, +0(Y,).

LEMMA 2.5. The orthogonal complement of ¥ in ¥, is
V=Span {X(o,), Y(gl)’ X(¢1)’ Y(¢1)’ }fj): i= 1,“‘,"; j= 1»""m}-

Proof. This is clearly a subspace of f,. Furthermore, using the first assertion
in Lemma 2.4, we see that f; is spanned by the orthogonal complement of t in t,
together with the planes e, for roots satisfying () = a (which is the same as
saying a(t) =0). The space V described above is evidently orthogonal to ¥;.
Finally, dim(f,) — dim(f;) = m(p) = dim(V). Q.E.D.

Now note that without the assumption that 0 e p we still have that the orthogonal
complement of ¥; in ¥, is Ad(b)V for V as above and be T. One immediately
deduces (using the notation of Theorem 2.1):

COROLLARY. Let p; be the plane through 0 obtained by moving p; to the origin
by a standard transformation. Let V! be obtained from p; as in the above lemma.
Then there is a bundle isomorphism

’
EizKl XKT"‘ XK Ki—'l XKT V,'.

T
With this identification of E, it is a fairly easy matter to determine whether the
bundle is orientable or not. As is well known, E; is orientable if and only if the
first Whitney class w,(E;) = 0. We will compute this Whitney class.
Suppose j an integer = 1and < i such that m(p;) = 1. We may suppose O € p;.
Asin [6, p. 997], there is an injection

XI: Kj/KT=Sl—>F,-.

For x;e H¥(I';; Z,) « H*(T';; Z,) as in Proposition 2.3, we have 2] (x;) equal
to the generator y in H(S!; Z,). 25(wy;)) iseither y or 0 according as (Exj"(Ei)
is orientable or not. Let 0; be the root of f, relative to t, which vanishes on p;
but not on all oft and let h; be the vector int, normal to the null-plane of §; and
such that 6(h;) = 2. Then clearly h;et.

LEMMA 2.6. If p; is of type 1 or 111, then y*(w (E))=0. If p, is of type II
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or IV, then there is a unique root 0 of the triad which is identically integral on
p; and X;(wl(Ei)) = g(hj).V

Proof. Set p = p; and consider the group K, as in Lemma 2.3. Since m(p) =1
it follows that K, is a circle group and the subgroup K, N Ky is identified as
{e, exp(h;/2)}. Since we make no assumption of simple connectivity it is possible
that exp(h;/2) = e. Now

1 E) RK; X g Vi
and since the inclusion K, < K; induces a homeomorphism
K./K.NKr~K;/Ky
(by Lemma 2.3 and Proposition 2.1) we obtain
Xj—l(Ei) ~ K. Xk nkp Vi.

Lemma 2.5 gives a basis for ¥ each member of which is mapped onto + itself
by Ad(exp(h;/2)) (by standard Lie theory). Thus x;‘(Ei) splits into a direct sum
of line bundles.

Now if p; is of type I, X;I(E,-) is a direct sum of an even number of mutually
isomorphic line bundles. Thus x;l(E,.) is trivial and its first Whitney class must
vanish.

If p; is of type III, we argue as above to show that X;I(E,-) is a direct sum

of two trivial bundles and a line bundle
L=K.Xg nky span{Y;}.

The restriction of ¢ to t is 28 for a root 0 of the triad and so ¢(h;/2)is an integer.
It follows that Lis also trivial so that again the Whitney class is zero.

If p; is of type IT or IV it is clear that the unique root 0 exists as asserted. We
obtain that y; (E))is a direct sum of an odd number of line bundles, each isomor-
phic to

L=K, X g g sPan{¥,}.

Now ¢(h;/2) = 0(h;/2)andso L is trivial if and only if this number is an integer.
Thus x¥(wy(E)) = wy(L) is y or 0 accordng as O(h)) is odd or even. Q.E.D.
CoROLLARY 1. If(G; K,H) is regular, then w,(E;)) = 0 and so E;is orientable.

This corollary follows from the above together with the partial determination
of H*(T';; Z,) achieved through Proposition 2.3. In view of Proposition 2.2 we
obtain

COROLLARY 2. If (G;K,H)is regular,then all the K-cycles are homologically
torsion free.
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This is the first assertion of Theorem 2.2. For the second assertion we use the
following proposition which is interesting in its own right.

PropoSITION 2.5. Let P =(py,-,p,) as usual. Then I'p is orientable if and
only if

r

Y wi(E)=0.

i=2

Proof. Let T; be the tangent bundle of I'p, T; that of I';. It is sufficient to prove
w(Tp) = ;z wy(E)).

To do this we proceed inductively. First note that since I'; is a sphere, w,(T;) = 0.
For the inductive step we will prove

wi(T) = w(T;-y) + wy(E),
for i>1. Now

| I
lni i-1

is the unit sphere bundle of F;=E;+ 1. It follows readily that =; !(F,)is
isomorphic to 1 + T; where T} is the bundle of tangents along the fibers of #;. Now
N (T-)+T =T,
Thus
T+ 1=n (Ti-y +F)
and so
wi(T) = wl(ni_l(Ti—l + F))
= mfwy(Ti-y) + 1 (wy(E)))
and following our custom of dropping n}' we obtain the desired formula. Q.E.D.
Now suppose that ¢, 8 is a pair of roots of (G; K, H) violating the condition
of regularity. That is, m(¢) is odd, m(6) = 1, @(h) is odd. Let p, be a singular
plane corresponding to ¢. Since @(h,) is odd, ¢ # 2y for any other root y. It
follows that m(p,) = m(¢) and p, is of type II or IV. Let p, be a singular plane
corresponding to 6. Suppose m(p,) > 1. Then (K,)o/ (K)o N K7 is a sphere of

dimension > 1 and so, by an elementary application of the exact homotopy
sequence of a fibration, one obtains

(K1)o N Ky = (Kg)o-
Suppose 0e p,. Then
b = exp(hy/2) € exp span{¥,} = (K),
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where  restricts to 0 = 0 and a(¥) = — . Thus b e (Ky)o. Ad(b) is therefore an
orientation preserving transformation of ¥V, (cf. Lemma 2.5 and corollary). But
@(h,) odd implies Ad(b) is —1 on V3 and then dim(V3) = m(p,), an odd number,
implies that Ad(b) reverses orientation. Thus the assumption m(p;) > 1 must be
false. Now set P’ = (py, p,)-

PROPOSITION 2.6. T'p. is not orientable.

Proof. By the preceding remarks together with Lemma 2.6, w,(E;) = ¢(hg)y #0.
Thus by Proposition 2.5, T'p. is not orientable. Q.E.D.

This completes the proof of Theorem 2.2 and so completes our analysis of the
Bott-Samelson K-cycles.

III. The topology of Q.

1. Thetorsion in H*(Q). Let Q = Q(G/ H; x, N) be the space of paths on G/ H
starting at x and terminating on the K-orbit N. Q can be topologized by the
compact-open topology. It is a well-known fact in Morse theory that Q as defined
here is of the same weak homotopy type as the corresponding space Q' of piecewise
regular curves parametrized proportionally to arc length with the topology as
described in [6, p. 968]. Thus Theorem I of [6], though stated for Q’, also applies
to Q. In what follows we will understand by H,(Q) the singular homology of Q
with integer coefficients. The principal result of this section has already been
stated in the introduction as Theorem 3.1.

We remark that since G/ H is connected, varying the choice of x does not
vary the homotopy type of Q. Choosing!x as a suitable point of T lying on none of
the singular subtori, we find that all K-transversal geodesic segments through x
lie on T, as follows immediately from Proposition 1.4. By exercising care in the
choice of x we may also assume that for each K-transversal geodesic segment
s € Q the K-cycle T, as defined in [6, p. 970], is a K-cycle I'p in our sense. Thus
the fact that regularity implies H,(Q) to be free of torsion follows from Theorem
2.2 together with Theorem I of [6] and Hermann’s result [7] that the action of K
on G/ H is variationally complete. We are left with the task of exhibiting a nonzero
torsion element in H,(Q) whenever (G; K, H) is not regular.

Lemma 3.1. Let (G; K,H) be irregular. For Q as above and for a suitable
choice of x there is a K-transversal geodesic segment s € Q with I’y =T'p., where
P’ =(py,,D,) is a sequence of singular planes such that, for every pair (¢,6)
of roots of (G; K,H) exhibiting the irregularity, ¢ is not identically integral
on pj, j 2 2, while for some such (¢,0),¢(p,) is an integer.

Proof. Int select a point Y such that exp(Y) e N. Now extend a line from Y
in t in such a direction that it is not parallel to any plane of the diagram. A small
change in direction will not spoil this property and will further assure that the line
crosses singular planes singly. There will be a first point (after Y) along this line
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at which the line intersects a singular plane p, for which ¢(p,) is an integer for
some pair (¢,0) exhibiting the irregularity. Extend the segment a little past p,
to a point X lying on no singular plane. The segment § from X to Y obtained by
suitable reparametrizing then gives s=expos satisfying our requirements (taking
x =exp(X)). Q.E.D.

Now for P’ =(p,,-+,p,) as in the lemma and (¢, ) exhibiting the irregularity
and ¢(p,) an integer, we can conclude as in the remarks immediately preceding
Proposition 2.6 that p, is of type II or 1V. We can also (by the same remarks)
choose py, a plane of typeV, such that 6(p,) is an integer. Set P = (pg, P1,* "> D)
We define an imbedding

X: rs_’rl’
by means of maps
XKy x-xK,»>KyxK; x:-xK,,

x:(Kp) - (KT)'+ !
where
X'(an ""ar) = (eaal, ~-~,a,),

(g oty) = (ety, 1)
In [6, p. 971], there is defined an imbedding
[T, —> Q.
Finally, define u € Q as expo# where # is defined by
u(t)=5(3(1—-2/3)), 2/3=t=1.
i1|[1/3,2/3] = line segment properly crossing p, with #(2/3)
= 5(0) (a general point on t).
it | [0,1/3] = polygonal line with #(1/3) as already deter-
mined and with #(0) = 3(0).
Then by the construction in [3, p. 40], we obtain a map
fu:Tp—oQ.
To the reader is left the task of checking that f,0y is homotopic to f,. We thus
assert:
LeMMA 3.2. In homology, f.4 =fiaXx-

From the construction of P’ we have (by Lemma 2.6 together with Proposition
2.5) that I, is orientable. Thus this manifold has a fundamental integral homology
class y,.
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LEMMA 3.3. f(y,) #0.
Proof. Consider the commutative diagram

H(T;Z) —> HJ(Q;Z)
fs*

n n
H(T;Z,) ——> HW(Q;Z,)
sk

where the vertical maps 5 are induced by the canonical projection Z — Z,. Now
n(y,) is the fundamental class mod 2 and so by Theorem I of [6], fi,n(y,) is an
element of a vector space basis (over Z,) of H,(Q;Z,). Thus nf,(y,)

=full(7) #0 and so f(y,) #0.Q.E.D.
Now

Ip= Ko x g, Ky X gy X g, (Ky/ Ky)

and so this manifold is a fiber bundle over K,/ Ky = S! with fiber T,. x is the
injection of the fiber. By Lemma 2.6 and Proposition 2.5 together with the construc-
tion of P, I'pis not orientable. The following lemma will guarantee that 2y,(y,) =0.

LEMMA 3.4. Ij"F?X—»Sl is a locally trivial fibration with the fiber F a
compact oriented differentiable manifold and X a nonorientable differentiable
manifold, then 2i,(y;) =0 where y; is the fundamental homology class of F
over Z.

Proof. If n = dim(F), then the action of n,(S*) on H,(F) is nontrivial. Other-
wise, from the spectral sequence of the fibration we would have to conclude
that X is orientable. Thus, setting I = [0,1], we have a bundle map

f:FxI->X

such that the two fiber injections fo =f|F x {0} and f, =f|F x {1} induce i,
and —i, respectively in dimension n. Let y, and y; be the respective fundamental
classes of F x {0} and F x {1}. Let

JiFx{0,1}>Fx1I
be the inclusion. Consider y =y, — y, € H,(F x {0,1}). The following diagram is
commutative:
Hn(F x {0’1}) —'J_-——’ Hn(F X I)

*

lfo* s lf*

*

Now clearly (fox+/14)(¥) =2yF and 50 2iy(75) =fxjx(y)=fx(0)=0. Q.E.D.
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By Lemma 3.2 and the fact that 2y,(y,) = 0 we obtain 2f,,(y,) = 0. By Lemma
3.3, fu(y5) # 0. This exhibits nonzero two-torsion in H,(Q) and so completes
the proof of Theorem 3.1.

2. The special case K = H. The chief importance of this case is that the
action of K on G/K has a fixed point. This means that the usual loop space of
G/K can be analyzed by our methods. The torus T becomes a maximal torus
of G/K and the root system of (G; K, K) evidently reduces to the usual root
system for the symmetric pair (G, K). With the aid of the root diagrams which
are listed in [1] it becomes a straightforward matter to check the regularity
condition for each irreducible symmetric pair (G, K). Calling G/ K regular if and
onlyif the triad (G; K, K) is regular, we find that the regular irreducible symmetric
spaces are precisely the following:

(1) Compact simple Lie groups.

(2) G/K whose universal covering is one of the following spaces; complex
and quaternionic Grassmann manifolds, spheres, real Grassmann manifolds
of oriented 2-planes in 2n-space, SU(2n) / Sp(n), SO(2n)/ U(n), E¢/ F,,
E¢/(Spin (10)-SO(2)), E;/(E¢-SO(2)), F,/Spin(9).

Thus we conclude that G/K is regular if and only if each of its irreducible
components is one of the above spaces.

In [2] Araki defines a K-cycle I'p to be “‘totally orientable”” if and only if each
of the sphere bundles entering into its structure is orientable. He defines (G,K)
to be of “‘totally orientable type’” if and only if all associated K-cycles are totally
orientable. By Theorem 2.2 we see that this definition is equivalent to our con-
dition of regularity. Under the assumption that G is simply connected Araki
establishes that the following is a sufficient condition for (G, K) to be of totally
orientable type: if & is a fundamental system of roots for (G,K) then either F
contains no root of multiplicity one, or & contains one root of multiplicity one
and the rest of the roots in & have even multiplicity. By means of this criterion
Araki arrives at the same list of symmetric spaces that we have given above.
Thus his criterion is necessary as well as sufficient, a result which he also has
obtained by an a posteriori check. We note that the assumption of simple
connectivity is not essential. Theorem 2.2 involves no such assumption and so
proves that (G, K) is of totally orientable type if and only if its simply connected
representativeis. It would beinteresting to have an a prioriproof of the equivalence
of the above condition of Araki with our regularity condition.

A check through the root diagrams of the above spaces shows many cases in
which planes of multiplicity one occur; hence Theorem 3.1 applies to a number of
cases in which the Morse inequalities alone would be insufficient.

3. A conjecture. Bott has conjectured that the space of loops on a compact
symmetric space may have only two-torsion in homology. It is natural to extend
this conjecture to all spaces Q of the type we are here considering. A finite
dimensional analogue to this conjecture would be that the spaces K/ K, where
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Tis a maximal torus of G/ K, have only two-torsion. The most that I have been
able to prove in all of these cases is that the torsion subgroup is generated by ele-
ments of even order. In particular, if torsion occurs in H(Q) or in H(K/K), then
there is a nonzero two-primary component in that group. Furthermore, I have
been able to show that the K-cycles I'p have only two-torsion, so one might
hope to build an infinite K-cycle I and a map of I" into Q which in cohomolo-
gy would induce an injection. This would prove the conjecture for Q.
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