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Introduction. In this paper we apply the theory of Bott and Samelson [6] to

the study of the integral singular homology of certain spaces of paths on a compact

symmetric space. It should be noted that a special case of one of our theorems

(Theorem 2.1) has been obtained independently by S. Araki and will appear

in his forthcoming study of the Bott-Samelson X-cycles associated to symmetric

spaces [2]. Some of the technical lemmas involved in the proof of Theorem 2.2

are also known to Araki, but are used by him for quite different purposes.

The spaces of paths to be considered are those associated to the variationally

complete group actions described by Hermann in [7]. Thus if G is a compact

connected Lie group and K, H are symmetric subgroups (for our purposes a

symmetric subgroup is the full fixed point group of an involutive automorphism

of G) then we let N be a K-orbit in G/ H and set Q = Q(G/ H; x, N), the space

of paths in Gf H which start at the point x and terminate on N. Our principal

results will be a complete determination of the K-cycles in £2 (cf. [6, pp. 969-972])

and, as an application of this, the formulation of a necessary and, sufficient con-

dition that the singular homology T7*(£2) be free of torsion.

Any effective application of the Bott-Samelson theory to Í1 will require a de-

scription of the distribution and defects of the X-orbits in G /H. For the case

X = H it is known (cf. [6]) that such a description is provided by a maximal

torus of GIK together with a certain "diagram" of singular subtori determined

by the root system of G/K. We generalize this situation to the "symmetric

triad" (G; K, H) by selecting a geodesically imbedded torus Tin G/H which

meets all the K-orbits and meets them orthogonally (cf. [8]), the singular points

of which again fall into a finite union of subtori. Some propositions of Siebenthal

proven in [12] then provide the key to a complete description of these singular
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subtori. More precisely, these propositions enable us to define certain affine

functionals on the universal covering t of T. These functionals (called the roots

of the triad (G; K, H)) determine a diagram of singular hyperplanes p of t, each

having a positive multiplicity mip), and this diagram plays a role in the general

context entirely analogous to that played by the usual root diagram in the case

K = H. The precise theorem is:

Theorem 1.1. Let Yet and y = exp(Y)eT. Then the defect d(y) (i.e., the

non-negative difference between the dimension of the K-orbit of y and the

maximal dimension of any K-orbit) is the number of singular planes, counted

with multiplicity, which contain Y.

This material is developed in §1.

These root diagrams enable us to prove a complete structure theorem for the

Bott-Samelson F-cycles in Q. If P = (px, ■■■, pr) is a finite sequence of singular

planes from the diagram in t, then the F-cycle

TP = Kx xKt ■-• xKj, iKr/KT)

is defined by taking K¡ as the subgroup of K which leaves exp(p¡) pointwise fixed

and KT the subgroup of K which leaves Tpointwise fixed. Set P{ = (pt, •••, p¡),

i < r, and T¡ = TP¡. The structure theorem for TP can now be stated.

Theorem 2.1.    There is a sequence of locally trivial fibrations

r—>rr_!—>->rt =sm(pi)
nr nT-i it 2

with the fiber ofitt homeomorphic to the sphere Sm(p'\ Eachfibration n¡ admits a

canonical global cross-section s¡. The sphere-bundle

r,—-»iv,
ni

is isomorphic to the associated unit sphere bundle of a vector bundle E¡ + 1

iwhere 1 denotes the trivial line bundle) over Tt-i. Here we have

Et = Ki Xkt- X/ct^(-i x*r V,

where V¡ is the orthogonal complement oftT in í¡ (the respective Lie algebras of

KT and K¡) and the left action of KT on V¡ is the adjoint action.

This is the theorem which Araki [2] also obtains, though he considers only the

important case K = H.

Theorem 2.1 is proven in §11. The remainder of that section is devoted to a

study of the topology of I>. We give particular attention to the orientability of

rP, approaching this question by a study of the Whitney classes w^Fj). We are

led to define a "regularity" condition on (G; K, H) by requiring certain relations

among the roots of the triad. The exact formulation of this condition must be
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postponed until these root systems have been discussed in greater detail, but the

theorem which motivates the definition can be given here.

Theorem 2.2. 7/(G; K, H) is regular, then every TP is homologically torsion-

free iand so, in particular, is orientable). Conversely, if the regularity condition

is not fulfilled, then some TP is nonorientable.

In §111 we apply these considerations to a study of the torsion in 77*(il). It is

well known from the Morse theory that if each transversal geodesic segment in Í2

has even Morse index, then H^(Q) has only even dimensional classes and no

torsion. By the variational completeness of the action of K on G/77 together

with Theorem 1.1, this condition is equivalent to demanding that all singular

planes in t have even multiplicity. One might conjecture that whenever this con-

dition fails, torsion will occur in H^(Q), but this turns out to be false. Theorem 2.2

together with Theorem I of [6] assures us that whenever (G; K, H) is regular the

group Hç(SÏ) will be free-abelian, and there are a number of examples of regular

triads whose root diagrams contain planes of odd multiplicity, even of multi-

plicity one. On the other hand, if the triad fails to be regular, then an argument

using the TC-cycles will exhibit the presence of nonzero two-torsion in H^il).

This will complete the proof of the following theorem:

Theorem 3.1.   H^.(Ci) is torsion-free if and only if(G;K,H) is regular.

§111 will be concluded by a brief discussion of the case K = H.

In all that follows we suppose a choice once and for all of a left and right

invariant Riemannian metric on G. This yields an invariant inner product <, >

in the Lie algebra Q of G. If U is a Lie subgroup of G we denote by U0 the identity

component of U.

I. The roots of (G;K,H).

1. A special case. Before we can define the root system of a triad it is neces-

sary to investigate a certain special class of symmetric triads. Let A be any auto-

morphism of G and consider in G x G the following symmetric subgroups :

D = {(x,x):xeG},

DA= {(x,A(x)):xeG}.

These are the respective fixed point groups of the involutions

(x, y) -* (y, x),

(x,y)^iA-1(y),Aix)).

Projection onto the first coordinate defines an isomorphism of DA with G and the

map of G x G to G defined by (x, y) -* yx-1 defines a diffeomorphism of (G x G)/D
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with G. Under these identifications the action of DA on (G x G) / D becomes the

action of G on itself defined by

x ■ y = A(x)yx~l,      for all x,yeG.

We call this the A-twisted action of G on itself.

Let tA be the subalgebra of g left pointwise fixed by A and let t^ be a maximal

abelian subalgebra of lA. It is not hard to show (and will follow from Proposition

1.4) that the orbits of the above action all meet the torus TA = exp(t^) and meet it

orthogonally. Thus to carry out the program sketched in the introduction for the

special case of i4-twisted actions we must describe the singular subtori of TA.

For this we will use a suitable family of affine functionals on iA. These have been

defined by Siebenthal [10] although for a different purpose and from a somewhat

different point of view.

We will give a restatement of Siebenthal's results (the reference is [10], Chapter

II, §3, and Chapter III, §1) suitably modified to fit our context. To carry out the

modifications for himself the reader need only note that for a suitable finite

extension H of G the automorphism A of G becomes the action Ad(x) on the

identity component H0 = G for a suitable xeH. Siebenthal's propositions are:

Proposition S-l(p. 56). TA is contained in a unique maximal torus T of G.

Hence T is invariant under A.

Proposition S-2 (p. 62). The roots of G relative to Tfall into equivalence

classes consisting of those roots whose restrictions to tA are equal.

A'1 permutes the elements of such a class cyclically.

Each of these equivalence classes will be called a cycle. If ex,...,ek are the

2-planes in m = tx (t denotes the Lie algebra of T in g) corresponding to the

elements of a cycle C, then E = ex + ... + ek is invariant under A ~l.

Proposition S-3 (pp. 62-63). For E as above there is another orthogonal

decomposition E = Ex + ■■- + Ek into oriented 2-planes, each invariant under

A-1 and under Ad(TA) and such that the action of A'1 on each Ej is rotation

through 2n(u + (j — 1)/ k). Here 0 iu < l/k and u depends only on E. If

Y eíA and y=exp(Y), then Ad(y)rotates eachEj through ±2n6(Y),the choice

of sign being the same for allj, where 9 is the common restriction of the elements

of C to tA.

These propositions lead us to define functionals w(J on t^ as follows. For each E

as in the above proposition choose eb to be the linear functional on tA such that

Ad(y) rotates each £,- through 2n(j)(Y) (y and Y as above). Let qbx,---, qbh be the

resulting set of functionals. Let k¡ be the number of roots which restrict to 0¡.

Let u¡ be the number u of Proposition S-3 for the E corresponding to ^¡. Then

define
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(1.1) w,j = <¡>t + m, + O' - l)/fcj, i   = l,--,h; j   = 1, —,ki.

Definition. The singular planes of tA are the hyperplanes w,7= 0 (mod 1).

Each plane is given multiplicity equal to the number of forms wu which are

identically integral on it.

The following proposition should now be fairly evident:

Proposition 1.1. If YeiAis contained in exactly r singular planes (counted

with multiplicity), if y = exp(Y), and if Gy = {xeG: A(x)yx~1 = y}, then

dim(G,) = dim(U + 2r.

This, then, provides a complete description of the dimensions of orbits under

the A-twisted actions. Before extending this result to the general case we will

state one more proposition which will be useful in what follows. The proof is

practically immediate from the propositions of Siebenthal quoted above.

Proposition 1.2. Those functionats wfj- for which wfJ(0) = 0 are the roots

of iA relative to tA.

2. The general case. Let J and L be involutive automorphisms of G with

fixed point groups H and K respectively. The corresponding Lie subalgebras are

h and ï and we have orthogonal decompositions

9=h©m,

g = ï e p.

Set A = JL.

Proposition 1.3.  í¿ = ï n h © p n m.

Proof. Clearly tA contains this algebra. Now L(ïx) = tA, since if X elA then

JL(X) = X and so LJL(X) = L(X). This gives A_iL(X) = L(X). Similarly

j(ÏJ = lA. The formula JL(X) = X also implies J(X) = L(X), so that restrictions

of these two involutions to tA agree. We denote by a this involution of \A. The + 1

eigenspace of a is clearly contained in info and the — 1 eigenspace in p nm.

Therefore tA is contained in the direct sum of these two spaces and so equality

holds.   Q.E.D.
The symmetric space obtained by dividing (KA)0 (the identity component of

the fixed point group of A) by the fixed point group of a is diffeomorphically

imbedded in (K^o as exp(p nm), as is well known (cf. [4, pp. 329-330], for

instance). Thus taking a maximal abelian subalgebra t of p n m we obtain a maxi-

mal torus r<zexp(pnm) and this is a geodesically imbedded torus (not in

general maximal) in exp(m) x G/H. Now t may be extended to a maximal abelian

subalgebra tA of tA by adding on a suitable abelian subalgebra of ï n b. On t¿ we

have the system (1.1) of affine functionals wtj. Consider the nonconstant restric-
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tions of these functionals to t. Identify any two functionals if they give rise to the

same family of integral hyperplanes in t (thus 4> and 0 are identified if and only

if (¡> = n ± 8 for some integer n). The resulting functionals are called the roots

of the triad (G;K,H). Each root qb is assigned multiplicity m(4>) equal to the

numberof w>y's which restrict to <b. The integral planes tj> = 0 (mod 1) are called

the singular planes. A singular plane p is given multiplicity m(p) equal to the sum

of the multiplicities of roots <f> for which <¡>(p) is an integer.

Proposition 1.4. The torus Te G/H described above meets all theK-orbits

and meets them orthogonally. If Yet lies on no singular plane, then the tangent

space to T at y = exp(Y) is the orthogonal complement of the tangent space to

the K-orbit of y at y(3).

Before proving this proposition we must describe certain isometries of GjH.

The imbedding

G/H«exp(m)cG

can be explicitly described via the map n:G-*G defined by rj(x) = J(x)x_l.

This map is constant along the left cosets of H and defines an imbedding

>/,:G/H->G

whose image is exp(m) (cf. [4, p. 330]). That is to say, the orbit of the identity

under the J-twisted action of G on itself is just exp(m). The map t}+ carries the

standard action of G on G/H over to the J-twisted action of G on exp(m). In

particular, the action of K in which we are interested takes this form. Finally,

given y e exp(rn) we can map exp(m) isometrically onto itself so as to map y to e

(the identity of G) as follows. Since y = s(l) for a suitable geodesic s on exp(m)

through e, we can choose y1/2 = s(i) eexp(m). Then the map

(1.2) x -*.y-1/2xy-1/2 = J(y1/2)xy~1/2

is as desired. Relative to this transformation of exp(m) the action of K is carried

over to the action (still J-twisted) of y 1/2Fy~1/2. This latter group is the fixed

point group of the involution Ad(y1/2)(L)Ad(y_1/2) = Ly.

Now if in (1.2) we choose yeT, then this transformation restricted to T is just

group translation by y_1 (choosing y1/2e T, of course). L is replaced by Ly, J

remains the same, and A = JL is replaced by

(1.3) Ay = JL,~Ad(y-x)-A

since ye exp(p Hm). The reader will easily check (making use of (1.3)) that if

(3) I am grateful to the referee for pointing out to me that the construction of T and a proof

that T meets all the AT-orbits and is orthogonal to them has already been given by Hermann in

[8]. He also pointed out the general relevance of [9] to this section.
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Yet and y = exp(Y), then the new diagram of singular planes in t is the translate

by — Y of the old diagram.

Now we prove Proposition 1.4. If X el, Yen nrn, then we have

< jx - x, y> = - 2<x, y> = o.

Conversely, if Ye m, X e ï and if 0 = < JX - X, Y>, then - 2< X, Y> = 0 and so

Yep nm. This proves that p nm is the normal to the X-orbit of e at e and it

follows by Morse theory that every K-orbit in exp(m) meets exp(p nm). Now

for any such orbit let h be a point of the orbit in exp(p nm). b lies on some

maximal torus of exp(p n m) and so by the conjugacy theorem for maximal

tori in a symmetric space (cf. [6, p. 1020]) there is xeKnH such that

J(x)bx~l = xbx~l e T. This proves that every orbit meets T. It also proves that

the orbit of e meets T orthogonally at e. Now using a basic transformation (1.2)

we see that the orbit of any yeT meets T orthogonally at y. There remains only

the last assertion of the proposition. We may assume Y= 0, y = e. Then the

assumption on Y implies (by Proposition 1.2) that the roots of tA relative to tA

all vanish identically on t. The symmetric space exp(p n m) must therefore reduce

to its maximal torus, so p nm = t. Since p nm is the normal to the K-orbit of e

at e, the proof is complete.

It is now easy to prove Theorem 1.1. Again we can suppose Y= 0, y = e. Let Ke

be the subgroup of K which stabilizese. Then Kec H and soKe equals in H.

It follows that ie=ï n h. In particular, if no singular plane of the diagram contains

0, then by Proposition 1.2 ïr=ïn h and the orbit of e has dimension = dim(K)

— dim(KT). By Proposition 1.4 this is an orbit of maximal dimension. Thus,

in general, the defect d(e) of the X-orbit of e is dim(K„) - àim(KT). Since always

KT c H, we see that this number is also the defect of the orbit of e in exp(p n m)

under the adjoint action of exp(i nh). But this latter defect is the sum of the

multiplicities of the singular planes of the diagram for the symmetric space

exp(p nm) which contain 0. By Proposition 1.2 these singular planes are also

the singular planes of the diagram for the triad (G;K,H) which contain 0 and

their multiplicities are the same in both diagrams. This proves the theorem.

We add one more definition concerning the root diagram of (G;K,H) which

will be useful in §11.

Definition. Let 0be a root of (G;K,H) relative to t. Let B be the linear part

of 6. Then the basic translation he is defined as the vector in t which is orthogonal

to the null-plane of B and satisfies B(he) = 2.

It should be noted that by a suitable transformation (1.2) it may be supposed

that 9 = B. Then he becomes a basic translation for the root diagram in t of the

symmetric space exp(p n m) (cf. [4, p. 331 ]). Then it is well known that exp(/j„) = e.

Extending ix to a Cartan subalgebra t' of g we see that he must lie in the central

lattice oft'. Thus \¡/(he) is an integer for every root ^ of g relative to t'. Now for

any root <j> of (G ; K, H), $ is the restriction to t of a root of g in t'. Thus :
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Proposition 1.5. // <j>, 9 are roots of (G;K,H), then <fi(he) is an integer.

The integers obtained in this way are called the Cartan integers of (G; K,H).

3. An example: the Cay ley plane. The compact exceptional group F4

admits H = Spin(9) and K = (Sp(3) x SU(2))/Z2 as symmetric subgroups.

W= F4/Spin(9) is the Cayley projective plane, a symmetric space of rank one.

Consequently, the torus Te W which serves as fundamental domain for the

action of K must be of dimension one. The root diagram for the triad can be

shown to consist of the four functionals x, x + \, 2x, 2x + \ (where x is a real

variable) with respective multiplicities 4,4, 3,4. The singular subtori of T = S1

are four points equally spaced around the circle and with respective multiplicities

7,4,7,4. The two singular points of defect 7 lie on a common .K-orbit as do the

two of defect 4. Let Nx be the singular orbit of defect 4 and let N2 be the one

with defect 7. Set Q¡ equal to Q(W; y, N¡) where y is a point of Tof zero defect.

The above information together with standard Morse theory techniques shows

that Clx is obtained, up to homotopy type, by attaching a 7-cell to a point, then an

11-cell to this, and finally higher cells to this. Thus

^+i(^JVi) = ^("i) = ^(S7),       í < 10.

From this together with the homotopy exact sequence of a pair we obtain

n(Nx) = n¡(W) = 0,     i<l,

the second equality being well known for the Cayley plane. Now dim(W) = 16,

so dim(Ar1) =11. The acyclicity of Nx in dimensions less than 7 together with

Poincaré duality shows that Nx has the homology groups of the sphere S11.

By Smale's proof of the generalized Poincaré conjecture [13], it follows that

N1 = S11.

Similar reasonings on the other singular orbit N2 reveal that N2 is an eight

dimensional manifold with homology groups

H(N,\Z,       i = 0,4,8,
H<™- (o,       otherwise.

Presumably N2 is the quaternion projective plane.

II. The Bott-Samelson F-cycles. We retain the notations of the previous

section with a few additions. If p is a singular plane in t we denote by Kp the

subgroup of K whose action leaves exp(p) pointwise fixed. Following Bott and

Samelson [6] we define for each finite sequence P = (px, ■■■,pr) of singular planes

the manifold

rP = Kx xKj, K2 xKt--- xKt (KJKj)

where for brevity we have written K¡ = KPl. Such a manifold we call aF-cycle,

For ii as in the introduction and sefi a geodesic segment transversal to the
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X-orbits, the K-cycle Ts as defined in [6, p. 970], can be assumed to be of the

form rP without any loss of generality. It is our intention in this section to examine

carefully the geometric and topological structure of the JC-cycles FP. The motiva-

tion for this discussion has already been explained in the introduction.

Our geometric result is Theorem 2.1 and our main topological result is Theorem

2.2. The statement of Theorem 2.2 contains the term "regular" which we are

finally prepared to define.

Definition. The symmetric triad (G ; K, H) is said to be regular if and only if

for every pair <j>, 0 of roots of the triad with mutliplicities m(qb) odd and m(9) = 1,

the Cartan integer qb(he) is even.

1. The manifold KP/KT. In carrying out the computation of KP/KT we

may assume (via a transformation (1.2)) that Oep. One consequence of this

assumption is that the functional (1.1) on t^ which are identically integral on p

are actually linear and so are roots oftA relative to tA (cf. Proposition 1.2). Let

01( •■■,<br be the distinct ones that vanish on p but not on all oft, and let R be the

set of roots of ï^ relative to tA which are integral linear combinations of the roots

qb¡. Identify R with a subset of t^ via the invariant inner product. Finally set

yp = span{R,ea:oieR}

where ex is the 2-plane in tA orthogonal to tA and invariant under ad(t^). The

following lemma is proven easily from general Lie theory:

Lemma 2.1. yp is a semi-simple Lie subalgebra ofïA. In fact, yp is a compact

form. The involution a defined by L and J in ïA restricts to an involution i of

yp. Thus there is an orthogonal decomposition yp=itffimt where ft is the fixed

point algebra of t and mt the —1 eigenspace.

Lemma 2.2.   exp(mt) is a symmetric space of rank one.

Proof. Evidently [yp,p] = 0. Thus if I is maximal abelian in mt, p©/ is

abelian in p nm. Since t is maximal abelian in p nm it follows that dim(/) = 1.

Q.E.D.
Now set Kx — exp(Ir).

Lemma 2.3.   KJKX nKT = Sm(p).

Proof. By Lemma 2.2 and the conjugacy of maximal tori in a symmetric space

the adjoint action of Kr on mt is transitive on the one-dimensional subspaces.

Furthermore it is well known that given X emx there is y eKt such that Ad(y)X

= — X (the Weyl group is generated by the reflections in the singular planes

which pass through 0). Thus Ad(7Ct) is transitive on the unit sphere in m,. Now

choosing X e mt n t of unit length, we see that the stabilizer of X in Kx is Kt n KT.

The dimension of the quotient KJKX n KT has to be the multiplicity of {0} as a

singular plane in span{X}. This number is m(p) since R is identified with the roots

of yp and the elements of R which fail to vanish on spanpf} are (px,---,<pr. Q.E.D.
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Now by dimensionality considerations and the Brouwer theorem of invariance

of domain it follows immediately that the inclusion KT c (Kp)0 induces a

homeomorphism

(KfV(Kp)0nKr*S"«".

This result would be adequate for our ultimate purposes since only the principal

component of rP affects the topology of £î, but the following proposition is more

satisfying and does simplify matters somewhat(4).

Proposition 2.1. KT intersects every component of Kp, hence Kp/Kr x Sm(p).

Proof. Let y e Kp. The proposition will be proven by finding u e iKp)0 such

that uyeKT. Since Oep we have Kpc H and so Ad(y)t =t' is also a maximal

abelian subalgebra of p n m and centralizes p. The subgroup iKA)p of(KA)0 which

centralizes p is evidently invariant under the involution a and so contains a sym-

metric space in which both T and T' = exp(t') are maximal tori. The identity

component of the fixed point group of a in iKA)p is (Kp)0, and so we can find

xeiKp)„ such that Ad(x)t' =t. Finally, we recall that for XemTC\t as in the

proof of Lemma 2.3 there is z e Kt <= (Kp)0 such that Ad(z)Z = —X. Thus

either x or zx will be the desired element u e (Xp)0. Q.E.D.

Return for a moment to the example involving the Cayley plane (§1,3). The

nonsingular K-orbits are all diffeomorphic to K/KT. We can now see that this

is a fiber bundle over K/KP=NX = Su (where m(p) = 4) with fiber KP/KT = S4.

2. The structure ofTP. It is now fairly easy to prove Theorem 2.1. For the

proof that TP is an iterated fiber bundle over Kx/ KT with fibers K¡/KT and with

canonical global cross-sections s¡ the reader is referred to [6, p. 997]) By Proposi-

tion 2.1 these fibers are the spheres sm(j"\

Now for a singular plane p through the origin, Proposition 2.1 gives a canonical

map

n:Kp-+mx

whose image is the unit sphere in m t. It is easy to see that n induces an isomorphism

3i„ of V, the orthogonal complement of lT in ïp, onto the tangent plane to this

sphere at Xsm, nt. The translation X in mt defined by

X(Y) =Y-X

takes this tangent plane to the orthogonal complement of span{Z} in ntt. For

xeKT it is easy to see that

(4) In my thesis I defined the AT-cycle corresponding to P to be the principal component of

rp and obtained Theorem 2.1 for that object. From Proposition 2.1, however, it is clear that

rp is always connected. I am indebted to Professor Araki for communicating to me a proof of

this fact for the case K = H. His proof inspired the proof given here for the general case.
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l7t+(Ad(x)Z) = Ad(x)kn^(Z)

for all ZeV. Finally note that Ad(7Cr) leaves X fixed. These observations make

it clear that if 0 e p¡, then for E¡ as in the statement of Theorem 2.1 there is a vector

bundle isomorphism

and the sphere bundle r¡ -» r¡_ x is the associated unit sphere bundle. The hypoth-

esis Oep¡ is removed by noting that a transformation (1.2) replaces each K¡

with Aâ(b)Kj and V¡ with Ad^)^- (where beT) and since b commutes with

everything in KT we obtain a homeomorphism of base spaces which lifts to an

isomorphism of the vector bundles. This completes the proof of Theorem 2.1.

3. The topology of TP. The Gysin sequence together with the cross-sections s¡

proves the following :

Proposition 2.2. If all the vector bundles E¡ are orientable, then, setting

mii) = mipi),

ff,(rP) * 7i+(Sm(1>) ® ... ® Ji,(Sm('>).

In particular, Fp is an orientable manifold. In any case this formula always

holds mod 2.

We shall soon develop criteria for the orientability of the E¡, but first let us

briefly consider the cohomology ring of TP. We will not completely identify

this ring, but we will give an interesting partial identification. If all the E¡ are

orientable, then in what follows we suppose integer coefficients; otherwise we

work mod 2. By Proposition 2.2 the fibers in the successive fibrations 7t¡ are all

totally nonhomologous to zero relative to the suitable coefficient ring. Thus:

Proposition 2.3. With suitable coefficients there is a class x¡ e7/m(I)(r/)

such that

H*(rt) « *t*H*(rt-1) + x, u 7t;*/i*(iv,),

where n* is injective.

Since the maps nt* are injective we will drop reference to them in the future.

It follows that x¡ can be considered as elements of H*iTP) and that as such they

generate this ring. In fact, the entire ring structure will be determined by the

relations

x? = a¡x¡ + b¡

where a^bieH*^^^. We may choose x¡ such that s¡*ix¡) = 0 (s¡ the canonical

cross-section) and then the above relations take the form

(2.1) xf = a x(.
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In the case in which all the E, are orientable, the choice of the integral classes x¡

is also a choice of orientation for each E¡. We may therefore speak of the Euler

class XiE¡) and view it as an element in H*(TP). Likewise the top Whitney class

wm(i)(E¡) will be viewed as an element in H*(TP; Z2).

Proposition 2.4.   If all theE¡ are orientable, then in the basic relations (2.1)

a, = X(E¿. Otherwise a, = W„wiE¿.

Proof.   First assume all E¡ orientable. Consider the sequence of spaces

where r\ is the identification map. There is a natural identification

where T(E¡) is the Thom space of the vector bundle E¡. Using the fact that

np s i = 1, we deduce an exact sequence

* s*

o^H*(T(Ed) -2-> H*(r,) zzzï ff*(r,_ !)-><),
7t,*

where H* stands for reduced cohomology and 7t,* splits the sequence. There is a

unique class U e Hm(í)iTiE¡j) such that n*(U) = xl and by standard theory the

Thom isomorphism

«Ê:ff9(rt_1)->ffï+M(,)(T(JEi))

can be defined by

(b(a) = n¡*(a) u U

which makes sense via the identification

B*(T(Ed)*H*(ri,3£ri-ù).

By definition the Euler class is

X(Ei) = qb-1(U(j U)

(cf. [11, p. 41]). Thus

n*4>(X(El)) = x,2,

r,*<KXiEt))= q*W(X(Ed)v U)

= xftXiEßu *.

This gives the desired formula. The same argument always works mod 2 and

gives the second assertion. Q.E.D.
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It should be remarked that the mod 2 part of this proposition is a special case

of a theorem of W. S. Massey [10, Theorem III, p. 274].

The next step in computing the cohomology ring would be an explicit determi-

nation of these characteristic classes in terms of the generators xt, but this seems

to be very complicated in the general case. For a determination (with coefficients

Z2 and in some cases Z) of the cohomology ring of the X-cycles which occur in

the case K = H, the interested reader is referred to [2].

4. The vector bundles E¡. It is important to obtain conditions under which

the X-cycles are all orientable. By Proposition 2.2 it will be sufficient to find

conditions under which the vector bundles E( are all orientable.

Let p be a singular plane in t, 0 e p. Consider the roots of iA relative to tA which

vanish on p but not identically on t. We may orient these roots so that their

restrictions to t all have the same sign. It is well known (cf. [1], for instance) that

there are at most two distinct restrictions 9, 29 of these roots to t. If 9 is the only

restriction of these roots we write m(20) = 0. From the table at the end of [1], it

can be seen that one of the following situations always holds :

I. m(6) even, m(20) = 0.

II. m(0) > 1 and is odd, m(20) = 0.

III. m(0) is even, m(20) is odd.

IV. m(0) = l, m(20) = O.

Definition. A singular plane p in t is said to be of type I, II, III, or IV according

to which of the above situations occurs when p is moved to the origin via a

transformation (1.2).

The separation of types II and IV may strike the reader as a bit arbitrary, but,

as we shall see, it is only the presence of planes of type IV that can introduce

nonorientability into the K-cycles.

Now for each possible type of p we describe the system of roots of fA relative

to tA which vanish on p (0 e p) but not identically on t.

I. The distinct roots with restriction 0 are 9x,---,9n, — ai9^),---, — <r(0n).

II. The distinct roots with restriction 0 are qb,9x,--,9n, — a(9l),---, — ai9^)

where qb = — aiqb).

III. The distinct roots with restriction 0 are 91,---,9„, — a(91),---, - o-(0„) and

those with restriction 20 are qb,qbx,---, qbm,— aiqbj),---, — o-($m) where qb = — a(qb).

IV. qb restricts to 0 and qb = — aiqb).

These assertions are readily seen using the fact that the system of roots in

question is closed under the involution a.

Lemma 2.4. Let qb be a root of tA relative to tA. Let e¿ be the 2-plane in iA

corresponding to qb. If aiqb) = qb then e^ is pointwise fixed under a. Ifo~iqb) = — (}>,

then e¿ is spanned by X^, Y¿ such that aiX^) = — X¿, <x(Y¿) = Y¿.

Proof. In both cases, <x(e¿) = e^. If o-iqb) = qb and if e¿ is not pointwise fixed

under a, then there is a — 1 eigenvector X =¿ 0 in e$. But evidently <£(f) = 0 and so
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[X,t] = 0, contradicting the fact that t is maximal abelian in p n nt. For aiqb) =-<f>

we may choose X^,, Y^ as nonzero mutually orthogonal eigenvectors of a in e^

with eigenvalues sx,e2 respectively. Necessarily s¡ = ±1. We may suppose Z^et

such that Y0 = [Z0,XJ. Then

e2^ = <KY¿) = [ - Zi,etXj - -«, Y*.

Therefore et = — e2 and we may suppose et = — 1, e2 = 1. Q.E.D.

Now for $ as in II, III, or IV we take Y¿ as in Lemma 2.4. For case I we set

X¡, = 0. For a any root let Xx, Yx be an orthonormal basis of ex. Set

X(ct) = XX + a(Xx), Y(ot) = YX + <x(Ya).

Lemma  2.5.    The orthogonal complement of tT in ïp is

F=span {X(9t\ Y(0(), X(<i>¡), Yi<bj), Yf i = l,-,n; j = l,-,m).

Proof. This is clearly a subspace of ip. Furthermore, using the first assertion

in Lemma 2.4, we see that ïr is spanned by the orthogonal complement of f in tA

together with the planes ex for roots satisfying <x(a) = a (which is the same as

saying <x(t) = 0). The space V described above is evidently orthogonal to fr.

Finally, dim(fp) - dim(tr) = m(p) = dim(F). Q.E.D.

Now note that without the assumption that 0 e p we still have that the orthogonal

complement of ÏT in lp is Ad(b)F for V as above and b e T. One immediately

deduces (using the notation of Theorem 2.1):

Corollary. Let p[ be the plane through 0 obtained by moving p¡ to the origin

by a standard transformation. Let V[be obtained from p[ as in the above lemma.

Then there is a bundle isomorphism

E,xKx xKt- xKtK¡-x xKtV!.

With this identification of E¡ it is a fairly easy matter to determine whether the

bundle is orientable or not. As is well known, E¡ is orientable if and only if the

first Whitney class wxiE¡) = 0. We will compute this Whitney class.

Suppose j an integer ^ 1 and < i such that m(pj) = 1. We may suppose 0 e p¡.

As in [6, p. 997], there is an injection

XJ:KJ/KT = S1^ri.

For xye/f*(rj-; Z2) <= H*(F¡; Z2) as in Proposition 2.3, we have x*(x¡) equal

to the generator y in H\Sl; Z2). x*(wu)) is either y orO according as(ExJi(E¡)

is orientable or not. Let 9¡ be the root of iA relative to tA which vanishes on pj

but not on all oft and let h} be the vector int^ normal to the null-plane of 9} and

such that 9j(hj) = 2. Then clearly h¡et.

Lemma   2.6.   // p¡ is of type I or III, then x*iw (E )) = 0. // pt is of type II
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or IV, then there is a unique root 9 of the triad which is identically integral on

piandX*iwxiEi)) = Bihj)y.

Proof. Set p = Pj and consider the group Kx as in Lemma 2.3. Since m(p) = 1

it follows that Kx is a circle group and the subgroup Kz n KT is identified as

{e, expihj/2)}. Since we make no assumption of simple connectivity it is possible

that exp(/iy/2) = e. Now

Z¡l(Ed»KjXKTV't

and since the inclusion Kx <= K¡ induces a homeomorphism

KJKzr\KTKKj/KT

(by Lemma 2.3 and Proposition 2.1) we obtain

Xj\EÙ*KxxKxr,KTVl.

Lemma 2.5 gives a basis for V[ each member of which is mapped onto + itself

by Ad(exp(/ij/2)) (by standard Lie theory). Thus %]1iEi) splits into a direct sum

of line bundles.

Now if p¡ is of type I, xj1^) is a direct sum of an even number of mutually

isomorphic line bundles. Thus x]l(E¡) is trivial and its first Whitney class must

vanish.

If Pi is of type III, we argue as above to show that Xj1^,) is a direct sum

of two trivial bundles and a line bundle

L=KTxKznKTspan{Y<p}.

The restriction of qb to t is IB for a root 0 of the triad and so qb{h¡l 2) is an integer.

It follows that Lis also trivial so that again the Whitney class is zero.

If p¡ is of type II or IV it is clear that the unique root 0 exists as asserted. We

obtain that xJ1iE¡)is a direct sum of an odd number of line bundles, each isomor-

phic to

L=KzxK^KTspan{Yí¡,}.

Now qb(hj/2) = 0(^/2) and so L is trivial if and only if this number is an integer.

Thus x*(wi(£;)) = wxiL) is y or 0 accordng as Bih) is odd or even.   Q.E.D.

Corollary 1.   7/(G; K,H) is regular, then wAE,) = Oand soE¡is orientable.

This corollary follows from the above together with the partial determination

of H*ir¡; Z2) achieved through Proposition 2.3. In view of Proposition 2.2 we

obtain

Corollary 2. IfiG;K,H)is regular, then all theK-cycles are homologically

torsion free.
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This is the first assertion of Theorem 2.2. For the second assertion we use the

following proposition which is interesting in its own right.

Proposition 2.5.   Let P = (px,---,pr) as usual. Then rP is orientable if and

only if

I   *!(£,-) = 0.
¡ = 2

Proof.   Let TP be the tangent bundle of rP, T¡ that of F¡. It is sufficient to prove

wxiTP) =  i   w.iE,).
i = 2

To do this we proceed inductively. First note that since Tx is a sphere, w^Tj) = 0.

For the inductive step we will prove

w,(T¡) = w1(Ti_1) + w1(£i),

for / > 1. Now

rCr'-i

is the unit sphere bundle of F, = £,-l-l. It follows readily that ^(F^is

isomorphic to 1 + T{ where I}'is the bundle of tangents along the fibers of n¡. Now

j^OM+ir-r,.
Thus

IJ + l-af^lU + F,)

and so

Wl(r() = w^^t^ + f^)

and following our custom of dropping n* we obtain the desired formula. Q.E.D.

Now suppose that qb, 9 is a pair of roots of (G;K,H) violating the condition

of regularity. That is, m(qb) is odd, m(9) = 1, qb~(he) is odd. Let p2 be a singular

plane corresponding to ob. Since <ß(hg) is odd, qb~ # 2\¡¡ for any other root \¡/. It

follows that m(p2) = miqb) and p2 is of type II or IV. Let px be a singular plane

corresponding to 9. Suppose mipx) > 1. Then (X1)0/(X1)0 nKT is a sphere of

dimension > 1 and so, by an elementary application of the exact homotopy

sequence of a fibration, one obtains

(^i)o ^ ^r = (^r)o-

Suppose 0epx. Then

b = exp(V2) e exp span{ Y^} c (Kx)0
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where \¡/ restricts to 9 = B and a(\¡i) = — i/r. Thus b e (KT)0. Ad(&) is therefore an

orientation preserving transformation of V2' (cf. Lemma 2.5 and corollary). But

<fi(hg) odd implies Ad(b) is — 1 on V2 and then dim(F2) = m(p2), an odd number,

implies that Kd(b) reverses orientation. Thus the assumption m(pt) > 1 must be

false. Now set P' = ipx,p2)-

Proposition 2.6.   TP. is not orientable.

Proof. By the preceding remarks together with Lemma 2.6, wt(E2) = <¡>ihe)y ■£ 0.

Thus by Proposition 2.5, TP. is not orientable. Q.E.D.

This completes the proof of Theorem 2.2 and so completes our analysis of the

Bott-Samelson X-cycles.

III. The topology of £L

1. The torsion in H*(íl). Letii = íí(G/íf; x,N) be the space of paths on G/H

starting at x and terminating on the K-orbit N. O can be topologized by the

compact-open topology. It is a well-known fact in Morse theory that ii as defined

here is of the same weak homotopy type as the corresponding space Q' of piecewise

regular curves parametrized proportionally to arc length with the topology as

described in [6, p. 968]. Thus Theorem I of [6], though stated for Í2', also applies

to Í2. In what follows we will understand by H+(Q) the singular homology of £1

with integer coefficients. The principal result of this section has already been

stated in the introduction as Theorem 3.1.

We remark that since G/H is connected, varying the choice of x does not

vary the homotopy type of Q. Choosing'x as a suitable point of T lying on none of

the singular subtori, we find that all Jv-transversal geodesic segments through x

lie on T, as follows immediately from Proposition 1.4. By exercising care in the

choice of x we may also assume that for each K-transversal geodesic segment

s e Í2 the K-cycle Ts as defined in [6, p. 970], is a K-cycle r, in our sense. Thus

the fact that regularity implies ff*(Ci) to be free of torsion follows from Theorem

2.2 together with Theorem I of [6] and Hermann's result [7] that the action of K

on G/ H is variationally complete. We are left with the task of exhibiting a nonzero

torsion element in H%iÇÏ) whenever (G ; K, H) is not regular.

Lemma 3.1. Let (G; K,H) be irregular. For SI as above and for a suitable

choice of x there is a K-transversal geodesic segment seil with Ts = FP., where

P' = (Pi> ■■■>Pr) ,s a sequence of singular planes such that, for every pair i<¡>,9)

of roots of iG;K,H) exhibiting the irregularity, qb is not identically integral

on pj,j ^ 2, while for some such iqb,9),<b(p1) is an integer.

Proof. In t select a point Y such that exp( Y) e N. Now extend a line from Y

in t in such a direction that it is not parallel to any plane of the diagram. A small

change in direction will not spoil this property and will further assure that the line

crosses singular planes singly. There will be a first point (after Y) along this line
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at which the line intersects a singular plane px for which <HPi) is an integer for

some pair iqb, 9) exhibiting the irregularity. Extend the segment a little past px

to a point X lying on no singular plane. The segment s from X to Y obtained by

suitable reparametrizing then gives s=expo s satisfying our requirements (taking

x = exp(X)). Q.E.D.

Now for P' = iPi,---,pr) as in the lemma and iqb,9) exhibiting the irregularity

and qbipt) an integer, we can conclude as in the remarks immediately preceding

Proposition 2.6 that px is of type II or IV. We can also (by the same remarks)

choose p0, a plane of type V, such that 0(po) is an integer. Set P = ip0,Pi,---,Pr)-

We define an imbedding

x-rs^rP

by means of maps

X'-Ki x ••• x Kr-*K0 x Kx x ■■■ x Kr,

X":iKT)'-+iKTy+1

where

X\ax,-,ar) = ie,ax,-,ar),

X'Oi, ",',)= ie,tu-,t,).

In [6, p. 971], there is defined an imbedding

Finally, define u eíl as exp°K where « is defined by

«(i) = 5(3(1-2/3)),       2/3 £t^l.

ü | [1/3,2/3] = line segment properly crossing p0 with 0(2/3)

= 5(0) (a general point on t).

m | [0,1/3] - polygonal line with «(1/3) as already deter-

mined and with «(0) — S(0).

Then by the construction in [3, p. 40], we obtain a map

fu'.rP^Cl.

To the reader is left the task of checking that/„ox is homotopic to fs. We thus

assert:

Lemma 3.2.   7n homology, fs+ =fu*x*-

From the construction of P' we have (by Lemma 2.6 together with Proposition

2.5) that T, is orientable. Thus this manifold has a fundamental integral homology

class yt.
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Lemma  3.3.  /s*(ys)/0.

Proof.   Consider the commutative diagram

77*(rs;Z)   —-±   77*(Q;Z)
I Js*

'/ '/

77,(rs;Z2)-—>   7Í+(Í2;Z2)
Js*

where the vertical maps n are induced by the canonical projection Z -> Z2. Now

niys) is the fundamental class mod 2 and so by Theorem I of [6],/s#r/(ys) is an

element of a vector space basis (over Z2) of 7í^(fi; Z2). Thus nfs^iys)

=fs*r¡iys)¿0 and  so /s„(ys) # 0. Q.E.D.

Now

rP= K0x Kt Kx x Kt - x KTiKr/KT)

and so this manifold is a fiber bundle over K0/ KT = S1 with fiber Ts. x is the

injection of the fiber. By Lemma 2.6 and Proposition 2.5 together with the construc-

tion of P, TP is not orientable. The following lemma will guarantee that 2x*(>,s) = 0.

Lemma 3.4. IfF-*X-*Sx is a locally trivial fibration with the fiber F a

compact oriented differentiable manifold and X a nonorientable differentiable

manifold, then 2i^iy¡¡) = 0 where yF is the fundamental homology class of F

over Z.

Proof. If n = dim(F), then the action of ^(S1) on H„(F) is nontrivial. Other-

wise, from the spectral sequence of the fibration we would have to conclude

that X is orientable. Thus, setting I = [0,1], we have a bundle map

f:FxI-+X

such that the two fiber injections/0 =f\F x {0} and/j =f\F x {1} induce i+

and — t* respectively in dimension n. Let y0 and yx be the respective fundamental

classes of F x {0} and F x {1}. Let

j:Fx{0,l}-»-Fx7

be the inclusion. Consider y = y0 - yx e 77„(F x {0,1}). The following diagram is

commutative :

77„(Fx{0,l})—;-►   H„(Fx7)
j*

/o* +/i*^/i* / *

BAR) -;-►  BAX)
'*

Now clearly (/0*+/i*)(y) = 2yf and so 2f»(yF) =/*/,(?) =/,(0)-=0.   Q.E.D.
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By Lemma 3.2 and the fact that 2/^(ys) = 0 we obtain 2fitiys) = 0. By Lemma

3.3, /s*(ys) # 0. This exhibits nonzero two-torsion in H^iSl) and so completes

the proof of Theorem 3.1.

2. The special case K = H. The chief importance of this case is that the

action of K on G/K has a fixed point. This means that the usual loop space of

G/K can be analyzed by our methods. The torus T becomes a maximal torus

of G/K and the root system of iG;K,K) evidently reduces to the usual root

system for the symmetric pair (G,K). With the aid of the root diagrams which

are listed in [1] it becomes a straightforward matter to check the regularity

condition for each irreducible symmetric pair iG,K). Calling G/K regular if and

only if the triad (G ; K, K) is regular, we find that the regular irreducible symmetric

spaces are precisely the following :

(1) Compact simple Lie groups.

(2) G/K whose universal covering is one of the following spaces; complex

and quaternionic Grassmann manifolds, spheres, real Grassmann manifolds

of oriented 2-planes in 2n-space, SU(2w) / Sp(n), SO(2n)/U(w), £6/F4,

£6/(Spin(10)-SO(2)), £7/(£6-SO(2)), F4/Spin(9).

Thus we conclude that G/K is regular if and only if each of its irreducible

components is one of the above spaces.

In [2] Araki defines a K-cycle TP to be "totally orientable" if and only if each

of the sphere bundles entering into its structure is orientable. He defines (G,K)

to be of "totally orientable type" if and only if all associated K-cycles are totally

orientable. By Theorem 2.2 we see that this definition is equivalent to our con-

dition of regularity. Under the assumption that G is simply connected Araki

establishes that the following is a sufficient condition for iG,K) to be of totally

orientable type: if SF is a fundamental system of roots for iG,K) then either !F

contains no root of multiplicity one, or !F contains one root of multiplicity one

and the rest of the roots in 2F have even multiplicity. By means of this criterion

Araki arrives at the same list of symmetric spaces that we have given above.

Thus his criterion is necessary as well as sufficient, a result which he also has

obtained by an a posteriori check. We note that the assumption of simple

connectivity is not essential. Theorem 2.2 involves no such assumption and so

proves that (G, K) is of totally orientable type if and only if its simply connected

representative is. It would be interesting to have an a priori proof of the equivalence

of the above condition of Araki with our regularity condition.

A check through the root diagrams of the above spaces shows many cases in

which planes of multiplicity one occur; hence Theorem 3.1 applies to a number of

cases in which the Morse inequalities alone would be insufficient.

3. A conjecture. Bott has conjectured that the space of loops on a compact

symmetric space may have only two-torsion in homology. It is natural to extend

this conjecture to all spaces SI of the type we are here considering. A finite

dimensional analogue to this conjecture would be that the spaces K/KT, where
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Tis a maximal torus of G/ K, have only two-torsion. The most that I have been

able to prove in all of these cases is that the torsion subgroup is generated by ele-

ments of even order. In particular, if torsion occurs in H¡iñ) or in 7/,(7C/XT), then

there is a nonzero two-primary component in that group. Furthermore, I have

been able to show that the K-cycles rP have only two-torsion, so one might

hope to build an infinite iv-cycle T and a map of F into Í2 which in cohomolo-

gy would induce an injection. This would prove the conjecture for Q.
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