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1. Introduction. This paper is concerned with a transformation group

(Zp;X), where Zp is a cyclic group of prime order p and X is a space having

the same mod p cohomology algebra of Sm x S", the product of an m-sphere and

an n-sphere. This problem has the obvious motivation. If we have a pair (Z^X^)

and (ZP;X2) of transformation groups, where Xx is a modp cohomology m-

sphere and X2 a modp cohomology n-sphere, then the diagonal action

(ZpiXi x X2) is a transformation group of the type just mentioned. Accord-

ing to the well-known theorem of P. A. Smith [4], the fixed point set has the

same mod p cohomology algebra of the product of two spheres. That is, the

fixed point set inherits the same cohomology characteristics of the space. For

the general case, there is a theorem of R. G. Swan [7] in which sufficient con-

ditions are given to insure that the fixed point set does have the mod p cohomology

algebra of the product of two spheres. Following the same technique devised

by him, we succeeded in refining his result to the extent that the cohomology

algebra of the fixed point set is entirely determined. The process is a rather

tedious case by case study. To state briefly, there are a variety of possibilities

for the cohomology of components of the fixed point set. The components can

be like a point, a sphere, a product of two spheres, a projective space, or a Klein

bottle. To justify the unpleasant nature of this long list, we give some examples

showing that most of the cases do happen. Moreover, these examples are all

nice differentiable actions on manifolds. Thus in a sense there is not much room

left for further improvement. Finally, our result also indicates there is still some-

thing of the space that is passed over to the fixed point set. Namely the Poincare

duality is valid for every component of the fixed point set. Whether this is true

in general might be an interesting conjecture.

The author is indebted to Professor E. E. Floyd for his help, particularly in

the construction of examples, and to Professor L. N. Mann for bringing this

problem to my attention.

2. The spectral sequence of R. G. Swan. Let (Zp; X) be a transformation

group of Zp on a compact Hausdorff space X with fixed point set F (possibly
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empty). H*(X;ZP) = ^Hk{X;Zp) (H*(F;Zp) = Z?H\F;ZP)) denotes the

(nonreduced) Alexander-Wallace-Spanier cohomology algebra of X (of F)

with coefficients in Zp.

Let A*(X;Zp) = T,0Ak{X;Zp) (A*(F;Zp) = ^Ak(F;Zp)) be the AWS co-

chain group of X (of F) with coefficients in Zp. They are Zp-modules in a natural

way. Let W* = Z-^W* be a complete resolution of Zp [2, Chapter XII, §3].

Consider the double complexes Homz f.W*; A*(X; Zp)) = l/ijHomZp(Wi:AJ(X ;Zp))

and KomZp(W*; A*(F;ZP)) = 2yHomz (Ifl; A\F;Zp)) (for "the notation

HomZp(;), "see [2, Chapter XII]). The first filtration [2, Chapter XV, §6]

of these complexes gives rise to two convergent spectral sequences [2, Chapter

XV, §3] Er{X) and Er{F). According to R. G. Swan [7], the main properties

of these spectral sequences are as follows:

(21) E°2-'(X) = H\Zp;H\X;Zp)),

ESAF) = H\Zp;H'(F;Zp)), - co < s < oo, 0 ^ /,

where H\ZP;A) is the s-dimensional Täte cohomology group [2, Chapter XII]

of Zp with coefficients in a Zp-module A.

(2.2) EJX) is associated with J*(X)= H*(UomZp(W*;A*(X;Zp)) and £«,(£)

is associated with J*(F) = H*(HomZp(W*;A*(F;Zp)).

(2.3) The spectral sequence Er(F) is always trivial and E2(F) is canonically

isomorphic to J*(F) as graded algebra. Notice that Zpacts trivially on H*(F;Zp),

hence

E2(F) = H*(ZP;ZP) ®H*(F;ZP).

Now the inclusion i:F-+X induces an homomorphism i*:J*(X)-> J*(F).

The crucial fact about i* is that

(2.4) i*:J*(X)-*J*(F) is an isomorphism of graded algebras. It also pre-

serves filtration but is not necessarily an isomorphism with respect to filtration.

In case that F =0, then by convention E2(F) = J*(F) = 0 in (2.1) through (2.4).

We mention a few more elementary facts. Since dim J\F) = Ss dim£|"s,s(F)

= Esdim Hq~s(Zp; H\F;Z„)) = Is dim H'(F;ZP) = dim H*(F; Zp). By (2.4),

we have

(2.5) dim/F*(F;Zp) = dimJ?(X) for all q.

As usual, the filtration of Jq(X) is denoted by

- => Jq~s-\X) 3 jf-«+M-i (x) 3 ... 3 j9.o(x) 3 o

withJ9_s's(Z)/J«-s+1's-1(X)=£«00-s>s(X). Since i*(J'",+1,i"1W)^ J,_,+1,,_,(i0!

we have an epimorphism

J*(X)//,"S+M"1(X) Jq(F)/Jq-s+1's-\F)

for all g and s. Computing the dimensions for both terms yields
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E dimH*(F;Zp) ̂  I dimEq~k'k(X) ̂ I dim ETk*(X)
(2 6) k^is ft^s

^ I dimtf*(X;Zp)

for all q and s. Notice that if Z4gldimff*(F;Zp) = I^idimF^CY) for

some q, then J«(X)/J*,0(X) -»^(JO/d^F) is an isomorphism. Therefore we

have

_     (*:J?'°(X)-> J4'°(F) is an isomorphism if I dim iT*(F;Zp)

= S dim£rMW.
fca l

Finally, let xp(X) and /P(F) be the mod p Euler characteristic of X and F

respectively. We have the relation of E. E. Floyd [3]

(2.8) zp(F) = Xp(X)modp,

where by convention, yp(F) = 0 if F is empty.

Now for the rest of this paper, we assume that H*(X;ZP) = H*(Sm x S";Zp).

That is, H*(X;ZP) = A [a] ® A M is the tensor product of exterior algebras

over Zp with generators a and b of degrees m and n respectively. We assume

that 0 < m ^ n since the case m = 0 is clearly of no interest. We shall write ab

in place of a ® b and use 1 eH°(X;Zp) to denote the unit of H*(X;ZP).

3. The case whenZp acts trivially on H*(X;Zp). Throughout this section,

we assume that Zp acts trivially on H*(X;ZP). This is the case, for example,

if m^n. By the Kiinneth formula, we have

E2(X) = H*(ZP;ZP)®H*(X;ZP).

The algebra H*(Zp;Zp) can be described as follows. Additively, if^ZpjZp) = Z

for all s. Let rseH\ZP;ZP) be the generator. If p = 2, the multiplication is

simply given by tV = ts+s'. If p¥=2, the multiplication is given by tV = f+s'

when 5' is even and tY' = 0 when both s and s' are odd [2, Chapter XII, §7].

In any event, t° eH°(Zp;Zp) is a unit and will be denoted by 1. The multiplication

in E2(X) is given by (T® a)(ts' ® ß) = (- l),s\tY ® aß) for ts® aeE%%X).

Proposition 3.1. If p j= 2 and m,n are both even, then the spectral sequence

Er(X) is trivial.

Proof. We prove by induction that the differential dr on Er(X) is trivial for

all r ^ 2. For r = 2, this is evident. Suppose ds — 0 for 2 1% s < r, we may iden-

tify E2(X) with Er(X) and it suffices to show that dr(l ® a) = dr(l ® b) = 0.

Now dr{E°r'm{X)) c£rr'm_r+1 (X). If d,(l® a) ^ 0, we must have r = m + 1 and

we may set dr(l ® a) = tm+1 ® 1. But (1 ® a)(I ® a) = (-l)ml ® a2 = 0, hence
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0=dr[(l®a)(i®a)] = (tm+1<g> l)(l®a) + (-l)m(l®a)0m+1®l)=20m+1®a).

This is a contradiction since p # 2. In a similar fashion, we also have

dr(l ®b) = 0.
We shall first deal with the case when the spectral sequence Er(X) is nontrivial.

If p = 2, this is very simple.

Theorem 3.2. Suppose that p = 2, that Z2 acts trivially on H*(X;Z2) and

that the spectral sequence Er(X) is nontrivial. Then H*(F;Z2) = H*(Sr;Z2)

for some — lf^r^m + n, where as usual S~1 stands for the empty set.

Proof. If Er(X) is nontrivial, then dim J" (X) < Si dim E|"w (X)

= dim H*{X;Zp) = A. Hence dim/T*(P;Zp)^3. If p = 2, the Euler characteristic

relation (2.8) implies that dim H*(F; Z2) = 0, or 2. That is, H*(F; Z2) = H*(Sr; Z2).

That r^m + n follows from (2.6).

Notice that the multiplication of H*(X; Z2) is not used in the argument. Hence

(3.2) is true even if H*(X;Z2) = H*(Sm x S";Z2) only as a module.

Assume now p ^ 2. Let r St 2 be the smallest integer such that dr # 0 on Er{X).

Identifying Er(X) with £2(X), we must have either dr{\ ® a) ^ 0 or rfr(l ® f>) # 0.

Lemma 3.3.  // c/r(i ® a) # 0, rfcen £ =0.

Proof. Since dr(i ® a) e Err'r~m+1(X), we must have r = m + 1 and we may

set ^„+1(1 ® a) = rm+1 ® 1. Just as in (3.1), one argues that m must be odd.

Now rfm+1(£°*;i(A:)) <= EZt\,n~m(X), hence we could only have dm+1(l ® fc)= 0,

or n = 2m and dm+1(l ® b) = tm+1 ® a, or n = m and dm+1(l ® fc) = /m+1 ® 1.

Suppose dm+1(l®b) = 0. Using the fact that m + 1 is even, one computes

easily that dm+1(ts ® a) = ( - l)s(<s+m+1 ® 1) # 0 and dm+i(t° ®ab)

= (-l)s(is+m+1 ® b) * 0. This means E^^X) and £S?t"(i0 have no cocycle

for all s. Similarly E^+^X) and P^'+^X) are all coboundary. Thus we have

£m+2(X) = 0 and the assertion follows. Other cases are similar.

Suppose that dr(l ® a) = 0 and dr(l ®b)^0. We have either r = n + 1 and

dn + 1(l®b) = t"+1 ®l or r = n-m +1 and <*„_m+1(l ® b) = t"'m+1 ® a.

Lemma 3.4.  7/ r = n + 1 and dn+1(l ® b) = f+l ® 1, then F =0.

The proof is completely the same as (3.3).

Lemma 3.5.  // r = n - m + 1, d„_m+1(l ® b) = rn_m+1 ® a and m is even,

then H*(F;Zp) = H*(Sr;Zp) for some -I ^ r ^ m + n and r is odd.

Proof. If m is even, n — m + 1 is even since n must be odd. In this case,

£*'^"m+1(X) is coboundary and £* "m+1(X) has no cocycle for all s. Hence

dim H*(F; Zp) ̂  2. But dim//*(£;Zp) = 1 is ruled out by (2.8).

Finally, we must consider the case when r = n — m + 1, cf„_m+1(l ® b) = t"'m+1

® a and both n and m are odd. We seek to eliminate the possibility that dim H*(F ;Z )
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= 3. For this purpose, we need the following propositions concerning the functor

H*(ZP;A). Their proof can be found in [5].

Proposition 3.6.  // A ® Zp = Tor(A;Zp) = 0, then H\Zp;A) = 0 for all k.

Proposition 3.7. //p * 2, A ® Zp = Zp and lor(A; Zp) = 0, then H\zp;A) = Zp

for k even and Hk(Zp;A) = 0 for k odd.

Proposition 3.8. // p # 2, A ® Zp = 0 and Tor(^;Zp) = Zp, then Hk(Zp;A) = 0

for k even and H\Zp;A) = Zp for k odd.

Notice that (3.8) never occurs if A is a finitely generated abelian group.

Now suppose that dim H*(F;ZP) = 3. Since xp(X) = 0, we must have ip(F) = 3.

According to [7, Corollary 4.2], there is the inequality

E dimHl(F;Z,)g E dim//-,'(Zp;H'(X;Z)),
i even i^O

where /P(X;Z) is the ith integral cohomology of X. By the universal coefficient

theorem, we have H\X; Z) ® Zp = Tor (H\X; Z); Zp)=0 if 0 < i < m, m +1 < i < n,

n + 1 < i < m + n or m + n + 1 < i. Hence H~\ZP;H\X;Z)) = 0 for these

values of i. For other values of i, say i = m, either Hm(X; Z) ® Zp = Zp and

Tor(Hm(X;Z);Zp) = 0, in which case H~m(Zp;Hm(X;Z)) = 0 since m is odd,

or else Hm+l(X;Z) ® Zp = 0 and Tor(JcPB+1(A';Z);Zp) = Zp, in which case

//"m_1(Zp;H,n+1(JX';Z)) = 0 since m + 1 is even. In short, using the fact that

both m and n are odd, one sees that the above inequality leads to the absurd

assertion 3^2.

There are occasions where the last troublesome case (r = n — m + 1, m and

n are both odd) can be eliminated altogether. For instance if m = n. A less

trivial case is when the integral cohomology H*(X;Z) is of finite type (i.e., each

H'[X; Z) is finitely generated) — in particular, if H*(X;Z) = H*(Sm x S";Z). The

proof goes as follows. Using integral AWS cochain groups of X, one obtains

a spectral sequence Er(X;Z) with

E\\X;Z) = H\ZP;H\X;Z)).

If H*(X;Z) if of finite type, by (3.8) one sees that E2-\X;Z)=0 for all s odd;

hence, in particular, Es/(X;Z) = 0 for s odd and r ^ 2. Now the coefficient

homomorphism 7t :Z-»ZP gives the commutative diagram

£B°:"m+1(X;Z) ^:::{'m(Z;Z)

71*

-*   ^n-m + l

It is not difficult to see that E°L"m+1(X;Z) = E02-"(X;Z) = Zp and tc* on the

-.0,11

+ 1W



374 j. C. SU [September

left is an isomorphism. Since E"„Z.™X\'m(X;Z) = 0 because n — m + 1 is odd,

we have d = 0 on the bottom or J„_m+1(l ® b) = 0.

Summarizing all these, we have

Theorem 3.9. Suppose that p ^ 2, r/iat Zp acfs trivially on H*(X;ZP) and

that the spectral sequence Er(X) is nontrivial. Then H*(F;Zp) = H*(Sr;Zp)for

some —l^r^Lm + n and r is odd. If m = n, then F is necessarily empty. If

m + n and the integral cohomology H*(X;Z) of X is of finite type, then F can

be nonempty only if m is even and n is odd.

For the rest of this section, we assume that the spectral sequence Er(X) is

trivial. We have then dim/T*(F;Zp) = 4. Let 0 ^ my ^ ^ /j be the dimensions

where H*(F; Zp) is nonvanishing. By (2.6), we have my ^ m, Hj^h and

ly ^ m + n. First assume that F is connected. Let ay,by and cx be generators in

dimensions mx > 0, nt and ly respectively and lefi0(F;Zp) be the unit of

H*(F;ZP). The elements tq® 1, tq~""® au tq~"'® by and tq~h ® Cy form a basis

of Jq(F). We proceed to determine the multiplication in H*(F;ZP). Clearly, we

have alc1 = bxCy — c\ = 0.

Lemma 3.10. The following cases cannot happen:

(1) a2 = /j2 = a1b1=0.

(2) a\ =aLby = 0and b\ ^ 0.

(3) b\ =       =0 and a2 ^ 0.

Proof. Consider, for example, case (3). Choose some q such that q — m is even.

In J«(X), choose ae Jq~m-m(X) representing r9_m® a in ££m,m(X) = £rm,m(X)

and ßeJq'n-n(X) representing t9~"®£> in El;n'n{X) = Eq2~n'"{X).By (2.7), we

may assume that

i*(a) =   /U4-"" ® ay + Bf'"1 ®by + Ctq~h ® Cy ,

i*(ß) = A'tq-mi®ay+B'tq-n,®by+C'tq~l,®Cy,

where A,A',B,B',C,C e Zp. Since - m is even, aß e j29-m-".m+''(x) represents

t2q-m-"®ab in £^_m"n'm+n(X). Hence a/Je'J29~m~"+1'm+"~1(X) and, in

particular, a/? ^ 0. Now

i*(aß) = AA'tq-mi- tq-mi®a2y.

It follows that q - my is even if p ^ 2, AA' ^ 0, and

t2?-2mi®a2 = i*((^')_1a/?)e'j*(^"m""+1,'"+""1W)-

On the other hand, a2 eJ2q~2m'2m{X) represents t2q~2m®a2 = Oin £209_2m'2m(X).

Hence a2e J2^2m+1'2m-J(Z)andr2«-2m,®a2 = i*(yl-2a2)ei*(J29"2m+1'2m"1W)-

This is a contradiction since J2q~ 2m+ ''2""'(X)c;2'""+1 ■m+n" \x). (1) and (2)

can be treated in similar fashion.
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Besides the cases covered by (3.10), there are only five more possibilities.

Allowing suitable change of basis in H*(F;Zp), it is not difficult to see that one

can narrow down to the following three cases:

(4) al = bl = 0 and a.b^O, i.e., H*(F;Z„) = H*(Sm'x S"'; Zp) as an

algebra. Moreover, m — my and n — nl are all even if p ^ 2.

(5) a\ = by, ayby # 0 and b2 = 0, i.e., H*(F;Zp) = Z^a^/ia^ is a truncated

polynomial algebra.

(6) m^«! with a\ ± 0, b\± 0 and = 0. Let b\ = Da2, D e Zp. Using

the notations in (3.10), we may take q = 0 since either m is even or p = 2.

We have i*(aß) = (AA' + BB'D)C2mi ®a2^0; hence at least A or B is nonzero.

We have i*(a2) = (A2 + B2D)f2mi®a\, hence i*(a3) = 0 and therefore a3 = 0.

Nowa2e r2m+U2m~\X) = J~n'"(X), so we can write a2 = A"ß+B"a+C"(\®\).

From this we obtain «J = A"aß + A"B"ß + (B"2 + C")a + B"C"(\ ® 1) = 0. But

aß, j?, a and 1®1 form a basis of J°(X). Therefore A" = B" = C" = 0 or

A2 + B2D = 0. This would imply that both A and B are nonzero. If p = 2, we have

a\ = b\. If p ^ 2, (6) reduces to (4) by taking ax + AB~*by and at — AB~1bl as

basis. Thus we obtain the following theorem which generalizes the result of

Swan [7, Theorem 6.1].

Theorem 3.11. Suppose that Zp acts trivially on H*(X; Zp), that the

spectral sequence Er(X) is trivial and that F is connected. Then

H*(F;ZP) = H*(Smix Sni;Zp)

as a module, where 0 < mt ^ m and mx ^ntz% n. The dimension parities

m — niy and n — nx are even if p ^ 2. The multiplication of H*(F;ZP) can be

described in one of the following ways:

(3.11.1) H*(F;Zp) = H*(Smi x Sni;Zp) as an algebra.

(3.11.2) n1=2ml and H*(F;ZP) = Zp[aj]/(aj4) is a truncated polynomial

algebra with one generator ax of degree mx.

(3.11.3) p = 2, m1=n1 and generators au bt eHmt(F;Z2) can be chosen so

that a\ = b\ =fc 0 and a^b^ = 0.

The structure of H*(F;ZP) when F is disconnected is given as follows, which

we state without proof.

Theorem 3.12. The hypothesis is the same as (3.11) except that F is dis-

connected. Then H*(F;Zp) can be described in one of the following ways:

(3.12.1) H*(F;ZP) = H*(Smi US"';Zp), where O^m^n, m^n^m + n

and U means disjoint union.

(3.12.2) F has two components Ft and F2, where Fx is acyclic over Zp and

H*(F2;ZP) = Zp\_ai-\/(a\)

is a truncated polynomial algebra with one generator of degree ^ n.
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4. The case where Zp acts nontrivially on H*(X;ZP). In this section, we

assume that Zp acts nontrivially on H*(X;Zp). This is possible, of course, only

when m = n, which we assume for the rest of this section. We can actually narrow

it down further.

Proposition 4.1.  If p + 2 and n is even, then Zp acts trivially on H*(X;ZP).

Proof. Let T be a generator of Zp and consider T* on H"(X;ZP). Set

T*(a) = Alla + Al2b and T*(b) = A21a + A22b. We have ab = T*(ab)

= AilA22ab + A12A21ba = (AuA22 + Al2A2l)ab since n is even. Hence

AuA22 + Al2A2l = 1 = A + 2A12A2i, where A is the determinant of T*. Since

T* = 1, we have Ap = 1 and hence A = 1. We obtain therefore that Al2A21 = 0

since p ^ 2. Similarly, from T*(a2) = 0 and T*(b2) = 0 we obtain A^A12 = 0

and A2lA22 = 0. From these we deduce that A12 = A21 = 0 and A11 = A~2~2.

But then T*p= 1 implies that An = A22 = 1.

If we assume that H*{X;Z) is of finite type, then it is easily seen that the

torsion free part of H\X;Z) is Z + Z on which Zp must act trivially if p > 3.

Hence with this additional condition, Zp can act nontrivially on H*(X; Zp) only

if p = 2 or p = 3 and n is odd.

Consider T* on H"(X;ZP). As usual, define t = 1 - T* and «7= IS-1F*e.

Recall [2, Chapter XII, §7] that

Theorem 4.3. // p#3 and Zp acts nontrivially on H*(X;ZP), then

H*(F;ZP) = H*(Sr;Zp) for some — 1 ^ r ;£ 2n. Moreover, r is odd when p > 3.

Proof. One sees easily from (4.2) that dimE2'"(X) ^ 1. Therefore

dimH*(F;Zp) ^ 3. If p # 3, we must have dimH*(F;Zp) = 0 or 2 in view of

(2.8). Notice that (4.3) is true even if H*{X;ZP) = H*(S" x S";ZP) as a module

only.

Consider now the case p = 3. Since T* satisfies x3— l = (x — 1)3=0 but

not x — 1 = 0, the minimal polynomial of T* is (x — l)2 = x2 + x + 1. There-

fore 1 is an eigenvalue of T* whose eigenspace has dimension 1. In other words,

we have dimkerr = 1 and dimker<r = 2. By (4.2), this gives dim£2'n(X) = 1 for

all s. Moreover, generators a,beHn(X;Z3) can be so chosen that we have

a2 = b2 = 0, ab ± 0, T*(a) = a and T*(b) = a + b. Now E2(X) can be described

as follows. For s even, a generator ccseE2"(X) is represented by a e H"(X;Z3).

For s odd, a generator ßseE2"(X) is represented by beH"(X;Z3). The genera-

tors of £2'°pO and E2,2n(X) are still denoted by ts ® 1 and r5® ab respectively.

According to [2, Chapter XII, §7], the multiplication in E2(X) is given by

(4.2)
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(Y® l)a' = a'(rs® 1) =

(ts®l)ß'=ß'(ts®l) =

0,     s odd,

a   , s even,

ßs+', s even,

-as+', s odd,

(4.4)
aV = «V = 0,

<xsß' = -ßV = rs+,®ab,

/f/F = ß'ß* = Is+'®&a.

Lemma 4.5. dim H*(F; Z3) # 2.

Proof. The only possible nontrivial differentials in £r(X) are d„+1 and d2lI+1.

Therefore we can always identify E2(X) with E„+1(X). If d,,+1 = 0, one sees

from (4.4) that Er{X) must be trivial. In this case, we have dimff*(F;Z3) = 3.

Suppose dn+1 is nontrivial. From (4.4) again we must have dn+1(ßl) ^ 0 and we

may set dn+1(ß1) —1"+2® 1. Remember that n is odd; using (4.4) once more

we compute that

d„+1(/rn) = d.+iCO"""1 ® r#] = (r"-1 ® i)(t-+2 ® i) = t ® l * o

and

d„+1(ß-"ßl) = (f ® l)/?1-!- /?-n(tB+2 ® 1) = - a2 - a2 = a2 * 0.

These relations imply that Ej,?2(X) = E~l\l,2\X) = 0. Hence

dim J/*(F; Z3) = dim J"+J(X) ^ 1.

Because n is odd, we know dimfl*(F;Z3) ^ 1. Hence either F =0 or

dim//*(F;Z3) = 3. The structure of H*(F;Z3) is trivial if F is disconnected.

Indeed, that must be the case.

Lemma 4.6.  1/ dimH*(F;Z3) = 3, then F cannot be connected.

Proof. The spectral sequence Er(X) is trivial. Let a^b^ eH*(F;Z3) be gen-

erators of positive dimensions m, and nx respectively, where 0<m1|n1.

Both tnx and nt are even by (2.8). Clearly, a1bl = b\ = Q. We may choose

ßeJ~n'\X) representing ß~n in E~2"'\X) and

i*(ß) = At~m®a1 + Brnt®bl.

Similarly, we may choose äed"n+1'"(Z) representing oTn+1 in £2""+1,',(A') and

i*(ä) = ^'t"m, + 1®a1 +BTB, + 1®f>1.

We have i*{ß~\t ® 1)) - 42r2mi + 1® a2. Since /32(t® l)e d-2^1'2'^) repre-
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sents 0^(r2n®l)(t ®1) in EJ2"+1-2"(X), we have A*0, a\^0 and

0^r2m, + 1®a26'j*(J"2"+2'2n_1W)- Similarly, we have

i*(5jff) = i*(ßa) = AA't~2mi + i ® a2.

Since äßeJ~2n+l,2n(X) represents 0^r2n+1®ab in £22n+1 2\X), we have

A'¥=0. Now by (4.4), a~n+1ß~" = - j8~"a""+1. Hence 2ä/Je J"2n+1'2n(X)

represents 0 in £2 2n+1,2n(Z). In other words, 2ä.ß e J~2n+2>2n~\X). Since

A,A'?0 and p # 2, this means r2mi + 1® a2e i*(J"2n+2'2n"1(Z)), a contra-

diction.

If we assume that H*(X;Z) is of finite type, then the £2-term of the integral

spectral sequence £r(X;Z) can easily be computed. Comparing Er(X) with

Er(X;Z) as we have done before, one sees that Er(X) is trivial. Hence in this

case we have f + 0. Summing up, we have therefore proved

Theorem 4.7. If p = 3 and Z3 acts nontrivially on H*(X;Z3), then F is

either empty or it has two components Ft and F2, where F± is acyclic over

Z3 and H*(F2;Z3) = H*(S2r;Z3) for some 0 ;£ r <i n. Moreover, if the integral

cohomology H*(X;Z) of X is of finite type, then F is necessarily nonempty.

5. Some examples. We give in this section a few examples to demonstrate

the various results of the last two sections. These examples, however, do not

exhaust all the possibilities permitted by the theorems we obtained. Hence the

content of this section is rather incomplete.

(3.2) and (3.9). Let f:S3->S2 be the Hopf map. Let X be the union of

the mapping cylinders S3 x Sr-> S2 x Sr and S3xSr-»S3. Then H*(X;Z)

= H*(S2 x Sr+2;Z). Let Zp act freely on Sr (r odd if p ^ 2) and trivially on

S3 and S2. This defines an action of Zp on X for which £ = S3. Similar examples

can be constructed using other Hopf maps.

For Theorems (3.11) and (3.12), we shall only give examples for the case p = 2.

(3.11.1) is of course trivial.

(3.11.2) Let SU(3) be the special unitary 3-group. It is known [1, Proposition

9.1] that H*(SU(3);Z) = H*(S3 x S5;Z). Let Z2 act on SU(3) by conjugation.

Then £=SO(3), the special orthogonal group which is topologically a real pro-

jective 3-space.

(3.11.3) Consider the Klein bottle £ as the nontrivial S1 bundle over S1.

Then H*(F;Z2) is that described by (3.11.3). Let n: S1 -> S1 be the doudle cover-

ing map and X be the join of £ with this S° bundle. Then X = S1 x S2. The

natural involution of n carries over to an involution on X with £ as fixed point

set.

(3.12.1) Let X = U(2) be the unitary 2-group. Then {\],H*{X\Z) = H*(Sxx S3;Z).

The conjugation is an involution on X with f = 0(2), the orthogonal 2-group

which is two copies of S1. Similarly, is an involution on X whose fixed
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point set consists of two isolated points x = 1, x = —1, and a S2 formed by

those x e U(2) of the form

One can also take X = S1 x S2, thinking S1 as imbedded in S2 as the equator.

For x e S1, let Tx be the rotation of S2 of an angle 2n/p with x as axis. Then

(x,y)->(x,Tx(y)) defines an action of Zp on X with F = S1\jSK

(3.12.2) On SU(3), x->x_1 is an involution whose fixed point set can be

seen to be the disjoint union of the point x = 1 and a complex projective

plane formed by those x e SU (3) having a complex line as invariant

subspace.

(4.3) The simplest case is letting Z2 act on S" x S" by interchanging coordi-

nates.Wecan also consider the double covering it: S1 -> S1 and take X to be the

union of two copies of the mapping cylinders of it. Then X is just the Klein

bottle so that H*{X;Z2) = H*(Sl xS';Z2) additively. Interchanging the map-

ping cylinders is an involution of X with nontrivial action on H*(X;Z2). The

fixed point set is S1. Similar examples can be constructed using Hopf maps.

(4.7) On X = S1xS1, the map (x,y)^(y,x-1y~1) defines an action of

Z3 with nontrivial action on H*(X;Z3). The fixed point set is three isolated

points. Letting x,y be quaternions and Cayley numbers, we get actions of Z3

on S3 x S3 and S7 x S7 respectively. The fixed point set amounts to solving

the equation x3 = 1 in these algebras. For the quaternion, it is a point and a

2-sphere. For the Cayley number, it is a point and a 6-sphere.

6. The Poincare duality. As mentioned in the introduction, our results can

be interpreted in terms of Poincare duality. We say a space X satisfies the mod p

Poincare duality if (i) X is connected compact Hausdorff, (ii) there is an integer

n ^ 0 such that Hk(X;Zp) = 0 for all k> n and H"(X;ZP) = Z„, (iii) for any

O^fc^n, the cup-product pairing Hk(X;Zp) ® H"~\X;Zp)^ H"(X;ZP) is

nonsingular. Consider the following conjecture.

Conjecture. // Zp acts on a space X satisfying the modp Poincare duality,

then each component of the fixed point set also satisfies the modp Poincare

duality.

The simplest case is when X is a (cohomology) sphere; there the conjecture

is true by the theorem of P. A. Smith. A result of the author [6] says that the

conjecture is also true when X is a (cohomology) real projective space or a (co-

homology) lens space. Our present result can be summarized by saying that the

conjecture is again true when X is a product of two spheres. This can be seen

simply by checking from case to case. The validity of the above conjecture in

general might be a problem of some interest.
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