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I. Introduction. The purpose of the present paper is to derive "constructive"

necessary conditions for minimum in problems of the calculus of variations in

which the "controls" are chosen from a compact Hausdorff space (in particular,

a compact euclidean set) and the admissible curves are restricted to lie in a given

closed set with a smooth boundary and must satisfy given boundary conditions.

Let R be a compact Hausdorff space, En the euclidean n-space, T the closed

interval [t0,fi] of the real axis, V an open set in E„ and B0 and Bt closed sets

in V. We also assume given a function g(x,t,p) = (gl(x,t,p), ■■■,g"(x,t,p))

from V x T x R to E„ and a scalar (real-valued) function a(x) defined over V.

Let G(x, t) = {g(x, t, p) I p e R}, x e V, t e T, and let F(x, t) be the convex closure

of G(x,t).

We define an original admissible curve with respect to a(x) as any absolutely

continuous function x(f) from Tto Fsuch that, for some function p(t) from Tto R,

(1.1) ^ = x(t) = g(x(t), t, p(0)  a.e. in T

or, equivalently,

(1.1 Orig) x(t)eG(x(t),t)  a.e. in T

and

(1.2) x(t0)eB0, *(ii)eßi,

(1.3) a(x(t))^0, teT.

A relaxed admissible curve with respect to a(x) is similarly defined except

that the relation (1.1) resp. (1.1 Orig) is replaced by

(1.1 Relaxed) x(r) e F(x(t), t)  a.e. in T.

An original (resp. relaxed) minimizing curve with respect to a{x) is one
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which minimizes, among all original (resp. relaxed) admissible curves with respect

to a(x), the value xK'i)-

These definitions coincide with those of [1, p. 112] and [2, p. 129] in the special

case when the set A of these references is defined by the inequality a{x) ^ 0 and

the set B of the references is replaced by ß0 x B,. However, we now dispense

with the assumption on which the arguments of [2] are based, namely, that

there exists a relaxed minimizing curve in the interior of A.

It has been shown by Young [3, p. 233], McShane [4, p. 527 and p. 532],

Filippov [5, p. 76] and Warga(x) [1, p. 119 and p. 123] that for certain classes

of variational problems a relaxed minimizing curve with respect to a(x) exists;

furthermore [1, p. 113], a relaxed minimizing curve with respect to a(x) can

be uniformly approximated by solutions of the differential equations (1.1). On

the other hand, Gamkrelidze [6; 7, p. 257] has derived necessary conditions

which must be satisfied by original minimizing curves with respect to a(x) in a

certain class of problems, subject to the prior assumption that these curves are

"regular," have piecewise smooth "controls" and a finite number of "junction

points" [7, pp. 258, 265-266 and p. 311].

It is our purpose in this paper to investigate necessary conditions satisfied

by relaxed minimizing curves with respect to a(x) without making any a priori

assumptions about these minimizing curves. We define, in §11, a rather wide

class of variational problems and prove, in Theorem 3.1, that there exists, in

these problems, a relaxed minimizing curve with respect to a(x), that this curve

can be uniformly approximated by solutions of the differential equations (1.1),

and that this curve satisfies necessary conditions which generalize the classical

Weierstrass £-condition and transversality conditions (and the analogous con-

ditions of Young [8], McShane [9], Pontryagin et al. [10], Warga [2] and

Gamkrelidze [6; 7, p. 257]).

Added in proof. A more general problem, in which the admissible curves are

restricted to satisfy the simultaneous inequalities ak(x(t)) ^ 0, te T, k = l,—,m,

instead of relation (1.3), has been considered and a corresponding generalization

of Theorem 3.1 has been obtained. This more general problem will be discussed

elsewhere.

II. Assumptions and definitions. We define the class of variational problems

which are being considered as those which satisfy the following assumption:

Assumption 2.1. There exist a (Lebesgue) measurable subset T' of T of

measure \ T'\ = |T|, positive constants ct and eu an open set V'<= Fand a

compact set DcV such that

2.1.1. The functions g\x,t,p) and 8g'(x>t,p)/dxi, i, /«= l,—,n, exist over

V x T' x R and, over that set, are continuous functions of (x, t) uniformly in p,

(•) The proof of Theorem 3.1 of [l,p. 119] is very similar to the proof of Filippov's Theorem 1

of [5, p. 76]. The author is indebted to L. W. Neustadt for drawing his attention to Filippov's

paper which antedates [1] by approximately three years.
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are continuous functions(2) of t uniformly in (x,p), and are continuous functions

of p for each (x,r).

2.1.2. \g(x,t,p)\^c1 and \gx(x,t,p)\^ c1 over V x T x R (where gx

represents the matrix (dg'/dxJ), i,j = 1,•••,n, \g\ is the euclidean length of g

and |^|= I?J = 1|3*'/3x'|).
2.1.3. The scalar function a(x) is continuous, has continuous first and second

order partial derivatives over V and |ar(x)| |g(x,t,p)| ^ cx over V x T' x R,

where ax is the gradient of a{x).

2.1.4. There exists at least one relaxed admissible curve with respect to a(x).

2.1.5. All relaxed admissible curves with respect to a(x) — &l are contained

in D.

Remark.  Assumption 2.1 can be easily verified in the following two cases:

(a) There exist positive et and c, such that the set D — {x e V\ a(x) ^ e,}

is compact; Assumptions 2.1.1, 2.1.2 and 2.1.3 are satisfied for some open sub-

set V of V containing D;and there exists at least one relaxed admissible curve

with respect to a(x).

(b) V = E„; one of the sets B0 or Bt is bounded; there exist positive et and

cx and a positive, continuously differentiable function V(x) over E„ such that

I Vx(x)' i(x> t'P) \ = ci' V(x) f°r all (t,p)eT x R and for all x such that a(x) ^e^,

the set D = {xeEn\V(x) ^!eCii,1~'o) V(b) for some bsB'} is compact, where

B' is either B0 or Bt, whichever set is bounded; there exists at least one relaxed

admissible curve with respect to a(x); and Assumptions 2.1.1, 2.1.2 and 2.1.3

are satisfied for some open set V containing D.

The proof that Assumption 2.1 is satisfied in the case (b) follows the reasoning

of [5, p. 77]. In particular, following Filippov, we may consider V(x) = | x|2 + 1.

Having specified the class of problems which we propose to investigate, we

shall now consider a convenient form for describing them. In particular, we wish

to write relation (1.1 Relaxed) in the form of a system of differential equations

analogous to (1.1); and we wish to replace relation (1.2) by one involving convex

sets only. We do so by introducing "proper representations" of F(x,t), of B0

and of Bj.

Definition 2.2. A function f(x,t,a) from V x T x S to E„ is a proper rep-

resentation of F(x,t) if

2.2.1. F(x,t) = {f(x,t,o)\oeS}, xeV, teT.

2.2.2. For every absolutely continuous curve x(r) satisfying (1.1 Relaxed)

there exists a function o{i) from Tto S such that

x(r)=/(x(0,r,o-(r)) a.e. in T

(2) It can be easily shown that this assumption implies the existence of a finite or denumerable

collection of disjoint Lebesgue measurable subsets Tr of 7", r = 1, 2, and of a bounded e(h)

converging to 0 with h such that | (j Tr | = | T \ and | g'(x, t, p) - g>(x, t, p) \ ^e(f-T) for

(x, p)e V x R, teTr, tsTr, i = 1, •••,«, r = 1, 2, ••• . This last condition will be required

whenever we shall refer to [1, Theorem 2.2, p. 113].



1964] MINIMIZING VARIATIONAL CURVES 435

and f(x,t,a{i)) is, for all xe V, te T', a (Lebesgue) measurable function of t

over T.

2.2.3. f'(x,t,(j) and df'(x,t,a)/dxJ, i, j = 1,exist and are continuous

functions of (x,r) over V x T for every a in S.

2.2.4. |/(x,t,o-)| = Cj and \fx(x, t, a) \ S ct over V x T x S.

2.2.5. The set H(x,t,a) = {{y,y)eEn x E„\y =f(x,t,a), y =/J(x,t,er)a for

some ireS} is compact and convex for every (x,t,a) e V x T x E„. (Herefj is

the transpose of the matrix fx.)

Remark. Here V, T' and cY are as defined in Assumption 2.1. Definition

2.2 differs from the one introduced in [1] and [2] by the addition of Condition

2.2.5.

Definition 2.3. Let 73 c E„. We shall say that (C,c(c;)) is a proper represen-

tation of B at x if

2.3.1. C is a compact and convex set in some euclidean space Ek.

2.3.2. c(£) is a function from C to B which is continuous and continuously

differentiable over C.

2.3.3. x = c(c;) for some ^ e C.

In particular, if B is convex, we may choose as C any compact and convex

subset of B containing x and we may define c(|) as the identity mapping from

There is little difficulty in verifying whether a given (C0, c0(£Q)) resp. (Ct, c1(c;1))

is a proper representation of 750 resp. 7?! at some point. It appears much more

difficult to determine, in view of condition 2.2.2, whether a given function/(x, t, o)

is a proper representation of F(x,r). We indicate, therefore, two methods of

constructing such proper representations.

2.4. The Filippov representation. Let S be a compact set in some euclidean

space and let f{x,t,a) be continuous over V x T' x S and satisfy conditions

2.2.1, 2.2.3, 2.2.4 and 2.2.5. Condition 2.2.2 follows from a lemma of Filippov

[5, p. 78]. (This lemma and its proof remain valid with our assumptions even

though Filippov states slightly stronger assumptions.)

2.5. The Young representation. Let measurable sets over the Hausdorff space

R be defined as elements of the smallest Borel field of sets containing open sets

of R. We then define S as the class of probability measures over 7? (thus a e S

if <r(Ri) is defined for every measurable R1 in R, a is completely additive,

o-(Ri)^0 for every measurable R1 in R and o(R) = 1). We now let

Conditions 2.2.1, 2.2.2, 2.2.3 and 2.2.4 follow from [1, Theorem 4.1, p. 124].

Condition2.2.5 can be easily verified since 7? is compact and f{x,t,a) is linear

in <t.

C to C.
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III. Necessary conditions for minimum. A minimax problem. Our principal

results can be summarized in

Theorem 3.1. Let Assumption 2.1 be satisfied. Then there exists a curve

x(t) which is a relaxed minimizing curve with respect to a(x) and this curve

can be uniformly approximated by solutions of the differential equations (1.1).

Letf(x, t, a) be a proper representation of F(x, t), let (C0,c0(c;0)) resp. (C^c^j))

be a proper representation of B0 at x(t0) resp. of Bx at x(rt) and let

Z = {reT|a(x(0) = 0}. Let 5, = (8\,—,5"), » = 1,2,---,n, be such that 8\=\

and 8) = 0, i ^ j. Then either

3.1.1. There exists a point Ci In Cl such that c1(^*) = x(tl) and

iieCi

(where c1>? is the gradient of c\(£7), the first component of c^c^)), or

3.1.2. There exist a function o(t) from T to S, a scalar function p(t) over T,

a function z(t) from T to E„, a closed subset M of Z, points and £* in resp.

C0 and Cx and a non-negative number y1 such that

3.1.2.1. p(t)^0 and | z(t) \ + p(t) > 0, teT.

3.1.2.2. z(t) is absolutely continuous on every closed subinterval of T — M.

3.1.2.3. p(i) is nonincreasing on every subinterval of T — M, p(t) is constant

on every subinterval of T — Z and p(t^ = 0 ift^eT — Z.

3.1.2.4.

x(t) = f(x(t),t,o{t)) a.e. in T,

Kt) = ~fl(x(t), t,o-(O)z(t) - p(t) bx(x(t), t,<r(0) a.e. inT-M

(where b(x,t,a) = ax(x) -f(x,t,a) andfx is the transpose of the matrix fx),

z(t) = o,    p(t) = 1   for teM

and limt_(_0z(T) = z(t — 0) = o if teM and t is the right endpoint of someopen

interval ofT — M, where o is the null-vector of En.

3.1.2.5. (The generalized Weierstrass E-condition.)

(z(t) + p(t)ax(x(t))) -f(x(t),t,a(t)) = Min(z(0 + K0ßxW0)) -f(x(t),t,o) a.e. in T.
o-eS

3.1.2.6. (Support (transversality) conditions.)

Ci(tf) = x(ti),    c0(i*) = x(t0),

W8X - z(h)) ■ cul$& = Min (A - z(tl)) ■ clt^Hi.

(z(/0) + p(t0)ax(x(t0))) ■ c0i!t(Z*o)Z* = Min (z(t0) + p(t0) ax(x(t0))) ■ c0^*0)^0.

3.1.2.7. Either
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3.1.2.7.1. tYeZ and there exists a non-negative y" such that

(y'5, + ax(x(h))) ■ Ct >{«?)tf = Min (y'ö, + aMh)))' Ci.««i)£i>
SieCi

or

3.1.2.7.2. There exists a point r*, in T,t*< tlt such that

I a(x(t)) I + I ax(x(t)) I ̂  0 and \ z(t) + p(t)ax(x(t)) | ^ 0 for r*. < t £ f,

and", // t* > t0, then t*e Z and drner z(tj)= — yax(x(t*)) for some y = p(t*) or

\ax(x(t*))\ = \a(x(t*))\=0.

3.1.2.8. // there exists a negative number ß such that xeD (where D is as

defined in 2.1) and a(x) = 0 imply Min^a^x) • f(x,t,o) ^ ß < 0 for all te T,

then the set M is empty or consists of the single point t0.

We shall carry out the proof of this theorem in §§IV through VIII. We shall

first, however, illustrate the use of the theorem by a very simple example.

3.2. Consider curves x(r) which satisfy conditions (1.1 Relaxed) and (1.2)

and, among all such curves, the curve which minimizes Max(er k(x(t)),

where k(x) is continuous and has continuous first and second order partial

derivatives in V. This minimax problem can be reduced to finding a relaxed

minimizing curve with respect to a(x) in the following manner: let

x = (x°, x1, • • •, x") = (x°, x), g(x, t,p) = (0,gKx,t,p),---,gn(x, t, p)) = (0, g(x, t, p))

and a(x) = k(x) - x°.

Let x(t) = (x°(0,x(0) be a curve which satisfies the conditions

x(t) = g(x(t),t,p(t)) a.e. in T,

x(f0)eß0, x(r1)ei31,

a(x(0) ^0,    te T,

and, among all such curves, minimizes x°(f1). Then, clearly, x(0 minimizes

x° = Max,eT k(x(t)) among all curves which satisfy (1.1 Relaxed) and (1.2).

We shall now consider, as an illustration, a very simple minimax problem

of this kind. Assume that a train is scheduled to cover a unit distance in a unit

time and that its acceleration can be varied at will between —a and a, where

a > 4. How should the acceleration be varied so that the maximum velocity

of the train be minimized?

Let the acceleration of the train at time t be represented by a(t), the velocity

by x2(f), the distance covered by x3(t) and let x1 = Max0^(S1x2(0. Then we

wish to minimize x!(l) subject to the restrictions:

(3.2.1) x1 = 0, x2 = o, x3 = x2 a.e. in [0,1],

(3.2.2) x2(0) = x3(0) = 0, x2(l) = 0, x3(l) = 1,

(3.2.3) a(x(t)) = x2(/) - xKO ̂  0 in [0,1].
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It is clear that the right-hand sides of the differential equations are a proper

representation of the convex set G(x, t) = F(x, t). The set B0 in E3 is the line

x2(0) = x3(0) = 0 and the set BL is the line x2(l) = 0, x3(l) = 1. A proper rep-

resentation of Bh i = 0,1, at the point x(i) can be obtained by choosing as C;

a compact subinterval of Bf in whose relative interior x(i)is contained and choos-

ing as Cjt^j) the identity mapping.

We easily verify that Assumption 2.1 holds and Theorem 3.1 is, therefore,

applicable. Because x(l) is in the relative interior of B1; the alternative 3.1.1

does not hold. We have Min_ag<TgC(ax -/(x, t,o) = Mino- = — a < 0 for all

re [0,1], hence, by 3.1.2.8, the set M is empty or consists of the single point 0.

We have, by 3.1.2.4 and 3.1.2.5,

(3.2.4) i1 = 0, i2 = -z3, i3 = 0 a.e. in [0,1]

/-a if v(0 = z2(0 + p(0>0,
(3.2.5)       <r(r) =

\   a if v(0 = z2(t) + p(0 < 0  a.e. in [0,1].

Furthermore, by 3.1.2.1, p(0 ^ 0 and p(i) + | z11 + | z2(r) | + | z31 ̂  0 in

[0,1]. By  3.1.2.6, z1 - p(0) = 0.

We easily deduce that v(t) = z2(0) - z3t + p(i) and p(0) + | z2(0) | + | z3(0) | ¥= 0.

Thus the assumption that p(0) = 0 implies, by (3.1.2.3), that p(r) = 0 on [0,1]

and, by (3.2.5), that

This can be easily seen to contradict (3.2.1) and (3.2.2), remembering that a >4.

Thus p(0)>0.

Now, x3(l) - x3(0) = 1 = llx2(t)dt, hence Max0-s,slx2(r) ^ 1 and, by (3.2.3),

x1 ^ 1. Thus a(x(0) < 0 for all t sufficiently close to 0 and to 1. Since p(0) # 0,

it follows from 3.1.2.3 that a(x(t)) = 0 for some re [0,1], hence Z is nonempty.

Let 0t = Min(eZ t and 02 = Max,sZ t. We have 0 < 9t = 02 < 1.

If z3 _ 0 then, by 3.1.2.3, v(r) is nonincreasing on [0,1] and constant on [0,0^

and on (02,1] and v(0! - 0) > v(02 + 0). If v(02 + 0) = 0 then, by (3.2.5),

o-(0=-oc a.e. in [O,0t], hence x2(01)=-a01, contradicting x2(() = x!^l

for reZ. Similarly, v(02 + O)<O implies a{t) = a a.e. in [02,1], hence

x\02) = - a(l - 02), contradicting 02 e Z. Thus z3 < 0.

Continuing in the same manner, we find that 0, < 02, that v(f) = 0 and

a(x(0) = x2(t) - x1 = 0 on [01;02], which implies a = 0 a.e. in [0j,02]; further-

more, v(r) < 0 on [0,0j) and v(0 > 0 on (02,1]. It follows then easily from (3.2.1),

(3.2.2) and (3.2.5) that 0X = 1/2 - 7(1/4 - 1/a), 02 = 1/2 + x/(l/4 - 1/a),
ff(0 = a a.e. in [0,0^, a(t) = 0 a.e. in [0!,02] and a(i) = -a a.e. in [02,1].

The corresponding value x1 of maximum velocity is then adl.

and

etx a.e. in [0,0],

-ea  a.e. in [0,1],
where e = ± 1 and 0 < 0 < 1.
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IV. ^-minimizing curves.

4.1. It follows from Assumption 2.1 and from [1, Theorem 3.3, p. 123] that

there exists a curve y(t) which is a relaxed minimizing curve with respect to a(x).

Let now/(x,f,o-) be a proper representation of F(x,i) and let (C0,c0(^0))

resp. (C^c^O) be a proper representation of B0 at y(t0) resp. of B± at

y(h).
Consider a finite set Q = {x1,x2, ■••,*„}, where t0 < x1 < x2 <•••<!, < tj and

the intervals [t0,*i], [T|,ti+1], / = l,2,---,q — 1 and [t,,^] are all of length not

exceeding sjc^ (where Sj and cx are as defined in 2.1). Let ut(t), i = \,—,q,

be the characteristic function of the interval [t0>Ti] in T, that is, let u^t) = 1 for

t0 S t ^ T; and «,(t) = 0 for x{ < t <| tu i = 1,2,—,g. Let ?0e T, let (C0,c0(^0))

be a proper representation of some subset B of V at some point y e 5 and let

^(f0) be the set of indices i such that lf^i^Lq and t; e Q n(f0, tt). We shall

designate an absolutely continuous curve x(r), ie|70,ij], as a "ß-admissible

curve (?0.^o>^o(?o))" if there exist points ^0i2e^0 and ^^eC,, a function

<r(r) from[f0,t1] to S and absolutely continuous scalar functions m;(0, ieJ(i0),

over [?0!ri] sucn that

i(0=/(x(0,r,«T(0) a.e. in [f0,<i].

7,(0 = ax(x(t))-/(x(0,r,ff(0)Mi(0= b(x(t),(,ff(0)«i(0a.e. in [f0,rj, i e •/(?„),

(4.1.1)
x(?0) = c0(Io,q). "i(?o) = «(c0(?o,q))> ieJ(i0),

x(t1) = c1(ZUQ), »/,(<i)^0, ie./(f0)

(where o(x,t,<r) = ax(x) -f(x,t,a) and ax is the gradient of a(x)). We observe

that nXti) = a(x(r,)), i e */(F0); hence a(x(t)) ^ 0 for t e Q n (?„, tj.

A "ß-minimizing curve (f0, C^Cq^o))" 's a Q-admissible curve (f0, £0,c0(%0))

which minimizes, among all such curves, the value x^ii)-

We can easily verify (see 2.1.3, 2.2.1, 2.2.4, 2.3.2 and 2.3.3) that any ß-admis-

sible curve (t0,C0,c0(Z0)) is a relaxed admissible curve with respect to a(x) — at

and is, therefore, contained in the compact set D (see 2.1.5). Furthermore, there

exists at least one Q-admissible curve (r0,C0,c0(£0)), namely y(t), the previously

referred to relaxed minimizing curve with respect to a(x). It follows then, by

[1, Theorem 3.3, p. 123], that there exists a Q-minimizing curve (r0, C0, c0(c;0)).

We may now consider a sequence of successively finer sets Qi,Q2,- - which

become everywhere dense on T. Specifically, let Qs = {t0 + k2~s~Si(t1 - t0)\

k = l,2,---,25+sl - 1}, s = 1,2, where st is sufficiently large so that

2_I1(r1 — t0) ^Ei/cj. As was just shown, for each s, s = 1,2,>--, there exists a

curve xs(r), teT, which is a ^..-minimizing curve (t0,C0,c0(£0)) and each of

these curves is contained in the compact set D. Then, by [1, Theorems 3.1 and

3.2, p. 119 and p. 122], 2.1, 2.2 and 2.3, there exists an infinite sequence P of in-

tegers, an absolutely continuous curve x*(r), t e T, and a function a(t) from T
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to S such that the curves xs(t), s in P, converge uniformly to x*(t) over T and

furthermore,

*♦(*) = f(x*(t),t,o(t))  a.e. in T,

(4.1.2) x*(t)sD,teT,

x*(t0) = Co(£o)> x*(tt) = c^j) for some <jf„ e C0 and some cft e Cx.

We have

Lemma 4.2. The curves xs(t), s in P, satisfy a uniform Lipschitz condition

over T and the curve x*(t) is a relaxed minimizing curve with respect to a(x).

Proof. The first part of the lemma follows directly from (4.1.1) and 2.2.4.

Since the sets Qs become everywhere dense on T, it easily follows that a(x*(t))^ 0

over T. Thus, by (4.1.2), x*(t) is a relaxed admissible curve with respect to a(x).

Furthermore, as previously observed, the curve y(t) (which is a relaxed minimiz-

ing curve with respect to a(x)) is also a Qs-admissible curve (t0,C0,c0(^0)) for

every s, hence xifo) Si y'Oi) implying x*1^) = y'Oi). This proves that x*(t)

is a relaxed minimizing curve with respect to a(x).

We now investigate certain properties of g-minimizing curves.

Lemma 4.3. Let xs(t) be a Qs-minimizing curve (f0,C0,c0(<^)) for any fixed

s and let Zs = {t e Qs\a(xs(t)) = 0}. Then either there exists a point £liS in Ct

such that

ci($i,s) = x£ti) and c1>?(£1>s)f 1>s = Min c\^liS)^
SieCt

(where c1? = (cjc">4) and c\ti is the gradient of c\(^L), i = l,--,n) or

there exist a non-negative number y*, points |0iS in C0 and <j;liS in Cy, a function

os(t)from Tto S, a set Ls <= Zs and functions zs(i), ws(t) and ps(t)from Tto resp.

E„, Ex and Et such that

4.3.1. xs(t0) = c0(^0,s) and xs(tj) = cx{^>s).

4.3.2. ps(r) ̂  0 a«d I zs(r) I + p£t) >0forteT.

4.3.3. zs(r) is absolutely continuous on any closed subinterval of T— Ls

and zs(t) is continuous from the left over T.

4.3.4. ps(tt) = 0 and ps(t) is, on every subinterval of T— Ls, a nonincreasing

step function,continuous from the left, with no discontinuities except possibly

at points of Zs.

4.3.5. w£t) = 1 for t e L„ where ws(t) = Ps(t)/(\zs(t)| + ps(t)), t e T.

4.3.6. x,(t) = f(xs(t),t,os(t)) a.e. in T; z£t) = - fTx(xs(t),t,<rs(.t)K(t)

— ps(t)bx(xs(t),t,os(t)) a.e. in T, where fx is the transpose of the matrix fx

and b(x,t,<r) = ax(x)-f(x,t,o).

4.3.7. v Ji^i(xlt),t,o It)) = MinaeSv It)-f(xs(i),t,o) a.e. in T, where

»£t) = zs(0 + ps(f) ax(xs(t))> t e T.
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4.3.8. v£t0)■ c0)?(£0,s)£o,s - Min4oeCot;s((0) • c0itf0JZ0.

4.3.9. (yX - z/iO) ci,^i^i,I = Min{l^?^i-z^i))-Ci.^i,^i»wÄere

8i=(S\,-,S\), <5} = 1 and S{ = 0, j = 2,-,«.

Proof. Let us write x(r), o-(r), z(0> K0> f(0» w(0 instead of x5(l),-",ws(0-

We have shown, in 4.1, that x(t),a gs-minimizing curve (t0,C0,c0(£0)) exists and

is contained in the compact set D. It follows then easily from relations (4.1.1)

that nfa), i = 1,2,■■■,q,teT,q = 2Si+s-1, also exist and M|(t) = a(x(f)) over

[t0,ij] and nj(t) = a(x(t;)) over [t,,^]. Thus the curve (x(r),"i(0> •••>*7,J(0) is a

relaxed minimizing curve in the sense of [2, Theorem 6.1, p. 142] (where V= V x Vn,

A=DxDv Vn-la x Iax ••• x Ja (g times), Dtl=RaxRax ■•• x Ra (q times), Ra is

the range of a(x) for x e D and Ia is a bounded open interval containing Ra) for

the problem denned by relations (4.1.1). It follows then, after some manipulation,

from [2, Theorem 6.1, p. 142](3) that either there exists a point £1(S in Cx such

that

4.3.10. c1^1J = x(ti) aad c\^ltSyiliS = Min(ieClcl^Us)^u or there

exist a non-negative number y*, points £0 s in C0 and £1<s in Ct and absolutely

continuous functions z(t), v1(t),va(f) from Tto resp. £„,!?!, such that

4.3.11. |z(t)|+ I?=1|Vl(0| ^0, teT;

i(()=/(x(0,(,<rW) a.e. in T,
i

4.3.12. i(t)= -/^(x(0,t,ff(0)z(0- I v,(0Mi(0&xW0»',<»(0) a.e. in T,
i = l

Vj(t) = 0, i = \,2,---,q a.e. in T;

4.3.13. t>(r) -/(x(t),r,ff(0) = MinffeSv(t) -/(x(r), f,a) a.e. in T, whereat) = z(t)

+ If-iV,(0«K0-ö»W0)
.4.3.14.  c0(c;0jS) = x(t0) and i>(io)-Co,$(£o,s)£o,s = Min{o£Cot<r0)-c0,{(fo,sKo-

4.3.15.  Cl(£1>s) = x(tx), (yX - zQtjyCi&J ZUa = Min{ieCl (y^ - z(tx))
•Ci/Sijtu Vi(fi)^0, i = 1, 2,---, a. and v,(ti) = 0 if n^) = a(x(T,)) < 0,

i = \,--,q.

Assume that 4.3.10 does not hold.

Letju(0= E?=iVj(0Mi(0 and let T0 = r0,T9+1 = <x. We observe that, by

4.3.12 and 4.3.15, vi(t) = vi is constant and vt ̂  0, i = 1,2, ■■-,q, and thus pAj)

is a non-negative nonincreasing step function, continuous from the left, with

its discontinuities, if any, restricted to points of Zs. Furthermore, pitj) = 0.

We shall now show that there exists an integer j, 1 ̂  j £ q + 1, such that

I z(t) I + p(i) > 0 over [i0,t,-]. Indeed, if p(Tj) > 0 for some j, l^j^q + 1,

then /t(r) ̂  pXxj) > 0 for all t in [r0,T;]. If jt(r;) = 0 for all j, 1 g ? + 1, then

v, = 0, 1 Sj^q, hence, by 4.3.11, |z(t)| ^ 0, teT, and |z(r)| + /i(r) > 0 over

Uo,fil-

es) The last (third) line of (6.1.3) in [2, p. 143] should read "for some t1 1\ 0" instead of

"for some |i it 0."



442 J. WARGA [September

Let now 0t be the largest of the numbers Xj, j = 1, ■•,q + 1, such that

|z(t)| + p(r) > 0 over \t0,zj\. If 0t = tlt we define Ls to be the empty set and

the lemma follows easily from relations 4.3.11 through 4.3.15. If 0t = zJ<t1

then |z(t,+1)| = 0 and p(rJ+1) = 0 implying that p(r) = 0 over [Ty+j.tj]. It

follows then from 4.3.12 that | z(t) \ = 0 over [öl5 fj] and

w(01) = p(01)/(| 2(001+p(01)) = l.

Furthermore, v,#0; hence, by 4.3.15, a(x(0t)) = 0 and d1eZs.

We observe that, trivially, x(r) is a ß'-minimizing curve (0i,{x(01)}, identity)

where Q' = Qs O(01,r1),{x(01)} is the set with the single element x(9i) and the

mapping is the identity mapping of {x(0x)} into itself. It follows now, by our

previous argument, that there exists a point 6[ in Zsn(01; f j] U{r J, functions z'(t),

p'(0 and w'(t) over [Oufli] and a non-negative number y,1 such that p'(0 is a

non-negative nonincreasing step function over [0t,0i], continuous from the left,

and with its only possible discontinuities on (61, 0i] n Z5, z'(0 is absolutely contin-

uous on[e1,0i],|z'(O| + Pit) > Oon(01,0'1], w'(6[) = p'(6[)/(\z'(e'i)\ + p'(G'i)) = 1

if 0i<ti and relations (4.3.6), (4.3.7) and (4.3.9) are satisfied with [fl^']

replacing T.

Continuing in this manner if 0[ < tls after at most q + 1 steps we shall de-

termine a point 0/ ■■•' = t1, since Oi'---'eQs and 0/ •••' < 0/ •■•". We

now redefine the functions z(r) and p(f) to equal resp. z'---"(i) and p'---"(0

over (0/ ••■ ',0i' •••"], we let y' be the number yj obtained in the last step and

we define Ls to be the set of the points 01;0i,--- which are less than tt. The

lemma now follows directly.

V. Certain properties of zs(f) and w5(r).

5.1. We shall continue to use the notation introduced in the previous section.

If, for infinitely many values of s in P, there exists a point |t s in Cj such that

CiitiJ = *Ah) and c1>4(£1>s)|1>s = Min c\j^ltS)^
iieC,

then, Ct being compact, we may extract an infinite subsequence P' of P such that

e;l s converges to some £* over P' and we have

c&t) = x*(h) and cltftKt = Min c},^?)^.

The alternative 3.1.1 of Theorem 3.1 is then satisfied.

We shall henceforth assume, therefore (unless otherwise specified), that the

second alternative of Lemma 4.3 holds for all sufficiently large values of s in P

which constitute a sequence Pj of integers.

Lemma 5.2. Let s be in Pt and let t and t' belong to a subinterval of T — Ls.

Then there exists a positive constant c2 depending only on o(x), tt — tQ and ct

and D (of Assumption 2.1) and such that
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5.2.1. 2,(0 = zs(t') + (|zs(0| + Us (Min (t,t'») as(t,t'), where | as(f, t')|

£ ca • 11 - f' I and
5.2.2. |zs(r)| = c2\z£t')\ + c2 I il'ns(x)dx\.

Proof. As was observed in 4.1, the curve xs(0 is contained in the compact set D

(of Assumption 2.1). Since a(x) has continuous first and second order partial

derivatives over V, and since, by 2.2.4, |/(x,f,o-)| = ct and \fx(x,t,o)\ ^ ct

over V x T" x S, it follows that there exists a constant c2 such that

I b(xs(0,',<rs(0)| = c2 and I /yrxs(i),i,<7s(0)| = c2 a.e. in T.

It can be easily verified that the second equation of 4.3.6 yields

zs(t) = Uj(t,t')zs(t') + j rJsT(t,T)bx(xs(T),T,a5(T))ps(T)jT,

where the matrix Us(t,x) is the solution of the system

jx U,(t,x) =/s(xs(t),t,(7s(t)) Us(t,x)

which reduces to the unit matrix / for x = t. It follows easily that there exists a

constant c2 = c2(cue'2) such that |t/s(t,r')| £c2,jUl(t,x)bx(x£x),x,as(x))\£c2,

\(t - x)-\uJ(t,T)-l)\£c2 and |/s(xs(t),t,<t5(t))| = c2.

Relations 5.2.1 and 5.2.2 now follow from the fact that ps(Y) ̂  0 and ps(t) is

nonincreasing between t and f'.

Lemma 5.3. Let s be in Pl. Then ws(t) — c2t is a nonincreasing function

over T.

Proof. Let t < t' and [t,t') <= T - Ls. Then ps(r) ̂  ps(r') £ 0 and, by 5.2.1

and 4.3.4,

I zs(r)I + ps(t) = (I zs(t')I + ps(t))(l + a), where 0 = a = c2(f - t).

Now

/.n =       Ps(0       >_AfiXO_
A }      12S(01 + ps(0 - (1 + a) (I z,(t') I + ps(0)

(5.3.1)
^ws(O(l-a)^ws(t')-c2(t'-0.

= (l + a)(|zs(t')|+ps(0)

Let now t < t' and let t and t' be arbitrary points of T. We have just proven the

lemma for the case when [r, f') c T — Ls. If < € Ls, then by 4.3.5, ws(t) = 1 and the

lemma is trivially satisfied. In all other cases, let 0 be the point in [(,l']nL,

nearest t. Then, by 4.3.5, w5(0) = 1 and, by (5.3.1),

w,(t)£l-c2(0-t)Zw,(.t')-c2(t'-t).
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VI. Passing to the limit.

6.1. Let us consider, for all s in the infinite sequence Pu the points £0s and

<^1>s and the functions ws(t)- Since f0>seC0 and ^1)SeCj and since C0 and Ct

are compact, there exists an infinite subsequence P\ of Pt and points ^* e C0 and

e Ct such that £0>s converges to f* and £ 1 ,s converges to c;* over the sequence P[.

Furthermore, 0 ^ ws(t) ^ 1 for s in Pi and t e T, and, by Lemma 5.3, ws(i) are of

uniformly bounded variation over T for all s in Pi. It follows thus, by Helly's

selection theorem, that there exists an infinite subsequence P2 of Pi such that

ws(r) converges to a function w*(t) over T as s -> oo over P2. In view of Lemma 5.3,

the function w*(r) — c2t is nonincreasing over T.

Let now Z = {re T\ a(x*(t)) = 0} and let L = {t e r|limsupt_,h>,*(t) = 1 or

w*(r) = 1}. Clearly Z and L are closed sets and T — L r> Z is open (relative to T).

We shall say that "J is a maximal subinterval of T — Ln Z" or, briefly, that

"J is maximal" if J c T — L O Z, J is convex and open relative to T, and the

relation J c K c T — LC\Z implies J = K for every interval (convex set) K.

We let t0(i), t^J) and t*(7) represent respectively the left and the right end-

points and the midpoint of J. Thus, if J is maximal, i0(J)eJ if and only if

t0(J) = t0 and t0eT — LnZ; and Tj(J)eJ if and only if t1(J) = t1 and

tt e T — L O Z. Furthermore, for every maximal J and for every s in P2, we set

*/.\  _ _Zs(0_ j _ j
zat) ~ \zAt*(J))\ + hAx*(J)) ' teJ'

<6-U) = I ( *<r£tl (        ' teJ>
I zs(t*(J)) j + ^s(t*(J))

tto = z*(o+/<*(o«,(^

These definitions are permissible since, by 4.3.2, the denominator is positive.

We also observe that, by 4.3.6,

(6.1.2) i*(r) = -fI(xJLt),t,<rjLt))£(t) ~ /<*(0&*(*S(0,MS(0) a.e. in T— LnZ.

Lemma 6.2. Let J be maximal. Given any closed subinterval [0o,0i] of J,

the sets Ls (~\ [0O, öt] are empty and the functions z*(t) are absolutely continuous

on that subinterval for sufficiently large s in P2.

Proof. Assume that Lsn\9o,01'\ are nonempty for infinitely many values of

s in P2. Then [0o,0i] contains points /s in Ls for all s belonging to an infinite

subsequence P'2 of P2. By 4.3.5, ws(/s) = 1 for all s in P2. Let 0 be the limit of

some convergent subsequence of such /s and let n = 0 if 0 = 0O and let other-

wise n>0 and 0 — we [0o,0i]- Then, by Lemma 5.3, ws(0-n) - c2(0 — n)

ws(/s) - c2ls — I — c2ls for all s in P'2 such that 9-n^l„. It follows that

w*(0 - if) gj 1 - c2m, implying that 0 e L.
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Now, I,eLscZ, and a(xs(ls)) - 0, s in P2, implying, by Lemma 4.2, that

a(x*(0)) = 0 and 0 e Z. Thus 0 e LnZ contradicting 0 e [0o,0i] <= J c T-LDZ.

It follows now from 4.3.3 that zs(r)> hence also z*(r), are absolutely continuous

on [0o,0i] for sufficiently large s.

Lemma 6.3. For every fixed t in T—LC\Z, the functions ix*(t) and z*(t)

are bounded over P2. Furthermore,

Proof. Assume, by way of contradiction, that there exists a point t'mT— L(~\Z

such that fi*(f) is unbounded over P2. Let J be the maximal subinterval of

T-LnZ to which t belongs and let t* = x*(J). By Lemma 6.2, the closed

interval joining t and x* contains no points of Ls for sufficiently large s in P2,

say for s in P'2. Thus, by 4.3.4, ns(t) and fif(t) are non-negative and nonincreasing

on that closed interval for all s in P'2. Since p.*(x*) g 1 for all s in P2, it follows

that t < t*.

Let now U be the set of all such points t belonging to J and let 0 be the least

upper bound of U. Clearly 0 ;£ t* and 0 e J. We have

(6.3.1) 0eZ.

Otherwise, for some positive 8,5< x^J) - 9, and for all sufficiently large s

in P2, we have a(xs(f))^0 over Jn[0-<5, 0 + 5], implying, by 4.3.4, that

/ts(r) and n*(f) are constant over J O [0 - S, 0 + 8]. Since [0 - 8, 6 + 5] con-

tains points of U and [0,0 + 5] <= J, this contradicts the definition of 0 as an

upper bound of U.

By the definition of U and of 0, ij/(t) = limsupP2/i*(t) exists for every t> 9,teJ

and, by 4.3.4 and Lemma 6.2, it is nonincreasing on (0,t*]. Let now

O<m<T!(J)-0, 0" = Min(r*,0 + n) and let 0' be a point in U such that

9 — 9'^n. Then, by Lemma 6.2, n*(t) is nonincreasing on [0',-r*] for sufficiently

large s in P2 and liminf^(ö'))"1 Pe^dx ^ lim infP2(ft*(0'))" VJ-VW^t + /
Since /z*(0') is unbounded (because 0' e U), it follows that

|z*(t)| ^ c2 + c2(ri - t0)(nt(t) + 1), s in P2, reT-LOZ.

hence, by Lemmas 5.2 and 6.2 (setting t = 9' and t' = t* in 5.2.2),

liminf \z*(9')\/ßt(9') ^ 2c2n.
P2

This last inequality implies that

^ 1 - 2c2n.
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Since n may be chosen arbitrarily small, it follows that 0 e I, contradicting, in

view of (6.3.1), our previous conclusion that 6eJ.

Thus p*(0> s in Pi> are bounded for every fixed t in J. By Lemmas 5.1 and

6.2 and since p*(r) is nonincreasing on J,

I z*(t) I = c21 zs*(t*) I + c2p*(Min(t,T*)) |i-t*|,   teJ,

for sufficiently large s in P2. Since | z*(x*) |   1, it follows that z*(r) are bounded

over P2 for every fixed t in J.

Now 0 = p*(t*) = 1, hence p*(Min(r,t*)) = 1 + ps*(f) and thus

|z*(0| = c2 + c2(ri-t0)(p*(0 + l).

Lemma 6.4.   There exists an infinite subsequence P3 of P2 and functions

p*(/), 2*(t) and v*(t) such that p*(i), z*(t) and v*(t) converge, for every t in

T-LnZ, to resp. p*(r), z*(f) and v*(t) = z*(t) + p*(r)ax(x*(t)) over P3. The

function p*(f) is non-negative and nonincreasing and the function z*(t) is Lip-

schitz-continuous on every closed subinterval of T—LC\Z.

Proof. Let 0 < n < let P' be an infinite subsequence of P2 and let J be

maximal. Consider the closed interval [0O, öj J, where 0O = t0(J) + «(t^J) — t0(J))

and 0t = t^J) - n(Ti(J) — t0(^)). By Lemma 6.2 and by 4.3.4, p*(r) are non-

negative and nonincreasing over [00,0j] for sufficiently large s and, by Lemma 6.3,

\j/(t) = limsupp2p*(r) exists over [0o,0i]- Thus i//(t) exists and is non-negative

and nonincreasing on [0o,0i], hence p*(r), s in P2, are nonincreasing and

uniformly bounded over [0o,0i]- By Lemma 5.2,

I z*(t) I ̂  c2 + c211 - t* I p*(Min (f, t*)),  t b [00,0,];

hence z*(i) are uniformly bounded over [0o,0i]. Furthermore, by Lemma 6.2,

z*(r) are absolutely continuous on [0o,0i] for sufficiently large s. It was observed

in 4.1 that the curves xs(t), teT, are contained in the compact set D for all s;

hence, by 2.2.4, |/*(xs(t),r,<rs(i))| and |bx(xs{f),t,os(t))\, teT, s = l,2,- are

uniformly bounded. It follows, by (6.1.2), that z*(r) satisfy a uniform Lipchitz

condition over [0o,0i] for all sufficiently large s.

Thus p*(r) and z*(r) are uniformly bounded and of uniformly bounded

variation over [0o,0i] for all s in P'; hence, by Helly's selection theorem, there

exists an infinite subsequence P" = P\P',J,n) of P' such that p*(r) resp. z*(r)

converge over [0o.0i] to limit functions p*(t) resp. z*(r) as s-> oo over P". The

function p*(r) is non-negative and nonincreasing and z*(f) is Lipschitz-ccntinuous

over [0o,0i].

We now consider a sequence nj,j = 1,2, •••, converging to 0. The set T— LOZ,

being open relative to T, is a denumerable union of maximal subintervals

J,, i=l,2,—. We now let P/ = P2 and, recursively, P' + 1= P"(Pj, Jf, n;),

i, ;' = 1,2,where P\+1 is the diagonal subsequence of P},P'2,---. etc. Finally,
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letting the first element of P3 be the first one of P{, the second element of P3

be the second one of P2, •••,etc, we conclude that n*(t) resp. z*(r) converge

over T— LO Z, as s -» oo over P3, to limit functions y*(t) and z*(r) which satisfy

the statement of the lemma.

Now v*(t) = z*(t) + n*(t) ax(xs(i)) for all s, limPxs(0 = x*(t), P3 is a sub-

sequence of P, xs(0 g D for t e Tand all s in P and ax(x) is uniformly continuous

over compact D. It follows that limP3v*(t) = v*(t) = z*(t) + p.*(t)ax(x*(t)) over

T-LAZ.

Lemma 6.5.  [ z*(t)| + n*(t) ^ 0 /or teT-LnZ.

Proof. Assume the contrary and let )S(t") = | z*(t") | + n*(t*) = 0 for some t*

in T-Lr\Z. Let J be the maximal subinterval of T-LnZ to which t*

belongs. It follows directly from Lemma 6.4 that /i*(t) is non-negative and non-

increasing over J. The set U = {t e J \ p*(t) = 0} is nonempty and 6 = inf U ^ t*.

It follows from Lemmas 5.2 and 6.2 that

(6.5.1) \z*(t)\^c2\z*(t')\ + c2\ J'p* (t)ö*t teJ, t'eJ.

Now, if 0 = t0(J) then /x*(t) = 0 for t > 0, t e J, and, by (6.5.1),

|z*(t*(7))|=)5(t*(j)) = l^c2|z*(t#)|,

contradicting the assumption that ß(t#) = 0. Thus 0 > t0(J).

Let 9j, j — 1,2, be an increasing sequence in J converging to 0. Then, again

by (6.5.1),

r*
|z*(0y)|^c2|z*(O| + C2 n\x)dx

= c2  \ n*(x)dx^c2(Q-0^)11*ißj).
Jb,

Since /t*(0y) ̂  0, we have

implying 0 g L.

We must also have 0 e Z. Otherwise, for some positive 5 and for sufficiently large

s in P3, a(xs(0) 0 over [0 - 5,0 + 8] n J and, by 4.3.4 and Lemmas 6.2 and

6.4, ju*(f) is constant over [0 - 8,9 + o"] n J. Since [0 - 5,0 + 5] n J contains

points of U and points to the left of 0, this contradicts the definition of 0 as inf U.

Thus 0eL n Z, contradicting the previous result that x0(J) < 0 £t*, hence

9eJ cT - LC\Z.

This completes the proof of the lemma.
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VII. The generalized Weierstrass /^-condition.

7.1. We have defined, in Lemma 6.4, functions p*(0, z*(0 and v*(i) over

T — LC\Z. We now complete their definition by setting

(7.1.1)   z*(t) = o (the null vector), p*(t) = 1, v*(t) = ax(x*(t)) for t e L n Z.

Lemma 7.2. There exists a function o*(t) from T to S such that

x*(0 m f(x*(t), t,o*(t)) a.e. in T,

z*(t) = -/J(x*(t),t,o*(t))z*(t) - p*(0bx(x*(t),t,<t*(0) a.e. inT-LnZ.

Furthermore, for every maximal J, z*(tx(J) — 0) = o if x^J) eLHZ.

Proof. Let £ be a euclidean space, T a closed interval of the real axis,

I'd, I T'| = I T\, Van open set in £, A a compact subset of Fand F(x,t),

xeV, teT, a compact and convex set in £. Assume that F(x, t) is uniformly

bounded for (x,t)eAx T and that F(x,t) is "quasi-continuous" [1, p. 119] (or,

in the language of Filippov [5, p. 76], "upper semi-continuous with respect to

inclusion") at (x,0 for all (x,t)eA x T', i.e., given any positive 5, there exists

a positive n(ö,x,t) such that F(x',t') is contained in a ^-neighborhood of F(x,i)

in Fprovided

|r-i'| + |x-x'|£ij($,x,0 and(x,t)6^ x T.

Letx/t). t e T, j = 1,2,---, be a sequence of curves, all contained in A, and such

that

(7.2.1) x/0 e F(Xj(t),t) a.e. in T, j = 1,2, - .

Let, finally, x(t) be a uniform limit, as j -> co, of the curves x;(r), t e T.

It was shown in [1, Theorem 3.1, p. 119] and, effectively, in [5, Theorem 1, p. 2]

that, in that case,

(7.2.2) x'(r)eF(x(r),r) a.e. in T.

Let now Fj(x,t), (x,i)eA x T, j = 1,2, be convex and compact sets which

converge uniformly, as j-^oo, to £(x,f) over A x T in the sense that, given any

positive b, there exists j(S) such that each of the two sets Fj(x, t) and F(x, t) is in a

^-neighborhood of the other provided j ^j(5). Let, furthermore, the assumption

(7.2.1) be replaced by

(7.2.3) x/0 £ Fj(Xj(l). t) a.e. in T, 7-1,2,-.

Then we can easily show that the conclusion (7.2.2) still holds. Let, indeed,

e be positive and let Fe{x,t) be the e-neighborhood of £(x,0- Then there exists

an integer j(e) such that Fj(x,t)c Fe(x,t) for (x,t)eA x T and j^j(e). Thus

x/0 e F,(x/0»0 a-e- in ^ f°r J = Ke)> whence it follows, by the quoted arguments,
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that x(t) 6 Fe(x(t),t) a.e. in T. Since e can be chosen arbitrarily small, relation

(7.2.2) now follows.

We now apply this result as follows. Let the infinite sequence P3 of Lemma 6.4

be s1,s2,---,let£=£nx£n,let Tbe an arbitrary nondegenerateclosedsubinterval

of T -LC\Z over which the functions /**.(/), ; = 1,2, ••• converge uniformly

to n*(t), let T = TO 7", V=V'xE„, Dz = Closure of ({z e £„ | z = z*(i) or

z = z*(r) for some s in P3 and some t e T}), A = D x Dz, x = (x, z),

F(x, t) = {(£, m) I £ =/(*, t, a), m = -fj(x, t,a)z- p.*(i) bx(x, t, a) for some a in S],

(x,z,t)eDxDzxT, Ffic,t) = {(£, w)]c; =/(x, f, n = -/J(x, f, a)z-H*(t)bx(x, t, a)

for some a in S}.

Let, furthermore, xft) — (xs.(t),z*.(t)),t e J,; = 1,2, ••• .Then it easily follows

from 2.1,2.2,4.1, (6.1.2), 6.4 and our previous argument that

x(t) e F(x, t) a.e. in T

or, equivalently, there exists a function a*(t) from TO T to S such that

x*(r) = /(x*(r),f,<T*(0) a.e. in T,

z*(0 = -/J(xn0,^ff*^*(0-/**(06,(x*(0,^ff*(0)a.e.inr.

Since, as an easy consequence of Egoroff's theorem, T-LnZ can be covered

(except possibly for a set of measure 0), by a finite or denumerable collection of

intervals like T, it follows that these differential equations hold a.e. in T - L OZ.

We now complete the definition of <r*(t) by setting a*{t) = rj(r), t e L O Z, where

a(t) is as defined in (4.1.2).

Finally, it was shown in 6.1 that w*(t) — c2t is nonincreasing over T,

hence it follows from the definition of L that, for every maximal J such

that zA[J)eL, we have w*(xl(J) — 0) = 1. Since, by Lemmas 6.4 and 6.5,

w*(t) = ju*(r)/(| z*(t) I + ß*(t)) over J and ji*(r) is nonincreasing over J, it follows

that I z*(xt(J) - 0) I = o if Ti(J) e L.
This completes the proof of the lemma.

Lemma 7.3  (The generalized Weierstrass F-condition).

»*(0 -f(x*(t),t,o*(t)) = Min »*(0 -/(x*(f),/,c7) a.e. in T
<teS

(wnere t?*(t) = z*(t) + /i*(t)a*(x*(0)).

Proof. We shall first prove that the relation holds a.e. in T — LC\Z. By

Lemma 6.4, z*(r) is absolutely continuous and p*(t) is nonincreasing over every

closed subinterval of T — L nZ and, by 4.1, x*(t) is absolutely continuous over

T. It follows that v*(t) is continuous a.e. in T - L nZ. By Lemma 6.2 and 4.3.4,

^s*(r) is nonincreasing over every closed subinterval of T — L n Z for sufficiently

large s in P3; hence, by the inequality of Lemma 6.3, z*(t), and consequently
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v*(t), are uniformly bounded over every closed subinterval of T — LnZfor

s in P3.

By 4.3.6 and 4.3.7,

(7.3.1)   v:(t)-f(xs(t),t,as(t)) = BfCÖ-jtfÖ = Min v?(t)f(x,(t),t,o) a.e. in T
ffeS

for all s in Px.

Let Tt be the subset of T" — L nZ over which the above relation is satisfied,

over which t>*(r) is continuous and over which x*(i) exists and satisfies the first

equation of Lemma 7.2. Clearly | Ti | = | T - L OZ|. Let OeTu 0<rt and let

h be positive and sufficiently small so that [0,0 + h] a T — L n Z.

We have

/•e+ii

x*(0 + A) - x*(0) = lim (xs(0 + h) - x5(0)) = lim      xs(r)dx;
p.i p3 Je

hence,

-iü*(0)-(x*(0 + n)-x*(0))

(7.3.2)

=iiml f+ w*m*)Hw-vfäy*M^
p3 " Je

Now |xs(t)| ^ Ci a.e. in T and i?*(t) are, as shown above, uniformly bounded

over [0,0 + n] for s in P3. By Lemma 6.4, limP3i>*(f) = t?*(r) over [0,0 + h]. It

follows thus from (7.3.1) and (7.3.2) that, for every a in S,

-jU*(0) • (x*(0 + h)- x*(0)) £ 1 J98+V(t) •/(x*(t),t,o-)c/t

+ yj |p*(0)-»*(T)|dt.

By 2.2.3 and the definition of Tx, v*(t) and/(x*(0,<,<t) are continuous at 0

and x*(i) is differentiable at 0. We conclude, letting h -* 0, that

v*(0) ■ /(x(0),0,o-*(0)) = v*(9) ■ x*(0) ̂  v*(0) ■ /(x*(0),0,<t)

for every a in S and every 0 in 7\.

We must now consider the set LnZ. Since, by 6.1, w*(r) — c2t is nonincreasing,

it follows easily that w*(i) = 1 a.e. in L n Z. Let now i;s*(f) = vs (t)/( \ zs(t) \ + ps(t))

for t e L n Z and for s in Then limP3i;s*(f) = ax(x*(0) = »*(<) a.e. in L OZ and

|t>*(r)| are, for s in P3, uniformly bounded (by 1 + Maxx6D |ax(x)|) over LnZ.

Let T2 be the subset of L n Z over which x*(<) exists and satisfies the first equation

of Lemma 7.2, over which relation (7.3.1) is satisfied and such that
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lim ]-\L HZ n[0,0 + A]I = 1

for 0e T2. It is well known that the last equality holds a.e. in LdZ; hence,

|r2| = |L nz|.
Let now 0 e T2, ft >0,0 + ft e T and let T3 = [0,0 + A] nT2 and T4 = [0,0 + A] - T2.

We have

\-v*(6) ■ (x*(0 + A) - x*(0)) = lim-j- f + lim ^ v*(8)- f xs(t)c/t,

the integrand of the integral over T3 being the same as on the right-hand side of

(7.3.2). We then derive, in the same manner as before, the relation

-|U*(0) • (x*(0 + A) - x*(0)) ̂  1 ^ v*(x) -f{x*{x),x,a)dx

Since limn_0(l/A)| T31 = 1 and lim„_0(l/A)| T4\ = 0, we may complete the

proof in the same manner as before.

VIII. Support (transversality) conditions. Completing the proof of Theorem 3.1.

Lemma 8.1. Either alternative 3.1.1 of Theorem 3.1 is satisfied or there

exists a non-negative number y1 such that

(8.1.1) (7'^ - z^fl-c^tfX? = Min (y% - z*(r1))c1,{(^1

and

(8.1.2) v*(t0) ■ c0<s(O$* = Min v*(t0) ■ c0>#S)?o •

Proof. We have shown, in 5.1, that either the alternative 3.1.1 of Theorem

3.1 is satisfied or there exists an infinite sequence Pl of integers s for which the

second alternative of Lemma 4.3 holds. Consider, in the latter case, the statement

4.3.9 of Lemma 4.3. If, over some infinite subsequence P3 of P3, yl ^ 0 and

limP31 zs(tt)\/y\ = 0, then it follows from 4.3.9 that

where

£* = lim £li5 = lim£li5 (see 6.1).
pi p;

In this case, therefore, the alternative 3.1.1 of Theorem 3.1 is also satisfied.

In view of the above argument it remains to consider the case when the second
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alternative of Lemma 4.3 holds over an infinite sequence Pt and, over some

infinite subsequence P3 of P3, |z5(ii)| # 0 and y//1 zs(tL) | are bounded.

If (jelnZ then z*(t1) = o and relation (8.1.1) is trivially satisfied by setting

y1 = 0. If *! e T — LHZ, let J be the maximal interval to which tt belongs and

let as = I zs(t*(J)) I + ps(x*(J)), s in P3. Since, by 4.3.2, as ± 0, since

zs(ri)/«s —z*(ri)^z*(ri) over ^3 and since ysV|zs(fi)| are bounded, we may

find an infinite subsequence P3 of P3 and a non-negative y1 such that lim/Jy//as = y1

and relation (8.1.1) now easily follows from 4.3.9.

If t0 e T-LH Z then relation (8.1.2) is derived from (4.3.8) by dividing both

sides by | zs(t*(J)) | + /zs(t*(J)) (where J is the maximal interval containing r0)

and passing to the limit over P3.

If t0 6 LnZ then, by the definition of L, either w*(i0) =1 or limsupt_(o+0w*(t)

= 1. Since, by 6.1, w*(t) — c2t is nonincreasing over T, it follows that w*(f0) = 1,

i.e., limF2^(r0)/(|zs(t0)| + ps(t0)) = 1. This implies that limp2i>s(r0)/(|zs(r0)| + ns(t0J)

= ax(x*(t0)) = v*(t0). Relation (8.1.2) is now derived from (4.3.8) by dividing

both sides by |zs(t0)| + ^Xro) and passing to the limit over P2.

8.2. Completing the proof of Theorem 3.1. Let x(t) = x*(t),t e T. We have

shown, in 4.1 and in Lemma 4.2, that x(t) exists and is a relaxed minimizing curve

with respect to a(x). By Assumption 2.1 and by [1, Theorem 2.2, p. 113], x(t)

can be uniformly approximated by solutions of the differential equations (1.1).

We shall now show that, if alternative 3.1.1 of Theorem 3.1 does not hold, then

alternative 3.1.2 is satisfied by setting M = LnZ, a(t) = a*(f), p(t) = p*(t),

z(/) = z*(0, teT. Statements 3.1.2.1 and 3.1.2.2 follow directly from Lemmas

6.4 and 6.5 and from the definition of p*(t) and z*(r) on LOZ. By statement

4.3.4 of Lemma 4.3, jts(r) are, for all s in P3, constant over every subinterval of

T— Zs and ps(h) = 0. Now, we easily verify that every closed subinterval of

T— Z is contained in T- Zs <= T— Ls for all sufficiently large s in P2 and in

P3. Thus, p*(t) is constant on every closed subinterval of T— Z. Statement

3.1.2.3 now follows from Lemma 6.4.

Statements 3.1.2.4, 3.1.2.5 and 3.1.2.6 follow from Lemmas 7.2, 7.3 and 8.1,

respectively.

8.2.1. Proof of statement 3.1.2.7. We have just shown that either alternative

3.1.1 of Theorem 3.1 holds or alternative 3.1.2 is satisfied through 3.1.2.6. Assume

now that alternative 3.1.1 does not hold nor is 3.1.2.7.1 satisfied.

Let stf be the set of points 6 in Twith the property that

|a(x(0))| + |a,(x(0))|#O,

z(0) # - yax(x(9)) for all y ̂  p(0) if 0 e Z,

I z(0) + w(0) ax(x(6)) |^Oif0eT-Z.

We shall show that s# contains tu that for every 9,0e^nZ, 0>t0, there
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exists a positive e(0) such that [0 - e(0),0] <= si and that every subinterval K

of T— Z either belongs to si or has no points in common with si. Then, letting

t*= t0ii si = Tand t* = sup(T- j/) if si ± T, we can easily verify that state-

ment 3.1.2.7.2 follows.

We now proceed to prove the assertion about s/ which we have just stated.

8.2.1.1. tiesf.

We have lafX^))! + I^Wi))! =£0 since, otherwise, 3.1.2.7.1 would be triv-

ially satisfied with y° = 0. If t^T-Z, then, by 3.1.2.1 and 3.1.2.3,

|z(ri) + P(fi)fl*(x(ri))| = I z(h) \ 0. If i, eZ, assume, by way of contradiction,

that z(rt) = —yaJJi) for some y ^ p(fj) ^ 0. We cannot have y = 0 since, by

3.1.2.1, I z(tj)| + p(rt) > 0. We cannot have y > 0 either, since then, by 3.1.2.6,

the statement 3.1.2.7.1 is satisfied (with y" = yl/y), contrary to assumption.

Thus t^esi.

8.2.1.2. Let K be a subinterval of T— Z. Then K <= si or K n is empty.

By 3.1.2.3, p(<) is constant on K. Let u(0 = z(r) + p(r)ax(x(0), reiC, and

assume first that K is closed. Then, by 3.1.2.2, r(0 is absolutely continuous on

K. It follows now easily from 3.1.2.4 that

«5(0 = -fl(x(t), t, o-(0) v(t) a.e. in K,

hence v(i) either vanishes at every point of K or | v(t) | 0 for every t in K. Thus

Xcji/orXnj/is empty.

Since the last statement is true for any closed subinterval K of T— Z, it remains

true for any subinterval (convex subset) of T—Z.

8.2.1.3. Let 9e(Z-L) nsi, 0 > r0. Then [0 - e(0),0] <= si for some

e(0)>O.

Let J be the maximal subinterval of T— LnZ to which 0 belongs. Since

|ax(x(0)| is continuous and | | ^ 0, there exists e' = e'(0) > 0 such that

I ax(x(t)) I # 0 on [0 - e', 0] e J. If, for some e", 0 < e" < e', [0 - e", 0) e T - Z

then, by 3.1.2.2, | y(0 - 0) | = 0 implies z(0) = - p(0 - O)at(x(0)). Since, by

3.1.2.3, p(0 is nonincreasing on J, this contradicts OeZnsi. Thus

[0-e",0] <=si.

It follows that if 0j, / = 1,2, is an increasing sequence in J such that

0j 6 T— Z — si, j = 1,2, •••, and 0] -» 0 then there exists an increasing sequence

0j, / = 1,2, such that 0,- e Z — si, j = 1,2, •••, and Qj->0. Assume, therefore,

by way of contradiction, that such a sequence 0j exists in [0 — e',0], hence that

there exist y} £: p(0j), j = 1,2, •••, such that z(0y) = - yJflx(x(0J)), j = 1,2, •••.

By 3.1.2.2 and the continuity of ax(x(t)), z(0j)-» z(0) and ax(x(6j)) flx(x(0)).

The non-negative y,- must be bounded, since, otherwise, |aJ((x(0))|

= limj^^ |ax(x(0y))| = 0, contradicting 0ej/ nZ. Thus y* = limy^ exists and

we have z(0) = - y*ax(x(6)). Since y} ̂  p(0y) and p(0 is nonincreasing on J.

have y*^p(0), thus contradicting 0ej/nZ.
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It follows that there exists e(0) > 0 such that [0 - e(0),0] c si.

8.2.1.4.  Let 0 e L O Z D ̂ , 0 > r0. Then [0 - £(0), 9]c^ for some e(0) > 0.

Since0eJ2/ nZ.thereexistsapositivee' = e'(0)suchthat|a;i(x(t))| > 2-|a;c(x(0))| > 0

for 0 - s' £ t g 0. Let e = e(0) = Min(e', | ax(x(6)) |/4c2), where c2 is as defined

in Lemma 5.2.  Let 0 - e g r# ^ 0.

If t#eLnZthen z(i*) = o # - yax(x(t*)) for all y ̂  n(t*) = 1.

If r* e T- L HZ, let J be the maximal subinterval of T— LnZ to which t*

belongs. It follows easily from 3.1.2.4 (or from Lemmas 5.2 and 6.2;see(6.5.1))

that

I z(t) \£c2\z(t') I + c2 I fi(x)dz ̂ c21 z(t') I + c2(t - t')M0

for teJ, t'eJ, t< t'.

We have, by 3.1.2.4, z{xy(J) - 0) = o. Since 0eL nZ, we have t^J) g 0. It

follows thus that

W)\ ^c2(t,(J)- t*)/i(t#) ^c2 e/i(t') £ ^ |ax(x(f*))| |^)|.

By 3.1.2.1, /tit*) > 0, hence

z(t#) ^ -ra,(x(t*)) for all y

This completes the proof of 3.1.2.7.

8.2.2. Proof of statement 3.1.2.8. Assume, by way of contradiction, that

the assumption of 3.1.2.8 is satisfied and that there exists a point 0eM, 0 > t0.

Since M = LC\Z <=. Z, it follows from our assumption that there exists a number

e,0 < e < 0 — t0, such that

(8.2.2.1)    ' aMt))\~\\Ö*(X(0))I > ° and Mln fl*W0) -/WW)^ 5 1?

for allTeTand0-e^f ^0.

If [0-e, 0]<=M, then, by 3.1.2.4, 3.1.2.5 and (8.2.2.1),

(d/di)a(x(t)) = ax(x(t)) -f(x(t), t, a(t)) = Minff6S ax(x(t)) -f(x(t), t, a) ^ iß a.e. in

[0 — e,0], contradicting [0 - e,0] <= Mc Z. It follows that there exists a point

0' in [0-8,0] n(T-M).

Let J be the maximal interval to which 0' belongs. Then TjfT) ^ 0 and tx(J) e M.

Since, by 6.1, w*(f) — c2t is nonincreasing over T, we have w*(ti(J) — 0) = 1.

By 3.1.2.1,1 z(f) I + MO > 0 for all t e T; hence w*(t) = limP3/is*(0/(| z*(t) | +
= /x(0/(|z(0| +M0) for teJ. We conclude that C(0 = z(0/(|z(0| + MO)
+ tv*(0a»(x(0) converges to flx(x(Tj(J))) as t-^T^J), re J.

We have, by 3.1.2.4 and 3.1.2.5, C(f)-/(x(0,<x(0) = Min„s C(07W0.<0 a.e.
in [0-£,0]. Since £(zl(J) — 0) = aJ^xix^J))), it follows that there exists a number
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g' > 0 such that [^(J) - b'.t^J)] c [0-e,0] and | £(0-a,(x(0) | ^ (l/8)|)S|/c1

on foOO-e', tt(j)]; hence, by 2.2.4, 3.1.2.4, 3.1.2.5 and (8.2.2.1),
(d/dt)a(x(t)) = at(x(f)) • /WO, <K0) ̂  C(0 • /WO, «, <*0) - (1/8) #9
= MinffeS«0 7WO,',<0 - l(/8)7 £ Mirwrf flxW0)-/W'Uff) - (1/4)/?
£ (1/4)/? < 0 a.e. on [t^J) - s'.t^J)]. This contradicts a(x(0) ^ 0 over

[Ti(J) - s',Tj(J)] and a(x(Ti(J))) = 0.

This completes the proof of statement 3.1.2.8 and of Theorem 3.1.
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