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In this paper we study the spaces of weakly and strongly analytic functions

with values in a locally convex topological vector space F and we look for con-

ditions on F such that these two spaces (which are different in general) should

coincide.

In the case of vector valued C°° functions and of vector valued holomorphic

functions, Grothendieck proved (cf. [4; 7]) that it suffices to assume F complete

(even less, quasi-complete, i.e., closed bounded sets are complete) to conclude

that the two notions of weakly C00 (resp. weakly holomorphic) functions and

strongly C™ (resp. holomorphic) functions coincide.

As we show with an example (cf. §2) the sole condition of completeness of F

does not imply strong analyticity from weak analyticity. On the other hand, it is

known that if F is a Banach space then the two notions of real analyticity are the

same [3]. For these reasons it is natural to raise the question of finding less

restrictive conditions on F such that this occurs.

The problem presents two aspects, one concerning the algebraic identification

of the two spaces of analytic functions and the other the identification both in the

algebraic and topological senses when these spaces are equipped with natural

topologies. In order to deal with the algebraic case, we introduce the definition

of quasi-(^^") spaces (cf. §2, Definition 2) which generalizes the notion of (ß!F)

spaces introduced by Grothendieck in [5]. A quasi-^J5") space still has one of the

important properties of (ß!F) spaces, namely, its strong dual is a (J^) space, a

a property we use in an essential way to prove Theorem 1.

The identification in the algebraic and topological senses can be proven when

F is a {ß!F) space. The proof of this result was suggested by a similar result of

Grothendieck (cf. [6, Chapter II, p. 82, §4]) concerning spaces of vector valued

distributions. However, new difficulties arise from the fact that the topology of

the space of strongly analytic functions is a generalized rather than a strict

inductive limit topology (cf. [1, §11]), i.e., defined by an increasing sequence of

spaces each of which induces in the previous one a topology weaker than the

given one.
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§1 is devoted to definitions, notations and terminology. We begin §2 by defining

weakly and strongly real analytic functions with values in a complete space and

we give an example of a complete space in which the two notions are different.

We present two lemmas stating, respectively, criteria for strong analyticity and

for weak analyticity which we use throughout this paper. Next we define quasi-

(i^J5") spaces and prove Theorem 1 which states that the two spaces of analytic

functions coincide when £ is a quasi-^J5") space.

In §3 we discuss the problem of identification in the algebraic and topological

senses of the two spaces of analytic functions, using results of Grothendieck's

theory of topological tensor products.

In §4 we apply the results of the previous sections to study weak and strong

analyticity of families of operators depending upon a real parameter. We prove

that if £ is a barrelled space, £ a complete quasi-(^#") space and (T,) a family of

continuous linear maps from £ into £ depending upon t, then the various notions

of analyticity we can define for the family (T,) (cf. §4, Definition 4) are the same.

This question, as well as this paper, was motivated by the reading of a recent

paper of Browder [3].

We would like to thank Professor Felix E. Browder for several helpful discus-

sions and suggestions.

1. Notation and terminology. In what follows the topological vector spaces

that we consider are always locally convex and separated over the field of complex

numbers. If £ is a such space, we denote by £' its dual and by s(£,£') (resp.

s(£',£)) the weak topology on £ (resp. £'), given by the natural pairing between

£ and £'.

If £ and £ are two topological vector spaces, we denote by £(£,£) the space of

all continuous linear maps from £ into f. If (5 is a set of bounded subsets of £,

we denote by £(§(£, £) the space £(£,£) endowed with the topology of the uniform

convergence on the sets of © (also called the topology of ©-convergence on

£(£,£)). When © is the set of all finite subsets of £ we obtain, as it is well known,

the topology of simple convergence and the space £(£,£) endowed with this

topology is denoted by Ls(£,£). When 9 is the set of all bounded sets of £ the

topology obtained is that of the uniform convergence on bounded sets of £ and is

denoted by Lb{E, F). In particular, E's (resp. E'b) will be the dual of £ with the weak

topology (resp. strong) topology.

A topological vector space is called barrelled if every weakly bounded set of its

dual is equicontinuous. An equivalent definition is the following: £ is barrelled

if for any topological vector space £, any subset M of £(£,£) bounded in the

topology of simple convergence is equicontinuous.

In [1], we discussed the space s/(K) whose definition and most important

properties we recall here. Let K be a compact subset of R (for convenience of

notation we shall consider throughout this paper functions of one variable, the
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passage to the case of n variables being straightforward) and denote by stf(K) the

space of classes of holoraorphic functions defined in open sets of C containing K,

two functions being identified if they coincide in an open neighborhood of K in C.

If Q is an open set of C, denote by (Q) the space of complex analytic functions

on Q endowed with the topology of uniform convergence on compact sets of £2.

On s/(K) we define the inductive limit topology of the spaces 3f(Q). With this

topology s2(K) is a generalized (=Sf^) space, which is a Montel, barrelled,

complete, bornological space. If M is a bounded set of stf(K) then the functions

of M can be extended as complex analytic functions to a suitable open neigh-

borhood Q of K in C and the set of the extended functions is bounded in Jt(Q)

(cf. [1, §11]). Furthermore, s/(K) is a {ß&) space (cf. [5, p. 80, example (b)]).

2. Analyticity and weak analyticity.

Definition 1. Let U be an open set of R, F a complete topological vector

space and <p a map from U into F. We shall say that:

(i) $ is weakly analytic on U if, for each t0eU and f'eF', there exists an

£ = e(fo>/') > 0» such that

(1) <<Kt)J'> = ZaP(f'Kt-to)p,

the series being convergent for 11 — t01 < s;

(ii) <p is strongly analytic or analytic on U if, for each t0 e U, there exists

an s = e(t0) > 0, such that

(2) <p{t)=^ap{t-tor

where ap are elements of F, the series converging in Ffor 11 — t01 < e.

Obviously (ii) implies (i). Also if $ is analytic in one of the above senses then

(p is C00in the corresponding sense; furthermore one can easily check that

(3) ap(f) = (l/p\K<p<p\t0),f'},

(4) ap = (l//>!)tf <'>(*„).

Grothendieck has shown (cf. [4; 8]) that for vector valued functions defined

in an open U with values in a complete space F the notions of weak C "differen-

tiability (i.e., for each f'eF' the numerical function <t>/-(t) = <[(t>(t),f')

is C") and of C00 differentiability coincide. We are going to investigate under

what conditions on F it is possible to conclude that the two above definitions

coincide. The following example shows that, as opposed to what happens in the

differentiable case, the assumption that F is complete is not enough to derive

analyticity from the weak analyticity. Consider the space stf(K). Its strong

dual (-c/(K))' is Frechet space, since it is the dual of a {33F) space (cf. the remark

following Definition 2). Consider now the following map ö : t e K-+ö, e (<s/(X))',

where <5, is defined by d,(g) = g(t), for each g e stf(K). It is clear that Ö is weakly

analytic but not analytic.
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The following two lemmas give us a criterion of analyticity and of weak analy-

ticity, respectively. Lemma 2 is the analogue in the analytic case of a similar one

for the differentiable case due to Grothendieck (cf. [4, p. 233, Proposition 14]).

We present the proofs here for the convenience of the reader.

Lemma 1. Let F be a complete space and <j>: U -*F. Then <p is analytic at

t0eU if and only if <p is C00 and there exists a real number r > 0 such that the set

^ = {(l/p!)^(p)(f0)rp, p = 0,1,2,-}

is bounded in F.

Proof. The necessity is an immediate consequence of the definition of analy-

ticity. Conversely, denote by B the closed, circled convex hull of the set A and let

FB be the subspace of F spanned by B. Define the norm

|| m |[ =Inf{A>0:u£lP}.

It is well known (cf. [4, p. 190, Lemma 1]) that FB is a Banach space and that

the induced topology of F is coarser than the topology given by the norm.

We have now for all t e U such that 11 — t01 < r :

(l/p!)0(rt(to)(< - t0Y = (l/p\)^\t0) r"((t - t0)/r) "e ((t - f0)/r)pB.

It follows from the definition of the norm in r B that

\\(l/pV<t>ip)(t0)(t-t0)p\\^(\t-t0\/ry

and this implies that the series Z(l/p!)<£(p)(to)0 — t0)p converges in FB, hence

n F, for 11 - f0| <r, q.e.d.

Lemma 2. Let U be an open set of R and F a complete space. The following

conditions are equivalent:

(i) <p :U -* F is weakly analytic;

(ii) for each compact subset K of U, the map $ :F' -> s/(K) defined by

(5) $(/')(0 = <4>(0,/'>

transforms equicontinuous sets of F' into bounded sets of stf(K).

Proof. Condition (ii) implies condition (i), trivially, so all we have to prove

is that (i) implies (ii). Let A be a weakly closed equicontinuous set of F' and

define F'A as the subspace of F' spanned by A with norm

||/'||jl = Inf{A>0:/'e^}.

With this norm F'A is a Banach space, for our hypothesis on A implies that A is

weakly compact, hence complete (cf. [4, p. 190, Lemma 1]). The map <J> is
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obviously continuous from F'A into s#(K), where <stf(K) is endowed with the

topology of pointwise convergence. By applying the closed graph theorem as

proven by Grothendieck (cf. [4, p. 271, Theorem 2]), which states that a linear

map from a Frechet space into a (&tF) space is continuous if and only if its

graph is closed, we conclude that <$> is continuous from F'A into stf(K) with its

inductive limit topology. Consequently, $(A) is a bounded set in the natural

topology of stf{K), q.e.d.

Corollary. Suppose F is a complete space and let (p:U->F be a weakly

analytic function. Then 4> is continuous with respect to the weak topology

s(F',F) of F' and the weak topology of ssf(K).

Proof. By Lemma 2, 3> maps equicontinuous sets off into relatively compact

sets of s#(K), since stf{K) is a Montel space. As one can see, restricted to each

equicontinuous set A of F', <J> is continuous from A in the topology induced

by s(F',F) into stf(K) endowed with the pointwise convergence topology. It

follows that the restriction of <5 to A is continuous with respect to the topology

s(F',F) and the weak topology s(s/{K), (s/(K))'), because, Q>(A) being weakly

relatively compact, on <b(A) the pointwise convergence topology and the weak

topology s(jtf(K), (jz?(K))') coincide. It follows that for each continuous linear

functional T on s#(K), the linear functional T o $ on F' restricted to equi-

continuous sets A of F' is continuous with respect to s(F',F). Now, F being

complete, we apply Grothendieck's criterion for completeness of locally convex

topological vector spaces, which states that F is complete if and only if each

linear functional on F' whose restrictions to equicontinuous sets of F' are con-

tinuous in s(F',F) is continuous in F' endowed with s(F',F) (cf. [4, p. 129,

Corollary 2]). Hence, T o 0 is s(F', F)-continuous in F' for each T in the dual of

stf(K), or, equivalently, that $ is continuous from F' endowed with the weak

topology s(F',F) into s/(K) with the weak topology s{stf{K), (•£/(£))'), q.e.d.

Lemma 2 and its corollary state that the space of weakly analytic functions

defined on a compact subset KoiR with values in a complete space F has a natural

identification with the space of all linear maps from F' into stf(K) continuous in

the topology s(F',F) of F' and the weak topology of &f(K) and transforming

equicontinuous sets of F' into relatively compact sets of &?(K). It has been shown

(cf. [9, Expose 8, p. 4]) that this last space can be identified with the space

L(F'c,stf(K)) of continuous linear maps from F'c into J&{K), where F[. denotes F'

with the topology of uniform convergence on compact subsets of F.

Now, denote by stf(K,F) the space of vector valued real analytic functions

defined on K with values in F. The problem we want to consider is to find con-

ditions on F such that the two spaces j/(K,F) and L(F^,^f(K)) coincide.

We can solve it in the case when the strong dual F'b of F is a Frechet space

(i.e., metrisable and complete). In [5], Grothendieck introduced and studied

extensively the so-called (3^) spaces (see Definition 3, below). Among their



386 J. BARROS NETO [September

properties, let us mention that strong duals of (ß2F) spaces are spaces. We are

going to define here another class of spaces that we call quasi-(^^) spaces, for

which the strong dual is still a space.

Definition 2. A topological vector space F is called quasi-(ß!F) if it verifies

the two conditions:

(1) there exists a fundamental sequence of bounded sets in F (i.e., any given

bounded set is contained in some bounded set of the sequence);

(2) ifif'd<s a bounded sequence in Fb then (/j) is an equicontinuous set of F'.

A [ß!F) space (cf. Definition 3) is quasi-(^^") and it is reasonable to expect

that the class of quasi-(^0 contains as a proper subset the class of {ß&) spaces.

However, we do not know an example of a quasi-(^^") space which is not

(ßF).
It follows from Definition 2, that the strong dual of F is a Frechet space. In

fact, using condition (1), we can deduce that F'b is metrisable just by taking

polars of the sets belonging to the fundamental sequence. Consider, next, aCauchy

sequence (/J) in F'b. Since (/J) is bounded in F'b it follows by (2) that this sequence

is an equicontinuous set of F'. On the other hand, (f'i) converges weakly to a

linear map/' on F' which has to be continuous since it is an element of the weak

closure of an equicontinuous set. Finally, (/J) being a Cauchy sequence in Fb and

converging weakly to /', converges strongly to /' and this proves that F'b is

complete.

Theorem 1. Let U be an open set of R and F be a complete quasi-{ß2F) space.

If (p defined on U with values in F is weakly analytic, then $ is analytic.

Proof. 1. By the corollary of Lemma 2, we know that for each compact subset

K of U, the map

O :/'eF'-» <pr(t) = <#»),/' > e ̂ (K)

is continuous with respect to the topology s(F',F) of F' and the weak topology

of stf(K). Since F'b is a Frechet space we can apply the closed graph theorem

(cf. [4, p. 271, Theorem 2]) and conclude that <E> is continuous from F'b into s/(K).

2. As we remarked before, s/(K) is a (9HF) space, hence its strong dual is a (#")

space. If we consider the bilinear functional B(f, T) defined on F{, x (#/(K))' by

B(f',T) = <<&(/'), F>

where < ,> denotes the pairing between $#(K) and its strong dual (sJ(K))', it is

clear that B is continuous in each variable separately. Since F'b and (s/(K))' are

both Frechet spaces, it follows by the Banach-Steinhaus theorem (cf. [2, Chapter

III, §4, Proposition 2]) that B is continuous in both variables and hence that O

maps a suitable neighborhood of zero W in F'b into a bounded set of sf(K).
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3. Consider the bounded set

{<&(/') -+,.:f e W}

in s/(K). By the property of bounded sets of s/(K) recalled in §1, there exists an

open neighborhood Q of K in the complex plane such that all the functions

(j>f,f'eW can be extended to complex analytic functions on Q and the set of

such extended functions is bounded in Jf(Q). We keep the same notation <j)f,for

the extended function.

It follows by Cauchy's integral formula that there exist two positive constants

Cw and k such that

(6) \4>(/Kto)\^Cwp\kp for Mf'eW

where r0 is an arbitrary but fixed element of K and <j)f) is the pth derivative of (j)f..

4. To achieve the proof of the theorem, all we have to prove, by Lemma 1, is

that the set

A = {{f/p^\t0)r", p = 0,1,2,-},

where r = l/k, is bounded in F. For this, given a zero neighborhood V in F we

have to find a A > 0 such that XA c V. Since zero neighborhoods in F correspond,

by polarity, to equicontinuous sets in F' and vice versa, this amounts to showing

that, given an equicontinuous set H in F' there exists an M > 0 such that:

(7) |<(l/p!)^(p)a0)^/'>| = M

for all f'eH and p = 0,1,2,Let H be an equicontinuous set in F'. Being

equicontinuous, H is bounded in Fb' and thus there exists a p > 0 such that

pH <= W, where W is the zero neighborhood in F6' defined above. It follows from

(6) that

I qbffito) \^CW- p\k>, for all /' eH, p = 0,1, -.

Hence

I <( 1/p!) 4>(p)(r0) r", pf > I ̂  Cw, for all/' e H, p = 0,1, • • •

and from here we get (7) by taking M = (1/p) • Cw, q.e.d.

Using the remarks just folowing Lemma 2 and its corollary we can say that

under conditions of Theorem 1, the space s/(K, F) can be identified in the algebraic

sense with the space L(F'c,s/(K)) of weakly analytic functions defined on K with

values in F. In the next section we are going to define natural topologies on these

spaces and to find conditions on F in order that they coincide.

3. The space j/(K)®„F. The natural topology on L(F'C, s?(K)) is that of the

uniform convergence on equicontinuous sets of F'(cf. [9] for a detailed discussion
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of this space). Denote by Le(F'c,s£(K)) the space L(F'c,s/(K)) equipped with this

topology. It is a complete space (cf. [9, Expose 8, Proposition 5]).

Consider now the tensor product s/(K) ® F. It can be identified in an obvious

way with a subspace of L(F'c,jtf(K)) and it is known that this tensor product is

dense in Le(F'c, s/(K)) (cf. [9, Exposes 14, 15]). Denote by jtf(K)® eF the comple-

tion of s/(K) ® F with respect to the induced topology of LE(F'C,^(K)).

On the other hand, we can define on stf(K) ® F the projective tensor product

topology (or 7c-topology), namely, the unique locally convex topology on s/{K)®F

whose dual is the space of all continuous bilinear functional on s/(K) x F

(cf. [6, Chapter I, §1]). Let stf(K) ®n F be the complexion of s/{K)®F with

respect to this topology. It is known that jtf(K) is a nuclear space (cf. [6, Chapter

II, p. 48, Corollary 1]) which amounts to saying that s/(K) ®,F = s?(K) ®£F,

this identification being in both the algebraic and topological senses. We can

summarize the above results in the following

Theorem 2. Let U be an open set of R, K any compact subset of U and F a

complete space. Then the space of weakly analytic functions defined on K

with values in F can be identified with any of the spaces

L£F',s/(K)) = sf(K) ®£F = s/(K) ®nF.

On stf(K,F) let us introduce the limit inductive topology of 3f(Q,F) where Q

is an open set in C containing K and Jf(D,F) the space of holomorphic functions

with values in F endowed with the topology of uniform convergence on compact

sets of Q. By remarking that J4?(Q,F) = J^(Q) ®KF (cf. [6, Chapter II, p. 81,

Example 2]) one can prove that the subspace stf(K) ® F is dense in stf(K, F).

From this fact and Theorem 2, in order to prove that the space ^/(K,F)can be

identified algebraically and topologically with the space of weakly analytic func-

tions defined on K it is enough to prove that on stf(K) ® F the 7t-topology and the

induced topology of ^(K,F) coincide. This we can prove when F is a quasi-(^^")

space, verifying the additional property (P) (cf. Lemma 3 below). In order to

motivate the introduction of property (P) let us recall the definition of {ß3F)

spaces and prove one of their special properties.

Definition 3 [5, Definition 1]. A topological vector space F is called

if the following two conditions are verified:

(1) there exists a fundamental sequence of bounded sets in F;

(2) if (Mt) is a sequence of equicontinuous sets of F' such that M = \JiMi is

bounded in F'b then M is equicontinuous.

We need the following known property of {ßZF) spaces.

Lemma 3 [5, Lemma 2]. Suppose F is a (ß!F) space. Then F verifies

(P) given a sequence (T7,) of zero neighborhoods in F we can find a zero neigh-

borhood V and a sequence (A;) of positive numbers such that k^V <= Vufor all i.
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Proof. Let Mf be the polar of Vt, for each i. Since Vt is a zero neighborhood in F,

Mj is an equicontinuous set, hence bounded in Fb. We already remarked in §2 that

F'b is a Frechet space. It follows then that there exists a sequence (p;) of positive

numbers such that M = U.PjM; is bounded in F'b (cf. [4, p. 286, Theorem 1]),

hence by condition (2) is equicontinuous. The proof follows by taking again the

polars of M and Mf, q.e.d.

Theorem 3. Let F be a quasi-{S>!F) space verifying property (P). Then

on st/(K)® F the n-topology and the induced topology of srf{K,F) coincide.

Proof. Let (P.;) be a decreasing sequence of open neighborhoods of K in C,

Jf(Q.hF) the space of holomorphic functions on O., with values in F and w( the

restriction map of Jf(QhF) into s/(K,F). To prove that the above described

topologies coincide on s#{K) ® F we just have to show that they have the same

dual with the same equicontinuous sets. It is easy to see that any equicontinuous

set in B(s/(K),F) dual of st{K)®F with the 7i-topology is equicontinuous with

respect to the inductive limit topology.

Suppose, now, that M is an equicontinuous set in the dual of x/(K) ® F equipped

with the inductive limit topology. It follows from the definition of this topology

that the set

M; = {u o (ui®l):ueM}

is, for each i, an equicontinuous set of the dual of 3f(Q.hF). (Here 1 denotes the

identity map of F.) Since Jf(ni;F) = 3f{il^)®nF, there exists then a zero neigh-

borhood (7; in    (fi;) and a zero neighborhood Vt in F such that:

for all geUi and f e Vt. Now, F verifying property (P), there exists a zero neigh-

borhood V and a sequence (Af) of positive numbers such that XtV cz Vt, for all i.

Next, let U be the zero neighborhood in s/(K) obtained by taking the convex

hull ofUiHiO^l/,). It follows that

\u(g,f)\^l

for all ge U,f e V, hence M is equicontinuous in s/(K)®^F, q.e.d.

For {ß^) spaces, Theorem 3 was known [6, Chapter I, Proposition 6]. We

remark that we do not know an example of a quasi-(^^) space verifying pro-

perty (P) which is not a {ß!F) space, a question interesting to be investigated.

4. Analytic families of operators. Let U be an open set of R, Fa barrelled space,

F a complete space, T a map from U into L(E,F) and denote by Tt the element of

L(£,F) image of t e U by T.

Definition 4. We shall say that:

(i)   T is scalarly analytic on U if for each eeE and each f e F' the numerical
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function te U -»<Tje,/'> is analytic on U, i.e., for each t0e U, there exists an

e = e(t0,e,f) > 0 such that

(8) <Tte,f'> = Zap(e,f')(t-toy,

the series (8) being convergent for 11 — t0 | < e;

(ii) T is weakly analytic on U if, for each t0eU and eeE, there exists

an e = e(t0,e) > 0, such that

(9) Tte= Iap(e)(t - t0)>,

the series converging in F for | t — t0 | < e;

(iii) T is strongly analytic if T is an analytic function on U with values in

Lb(E,F), i.e., if, for each t0 e U, there exists an e = e(r0) > 0, such that

(10) T,= lap(t-toy,

the series converging in Lb(E,F) for | t — t0 | < s.

It is obvious that (iii) implies (ii) and (ii) implies (i). Suppose T is scalarly

analytic; then the numerical function t e U -»< Tte,f > is C°° for each eeE and

/' e F'. We say that in this case Tis scalarly C00. Also if Tis weakly (strongly)

analytic then Tis weakly (strongly) C00. It can be shown by applying results of

Grothendieck [4, pp. 238-245], and Schwartz [8] about vector valued differentiable

functions that under the hypothesis E barrelled and F complete these three

notions of differentiability coincide.

Theorem 4. Suppose E is barrelled, F is a complete quasi-iS)^) space

and T a map from U into L(E,F). If T is scalarly analytic then Tis strongly

analytic.

Proof. To prove that Tis strongly analytic it suffices, by Lemma 1, to show

that there exists an r > 0, such that the set

{(I/PO- T,™-r>,p = 0,1,2,-}

is bounded in Lb(E,F), where t0 is a fixed element of U and T,(0p) denotes the

derivative of T at t0. Since £ is barrelled, it suffices to show that this set is bounded

in LS(E,F) (cf. [2, Chapter III, §3,Theorem 2]), or, in other words, that for each

fixed eeE, the set

{(1/pi) ■T%Xe)-rp,p = 0,1,2,-}

is bounded in F. But this amounts to show that, for each fixed eeE, the vector

valued function

Oe: teU^Tt(e)eF

is analytic. We apply Theorem 1, which completes the proof.
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