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1. Introduction. In first-countable topological spaces, i.e., those with a

countable neighborhood-base at each point, one can restrict oneself to sequences

in studying convergence and continuity. In practice, e.g., for groups, such spaces

are all metrizable. However, for more general spaces it seems to be assumed

that sequences are not enough and that more general nets or filters must be

used. Many of the linear spaces considered in Schwartz's theory of distributions

[12; 13] are not first-countable, so that such spaces are of real importance in

analysis at present. Thus the abstract theory of sequential convergence begun

byFrechet[7] has been more or less neglected, perhaps since it seemed unnec-

essary in metric spaces and insufficient elsewhere.

It is easy to prove, however, that for "bornological" locally convex linear

spaces, a convex "sequentially open" set is open, so that a sequentially con-

tinuous linear mapping is continuous (Theorems 6.1 and 6.3 below). It is known

that this is not true for bilinear mappings (see §9) and as Grothendieck has

pointed out for the duals of certain F-spaces [8, p. 101], the closure of a set

need not be obtained by taking all limits of convergent sequences of members

of the set (once).

Still, it appears that in some senses sequences are adequate for all spaces con-

sidered up to now in analysis, including the theory of distributions. Also, the

main theorems of integration theory (dominated convergence, monotone con-

vergence, etc.) are true only for sequences. The sequential language is useful

as an alternative in metric spaces, and finally there is a fact that the convergent

sequence and its limit form a compact set, while this is not true for nets.

Thus there seems to be ample reason for direct study of sequential conver-

gence, as in this paper.

We begin in §2 with general definitions and a discussion of correspondences

between topologies and specifications of convergent sequences. In §3, analogous

constructions for topologies and sequences, such as product spaces, are defined

and compared. §4 discusses sequential convergence of abstract sets; its results

are used in §6 on sequential convergence in linear spaces. §5 deals with a gen-

eralization of metric convergence called "quasimetric" convergence which is
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considered on linear spaces in §§7-8; §9 applies the results to the theory of

distributions.
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tion on topological linear spaces (see §§6 and 9) which was not only very useful

in itself but led to the correction of a major error in an earlier draft.

For the set-theoretic results in §4, some conversations with Dana Scott were
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Notation. Some special notations used in §§7-9 are explained at the begin-

ning of §7. Otherwise, I believe all notations are well known, except perhapsfor

~ : A <~ B is the set of elements of A not in B, for any two sets A and B, and

{x: •••}: the set of all x such that •••.

2. Basic definitions. There is a classical axiomatization of convergence for

sequences (Frechet's L-spaces and L*-spaces; see [7; 15]) which has recently

received new evidences of its success (see [11] and Theorem 2.2 below). It will

be adopted here without changes.

Definition. If S is any set, a sequential convergence C on S is a relation

between sequences {s^^Li of members of S and members s of S, denoted

s„-*c s, such that

(1) if s„ = s for all n, s„-»cs and

(2) if s„-*cs and {rm} is any subsequence {s„m} of {s„}, then rm-*cs.

Definition.  If C is a sequential convergence such that

(3) if s„-ycs and s„-+ct, then s = t,

C is an L-convergence.

Definition.  If C is an L-convergence such that

(4) if sn-»cs (i.e., it is false that s„-*cs) then there is a subsequence {rm}

of {s„} such that for any subsequence {tq} of {rm}, tq-+*cs,

C is an L*-convergence.

If C is an L(*)-convergence on a set S, the pair (S, C) will be called an L(*)-space.

A statement s„-*cs may be read "s„ converges to s (for C)."

If T is a topology on a set S, then a sequence {s„} is said to converge to an

element s, or s„-*cms, if whenever s e U e T, s„ £ U for n sufficiently large. It

is clear that ->C(r> satisfies (1), (2) and (4), so that C(T) is a sequential conver-

gence. If (S, T) is a Hausdorff space (distinct points have disjoint neighborhoods),

then (3) is satisfied and C(T) is an L*-convergence.

Conversely, given any relation B:x„-yBx between sequences and points of a

set S, we can call a set U open for B if whenever xeU and x„-*Bx, xne U for

n sufficiently large. It is clear that these open sets form a topology T(B), as was

remarked by Garrett Birkhoff [2], with an acknowledgment to R. Baer,
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If (S,B) is an L-space, T(B) will be Tx (will contain the complement of each

one-point set), but even if (S,B) is an L*-space T(B) need not be Hausdorff, as

is shown by the following example. Let S be the set of pairs (m,n) of nonnegative

integers together with two distinct points a and b. Let (mk,nk)-*Ba if nk-> oo

and mk # 0 for k large enough, (0,nk)-*Bb if nk-+ co , and (mk,nk) ->B(0,n) if

mk -> oo and nk = n for k large enough. If p e S, let pk -*Bp if p* = p for fe large

enough. Finally if pk-*BP a°d 9fc->Bp as already defined and rk = pk or rk = qk

for fc large, let rk -»Bp. It is then easy to verify that —*B is an L*-convergence and

that a and b do not have disjoint T(B) neighborhoods.

The above example seems to be available since the definition of L*-space

contains no condition on "iterated limits" such as, for example, the condition

(5) if p„ -» p and for each n,p„m -»p„, then for some function m( ), p„m(B) -»p.

Such a condition is assumed in proving that each topology is uniquely de-

termined by its "convergence class" of nets and conversely (Kelley [10, Chapter

II, Theorem 9]).

However, (5) is not satisfied in certain very interesting L*-spaces, and for-

tunately C(T(C)) = C is true without it (Theorem 2.1 below). Hence we shall

not assume it.

The well-known example in which S is the set of all Borel functions on an

interval and C is pointwise convergence shows that if the pseudo-closure pc(^4)

of a set A <= S is defined as the set of xeS such that for some x„ e A for all n,

*n~*cx> we may have pc(pc{A))^- pc(A) so that pc(^4) need not be the T(C)

closure of A even if C is an L*-convergence. To obtain this closure Ä, it is pos-

sible, and in this case necessary, to iterate the operation pc out to the first

uncountable ordinal. If C satisfies (5), then pc(A) = A, so that the example just

given would be excluded. Of course, if C is any sequential convergence, a set

is T(C) closed if and only if it contains all limits of C-convergent sequences

of its members.

The following basic theorem relating sequential convergence and topology

was proved by J. Kisynski [11]:

Theorem 2.1.  // (S,C) is any L*-space, then C(T(Q) = C.

It follows from this theorem that if C is an L*-convergence, so is C(T(C)),

even though T(C) may not be Hausdorff. It was also proved in [11] that if (S, C) is

an L-space, then C(T(C)) is the smallest L*-convergence containing C. (An inter-

esting example of this is that if C is convergence almost everywhere of equivalence-

classes of measurable functions on a nonatomic measure space, then C is an

L-convergence but not an L*-convergence, and C( 7(C)) is convergence in measure.)

More specifically, if C is an L-convergence, then s„->C(T(C))s if ar.d enly if every

subsequence {rm} of {s„} has a subsequence {/j such that r?->cs- Hence

T{C(T(C))) = T(C).
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Thus a topology Tis of the form T(C), where C is an L*-convergence, if and

only if T= T(C) where C is an L-convergence. We shall call such topologies

"sequential." Clearly if Tis sequential then T(C(T)) = T, and conversely if T

is Hausdorff and T(C(T)) = T then T is sequential.

In any case, it is clear that T(C(T)) is a finer topology than T(T(C(T)) => T).

If T is Hausdorff, T(C(T)) is the weakest sequential topology finer than T. For

example, if T is the order topology on an uncountable well-ordered set with a

supremum, then T(C(T)) is strictly finer than T. However, as will be seen later,

there exist sequential topologies which do not have a countable neighborhood-

base at any point.

The class of convergences C(T), where Tis T1; includes the class of L*-con-

vergences, which in turn includes all convergences C(T), T Hausdorff. It is an

interesting problem to characterize in sequential terms the classes of convergences

C(T) where Tis Hausdorff, Tu or an arbitrary topology. Perhaps suitably weak-

ened forms of axiom (5) would be useful.

If (S,p) is a metric space and C{p) the usual convergence defined by p, then

T(C(p)) is the usual topology defined by p and is sequential, C(p) being an ^-con-

vergence. We shall see later that if S is a nonmetrizable topological linear space,

with topology T, then T(C(T)) may be pathological, while its "locally convex

part" is often equal to T.

Sequential continuity is naturally defined as follows:

Definition. If C and C are sequential convergences on sets S and S' re-

spectively, a function / from S to S' is continuous for C and C if and only

if/(x„)->c./(x) whenever x„->cx.

It is well known that sequential continuity is equivalent to topological con-

tinuity in metric spaces. The following generalization is interesting and useful

in proving its locally convex version:

Theorem 2.2. // C and C are sequential convergences on sets S and S'

respectively and f is continuous for C and C, then it is continuous for T(C)

and T(C). /// is continuous for topologies T and T', then it is continuous for

C(T) and C(T"). // C is an L*-convergence, then continuity for C and C

is equivalent to continuity for T(C) and T(C).

Proof. If / is continuous for C and C, U e T(C), x ef~\U), and x„->-cx,

then f(x„)-*c,f(x) so that/(x„)e U and x„ef~1(U) for n large enough. Hence

f~1(U)eT(C) and / is topologically continuous.

If / is continuous for T and T', suppose x„-+C(T)x. Then if f(x)eU ef,

x„g/-1([/) for n large enough, so f(x„)eU, and /(x„)-*C(T0/(x). Thus / is

continuous for C(T) and C(T').

If T= T(C), T' = T(C), and C is an L*-convergence, then C(T(C')) = C by

Theorem 2.1, so that if/is continuous for Tand T' it is continuous for C(T)

and C. Since xB->cx implies x„-»C(r)x,/ is continuous for C and C, q.e.d.
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Theorem 2.2 implies the already rather obvious fact that a theorem on se-

quential continuity of integration proved for convergence almost everywhere

will extend to convergence in measure.

3. Compactness, products, quotients and relativization. In this section we

explore the sequential analogues of various topological constructions, and ob-

serve that, even if the given topologies are sequential, corresponding sequential

and topological constructions may yield different results.

Definition. An L*-space (S,C) is L*-compact if every sequence in S has a

C-convergent subsequence.

A topological space is called "sequentially compact" if every sequence has a

convergent subsequence; thus (S,C) is L*-ccmpact if and only if (S,T(C)) is

sequentially compact, and if (S, T) is a Hausdorff space, it is sequentially compact

if and only if (S,C(T)) is L*-compact. Of course, not every sequentially compact

topology is sequential nor compact; examples are Q + 1 and Q (minimal un-

countable well-ordered sets with and without a supremum respectively, with

the order topology; each has one property and not the other).

If (S,C) is L*-compact, then since (S, T(C)) is a Tx-space it is also "countably

compact," i.e., every countable open cover of S has a finite subcover (see [10,

Chapter V, problem E, p. 162]).

Although (S, T(C)) need not be compact, many of the standard properties

of compact spaces hold, with suitable modifications, for L*-compact spaces.

For example, a T(C)-closed subspace of an L*-compact space is L*-compact,

a sequentially continuous image of an L*-compact space is L*-compact (e.g.,

a continuous real-valued function is bounded), etc.

If (Sa,Ca)„eI is any family of L*-spaces, it is natural to define a convergence

C on the Cartesian product S' = rTtie/SII by letting {x^0}->c{xa} if and only

if Xjn)->c xa for each a. If Tis the product topology on S defined by the T(CJ,

then C = C(T) by Theorem 2.1 since each Ca is an L*-convergence. Thus

T(C) = T(C(T)) => T. The inclusion is strict if there are uncountably many non-

trivial spaces Sx, and, as will be shown in §9, even for the product of the two

spaces 3> and 3>' of Schwartz. For a countable product of metric spaces,

T(C(T)) = T.

In the cases where T(C(T)) # T, we obtain a new topology on the product

space, and there may be important functions on the product which are contin-

uous for this topology but not for T. However, T(C(T)) may have the disad-

vantage of not being compatible with a product algebraic structure: see §6 and

§9.
If (S, T) is a topological space and / is a function on S, a topology called the

quotient topology is defined on the range of S, namely the strongest topology

for which / is continuous (see [10, Chapter III, pp. 94-100]). Similarly, if C

is a sequential convergence on S, one can define a "quotient convergence"
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Cf by letting/(x„)->C//(x) whenever x„-»cx. Although Cf is a sequential con-

vergence, neither of axioms (3) and (4) need be satisfied by Cf. Clearly Cf is

an L-convergence if and only if x„->cx and y„^>cy and f(x„)= f(y„) for all n

imply f(x)=f(y). There are L-spaces (S,C) which are not L*-spaces, e.g.,

S = equivalence-classes of measurable functions on a nonatomic measure space,

C = convergence almost everywhere, and this and many other such spaces are

quotients of L*-spaces:

Definition. An L-space (S^CJ is an L + -space if whenever s„->Cls, and

for sufficiently large m either r„ = s or rm = sn(m), where limm_, wn(m) = oo,

then rm-vCls.

Theorem 3.1. An L-convergence Ct is of the form Cf where C is an L*-con-

vergence if and only if CX is an L + -convergence.

Proof. If there is a function / from S to Sx such that Cx = Cf, where (S,C)

is an L*-space and (S^CJ is an L-space, suppose sn->Cls and rm= s or rm=s„(m).

We have x„ ->cx in S with /(x„) = s„, /(x) = s. If ym = x or ym = xn(m) accord-

ing as rm = s or rm = sn(m), then by definition of L*-space ym-+cx> so rm->Cls

and Ci is an L+-convergence.

Conversely, suppose (S^Cj) is an L+-space. Let S be the product space

St x A where /I is the set of all sequences convergent for Cx (regarded as func-

tions from the positive integers to SJ. Let (sn,q„)-*c(s,q) if q„ = q for n large

enough and either

(a) s„ = s for n large enough, or

(b) g(m)->Cls and there is a function m( ) with lim„_00m(fi) = + co such

such that s„ = q (m(n)) or s„ = s for n large enough. (Then by definition of

L+-space, s„-*Cls.)

It is easy to verify that C is an L-convergence. If (s„,qn)-»c(s,q), then either

q„¥q for infinitely many n, or g(m)-y-> ClS, or there is an r such that for

infinitely many n,s„ is neither equal to s nor of the form q(m) for m 2: r. In

any case there is a subsequence of which no further subsequence converges

to (s,q), so C is an L*-convergence.

Let / be the projection of S onto S1:f((s,q)) = s. If s„ = g(n)-*Cls, then

On.9»)-►<:(*,3) if 3n = 3 for all n, so s„—*qj s. Conversely, if (sn,qn)-+c(s,q)

then s„->Cjs. Thus Cx = Cf, q.e.d.

If (S,T) is a topological space and BcS, one defines the relative topology

TB of Ton B to be the class of all sets U n B,U eT. Likewise if C is a sequential

convergence on S, one can define a "relative convergence" CB on B by restrict-

ing all ranges and limits of sequences to B. It is easy to check that CB is an L*-con-

vergence if C is. Clearly C(T(C)B) = CB so that T(C)B c T(CB) and T(C)B is

sequential if and only if it is equal to T(CB). If there is a subset A of S such that

pc(pc(/l)) ?4 pc(A), where pc is the pseudo- or sequential closure, let pepc(pc(Aj)
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~ pc(A) and let B = A u {p}. Then {p} e T(CB) but {p} $ T(C)B so the inclusion

T(C)B c T(CB) is strict and T(C)B is not sequential.

Of course the difference between topological closure and sequential closure pc

is another example of a disparity between corresponding topological and se-

quential constructions. Here at least the topological closure can be obtained

by (possibly uncountable) iteration of pc, if the topology is sequential.

A recent paper of Hörmander [9] considers sequential continuity on sub-

spaces of spaces of test functions, apparently for technical reasons. In the cases

in question the subspaces turn out to be the full spaces, so that there is no actual

relativization. Also, according to §§6 and 9 below, sequential continuity is equiv-

alent to continuity.

If B is closed for T(C), then if Ve T(CB) it is clear that V U(S~B)e T(C)

so that Ve T(C)B. Hence T(C)B = T(CB), and this is also clearly true for B open.

4. Convergence of sets. If S is a set and S„ are subsets of S, n = \,2,--,

then one defines
00 00

liminfS„= U f|S<"
and B"MJ0 m = 1 "=m

00 00

limsupS„=f| \JS„.
n -* oo m~\    n = m

If liminfS„ = A = lim sup S„, then we say lim„^00S„ = A or S„^CA. This

natural convergence C is easily verified to be an /-.""-convergence on the class

P(S) of all subsets of S, or any subclass s4 of P(S). It defines a topology T(C)

on P(S) and a topology T(C^) on si (see §3).

si is a a-algebra in S if it contains S and is closed under complementation

and countable unions and intersections; equivalently, closed under finite Boolean

operations and a T(C)-closed subset of P(S). Thus in particular T(C^) = T(C)rf.

A finite countably additive measure is a finitely additive, C-continuous function

on such a subclass.

A (er-) algebra si in S is a ring with the operations A + B = (A ~ B) U (B ~ A),

AB = A n B. An idea/ in is a nonempty subset / of s/ which is closed under

finite unions and such that if A cBel, Aesi, then As I. Our discussion of

ideals below owes much to the paper [14] of Tarski.

An ideal / in a cr-algebra s4 is called a a-ideal if it is closed under countable

unions, and will be called countably saturated if whenever Bn, n = l,2,---, are

disjoint sets in sf, all but finitely many B„ belong to /.

Lemma 4.1. Let si be a o-algebra in S and I a countably saturated ideal

insi.SupposeCnesi,n-l,2,---,and C„C\Cme I whenever n ± m, n, m = \,2,--.

Then C„el except for at most finitely many n.

Proof. The sets C„ ~ (J"=i    are disjoint for n = 2,3,•••, so for some n0
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they belong to I for n = n0, and since (C„ n C;) £ I for < n, C„ e I for n ^ n0,

q.e.d.

For = P(S), at least, the above result is included in Satz 4.7 of [14], the

conclusion being that / is "K0-saturated" in the sense of that paper.

Theorem 4.2. 1/ I is an ideal in a a-algebra si in S, the following three

assertions are equivalent:

(ii) If A„esi and A„^c0, where 0 is the empty set, then Anel for n large

enough.

(iii) / is a countably saturated c-ideal in si.

Proof. Clearly (i) implies (ii). Assuming (ii), suppose that B„ are disjoint

sets. Then B„-*c0, so Bnel for n large enough, and / is countably saturated.

Also if AneIioi all n, then (|J„°= 14) ~(Un = i4.)->c0 as m-> oo. Thus these

sets are in / for m large enough, so since \Jft=xAn is in /, \J™=lA„eI so / is

a cr-ideal and (iii) holds.

Now suppose (iii) holds and let A„-*CA, A el. Then ("")„ = ! Bm = .4

where Bm = \J™=mAn. {Bm} is a decreasing sequence of sets, so the sets Bm ~ Bm+1

are disjoint for all m. Thus for some M, Bm ~ Bm+1 el for m ^ M since / is

countably saturated, and BM = Akj \J%=m (Bm ~ Bm+1)el since / is a cr-ideal.

Thus Amel for m ^ M since Am c PM, and I e T(C), q.e.d.

We shall call a er-algebra s/inS o-atom ic if there exist sets Ak in j^, k = 1,2, • • •,

such that for any set Y of positive integers,

contains at most one point. Clearly if s4 is cr-atomic, S has at most the cardinal

of the continuum, and the converse holds if si = P(S).

Theorem 4.3. // si is a a-atomic a-algebra in S, I is an ideal in si, and

IeT(C^), then there is a finite subset F of S such that S~FeI and Bel if
and only if Be si and B <= S ~ F.

Proof. Let Ak be given according to the definition of cr-atomic

<t-algebra. For any set Y of positive integers and integer n, let

where Bk = Ak for keY, Bk = S ~ Ak for k $ Y.

If / is not all of si, there exists at least one set Y such that S( Y, n) 0 / for all n;

call such a set "outer." Suppose there are infinitely many distinct outer sets;

then by König's lemma there is an outer set Ysuch that for all n there is an outer

set Y(n) with m e Y if and only if m e Y(n) for m^n but i(n) e(Y ~ Y{n))

U(y(;i) ~ Y) for some i(n) > n. Then the sets

(i) IeT(C^).

n

S(Y,n) = f)Bk
k=l
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s(y(i),/(i)), S(y(i(i)), Km)),-,

are disjoint and none belongs to /, a contradiction. Thus there are only finitely

many outer sets Yr, r = l,--,R.

Let Pr = P)™=iS(Yr,n), r = 1,■■•,R; Pr contains exactly one point. Then for

each r there is an n = n(r) such that S(Yr,n) ~ Pr belongs to /, since these sets

converge to0 as n -> oo. Thus if F is the union of the Pr, S~F belongs to /,

since if N = maxrn(r), S(Y,N) ~ F belongs to I for all Y and S ~ F is a finite

union of such sets. Since Pr $ I for all r, A e I if and only if A e and ^ c S ~ F,

q.e.d.

We also have

Theorem 4.4. If si = P(S), the cardinal of S is weakly accessible (not strongly

inaccessible), I is an ideal in si, and IeT(C^), then I = P(S ~ F) for some

finite subset F of S.

This is a consequence of Satz 4.14 of [14], bearing in mind Lemma 4.1 and

Theorem 4.2 above and Korollar 4.9 of [14]. A proof of Satz 4.14 uses trans-

finite induction, passing from a cardinal b to 2b as in Theorem 4.3 (where the set

of Ak has cardinal b), using the fact that a countably saturated c-ideal is o-additive,

with an easier proof for accessible limit cardinals.

It is clear without the continuum hypothesis that any strongly inaccessible

cardinal is very large, e.g., much larger than c +2C + 22" + ••• where c is the

cardinal of the continuum.

5. Quasi-metric spaces. Many of the L*-spaces arising in analysis have

convergence of the type about to be defined (mentioned previously in [5]).

Definition. A quasi-metric space is a triple (S,p,F) where S is a set,pis a

metric on S, and F is a set of nonnegative real-valued functions on S. If (S,p,F)

is a quasi-metric space, the quasi-metric convergenceC = C(p,F) on S is defined

by x„->cx if and only if lim,,.,«, p(x„,x) = 0 and {/(x„)} is a bounded sequence of

real numbers for each feF. T(C(p,F)) will be called the quasi-metric topology.

Clearly any quasi-metric convergence is an L*-convergence. The description

' 'quasi-metric'' has been applied by several Portuguese authors to structures defined

by one function satisfying conditions less restrictive than those for a metric.

There is no evident connection between such structures and those just defined.

If (S,p) is a metric space, then the convergence C(p) is equal to C(p,F) where

F is the null set or contains only the function x -♦ p(x0, x) where x0 is a fixed point

of S.

If F is finite, then clearly C(p,F) = C(p,G) where G has the one element

g= D/f:F /. Quasi-metric spaces (S, p,F) where F has only one element / will be

called "simple." In this case we will write (S,p,F) = (S, p,f), C(p,F) = C(p,f), etc.

If F is countably infinite we shall call (S,p,F) and C(p,F) "countably quasi-

metric." Such spaces are considered in [5] and later in this paper.
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If F is infinite, a sequence is convergent for C(p,F) if and only if it is convergent

for each C(p,f),f e F. However, it need not be true that T(C(p,F)) is the weakest

topology stronger than each T(C(p,/)). For example, let S be the set of all ordered

pairs p = (pl5p2) of integers, both positive or both 0, let a(x) = 1/x for x / 0

anda(0) = 0,andp(p,q) = a\(p1+p2)-a(q1+q2)\+\a(p2)-a(q2)\. Let/^p) = px

and, forj>l, /,(p) = p2 for p^j, /,(p) = l for pt>j. Let F be the set of all

fpj= 1,2,■••. Then since the topology of p is discrete except at (0,0) and there

are no sequences convergent to (0,0) for C(p, F) except the eventually constant

ones, T(C(p,F)) is discrete. However, the set whose only member is (0,0) is not

in T(C(p, G)) for any finite subset G of F.

The space 3(Rk) of C°° functions with compact support on fc-space Rk has a

simple quasi-metric structure (3>,p,f) where convergence for p is equivalent to

uniform convergence of all partial derivatives and, for qb e 3,/((/>) is the greatest

distance from the origin to any point in the support of <j> (or 0 if <p = 0). Then

C(p,/) is the usual sequential convergence or "pseudo-topology" of 3. It will

be shown in §9 that T(C(p,/)) is not the usual topology of 2, but that the class

of convex sets in this topology is a base for the usual topology.

Proposition 5.1. The product convergence C on a countable product

S = n*=i Sn °f quasi-metric spaces (S„,p„,F„) is quasi-metric.

Proof. For x = {x„}, y = {y„} eS let p(x,y)= E"=1 [arc tan p,,(xn, >>„)]/2",

and let F be the set of functions/ of the form /({xm}) = g(x„), g e F„, n = 1,2, •••.

Then p is a metric and C = C(p,F), q.e.d.

If each F„ is countable, then F is countable. Also,

Proposition 5.2. The product convergence on a finite product S = Y\„ = i^n

of simple quasi-metric spaces (S„,p„,f„) is simple quasi-metric.

Proof. Let /({x„}) = 2ZÜ=1fn(x„), and p({x„},{yn}) = ZjLi pn(xn,y„); then

C = C(p,/),q.e.d.

6. Linear spaces.

Definition. If S is a real or complex linear space and (S, C) is an L*-space,

then (S, C) is an L*-linear space if and only if (a, b,f, g)-» af + bg is L*-

continuous from A x AxS x S into S, where A is the real or complex numbers

with the usual convergence.

If (S,T) is a topological linear space in the usual sense, then (S,C(T)) is an

L*-linear space. However, if (S,C) is a nonmetric L*-linear space, then (S,T(C))

need not be a topological linear space, as will be shown below. (Note that the

product topology on S x S is not obviously sequential.) On the other hand,

a locally convex uniform topology always yields a topological linear space struc-

ture, and many or most of the functions on S to be considered will be linear.

Thus we make the following definitions:
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Definition. If(S,C)is an LMinear space, then TC(C) is the collection of sets

1/cS such that for each x e U there is a convex set V e T(C) with xeFc[/,

Clearly TC(C) c T(C); TC(C) is the strongest locally convex topology weaker

than T(C). Of course TC(C) may be the indiscrete topology containing only S and

the empty set, for example if S is the metric space JSfp, p < 1, with the metric

convergence C :/„ ->c/if J \ fn -f\p -» 0. To exclude such cases, we have

Definition. If (S, C) is an LMinear space, C is a convex convergence if

C(TC(C)) = C.

Definition. If (S, T) is a topological linear space and TC(C(T)) = T, then T

is a convex-sequential topology (CS-topology) and (S, T) is a CS-space.

If C is convex, TC(C) is a CS-topology, and if T is a CS-topology then C(T)

is convex. There is a 1-1 correspondence between convex convergences C and

CS-topologies T set up by T = TC(C), C = C(T). However, TC(C) may be CS

without C convex (as in ^Cp,p < 1) or C(T') convex without T' being CS (see

the discussion after Corollary 6.5 and let T = T(C(T))).

Theorem 6.1. A linear mapping L from one CS-space (S, T) to another

(S^Tj) is continuous (for T and Tj) if and only if it is sequentially continuous

(for C(T) and C(T,)).

Proof. If L is continuous for T and Tx, then it is continuous for C(T) and

C(Tt) (Theorem 2.2).
Conversely, if L is sequentially continuous let 0 e U e T1; 1/ convex. Then

L-1(L0 is a convex set in S and L'^^eT^T)) by Theorem 2.2. Thus

L~1(U)eTc(C(T))= T, so L is continuous, q.e.d.

The difficulties with product topologies for two spaces with sequential topolo-

gies T(C) do not arise for topologies TC(C), e.g., CS-topologies:

Theorem 6.2. Let (Sj.CJ and (S2,C2) be L*-linear spaces, S = St x S2,

and C fne product convergence of Cx and C2 on S. Then TC(C) is the product

topology T ofTJiCi) and TC(C2).

Proof. Clearly T c TC(C). For the converse, let Oel/e T(C) with U convex

and let

Ul = U/2 n (S, x {0}),       (72 = 17/2 n ({0} x S2).

Then Ux = Fx x {0} and t/2 = {0} x V2 where

Ff g TC(C;),   i' = l,2, and K, x V2 c 1/

since 1/ is convex. Thus (/ is a neighborhood of 0 for T. Since C is translation-

invariant, so are both topologies. Hence they are equal, q.e.d.

Before discussing infinite products we shall now show that every "bornological"

topology is a CS-topology (this fact was pointed out to me by L. Bungart). Let
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us recall some definitions: if (S, T) is a topological linear space, a set A absorbs

a set B if XB c A for all small enough X > 0. A set is bounded if it is absorbed by

every neighborhood of 0, and (S, T) is bornological if every convex set A which

absorbs every bounded set is a neighborhood of 0 (see [8; 13]).

Theorem 6.3. Every locally convex bornological space is a CS-space.

Proof. Let (S,T) be bornological; we must prove that TC(C(T)) = T. Since T

is locally convex, clearly T <= TC(C(T)). Conversely, let [/ £ TC(C(T)), x e [/.Then

V = U — xe TC(C(T)), OeV, and P is convex. Let B be a bounded set. Then

B\n c V for some positive integer n, for if not there are b„ e B with bjn £ V for all

n, but o„/n-► C(T) 0 since P is bounded, so that bJneV for n large enough,

a contradiction. Thus V absorbs every bounded set, so V is a neighborhood of 0,

U is a neighborhood of x, and fJ £ T, q.e.d.

It is known that a product of bornological spaces is bornological if the number

of factors is weakly accessible. This can be inferred from Theorem 7 of [4] about

products of "boundedly closed" spaces. However, a complete proof based on the

set-theoretic results of §4 is given below.

Theorem 6.4. Any product S = Y[xsjSx where (SX,TX) is bornological

for each a,Shas the product topology T, and J has weakly accessible cardinality,

is bornological.

Proof. Let K be a convex set in S which absorbs every bounded set. Let I be the

class of subsets B of J such that if xx = 0 for a f B, then x = {x„} e K. Clearly

A^Bel implies A el, and if Bu--,BneI any element {xa} with x„ = 0 for

a $ Um = iPm is a convex linear combination E„ = 1xw/« of elements {xa(m)} e.K.

Thus / is an ideal.

Suppose A„ converges to the empty set (see §4). If A„ $ I for arbitrarily large n,

we may assume An <£ I for all n. For each n, choose an element x(n) = {xan)} of S

such that xxn)= 0 for a $ An but {xxn)} $ K. Then the sum Z„nx(n) converges

for T (since A„ -* 4>, at most finitely many xxn) are nonzero for a given a). Thus

the sequence nx(n)is bounded in S, so for some X > 0, Anx'^ElC for all n; but this

is a contradiction if n > 1/1. Thus A„el for large enough n, so by Theorem 4.2

I is open and by Theorem 4.4 J consists of all subsets of J ~ F where F has fc

members for some finite k. Thus if xx = 0 for a e F, {xa} £ K. For each y e F there

is a convex neighborhood Uy of 0 in Sy such that if xy e Uy and xß = 0 for ß ^ y,

then {xß} e K. Thus by convexity the neighborhood of 0 in S consisting of all

{xx} such that xx e UJ(k + 1), a £ F, is included in K, q.e.d.

Corollary 6.5. // the spaces (Sx,Tx)xsJ are bornological and J has weakly

accessible cardinality, then the product topology T is equal to TC(C(T)).

For example, let each Sx be a copy of the real line with its usual topology and J

also the real line, so that the product space is the set of all real functions of a real
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variable. Now, T(C(T)) is a rather nasty topology; for example, if M is the set of all

functionsf such that {xej: |/(x)| < 1} is of second category, then M is an open

set. Thus T(C(T)) is strictly larger than TC(C(T)) and is not locally convex. We

also have

Theorem 6.6. Assuming the continuum hypothesis, addition of functions

is not continuous for T(C(T)).

Proof. A result of Banach and Kuratowski [1, Theoreme II] asserts that,

assuming the continuum hypothesis, if J has the cardinality of the continuum

there exist subsets A\,i, /=1,2,—, of J, such that for each i the sets A\ are

disjoint with union J and such that for any sequence {/c;} of positive integers,

C[?=i\J%iM is countable.
Now, suppose that addition is continuous for T(C(T)). Let U0 be the set of

f eS such that {x: \f(x) \ < 1} is infinite. Then U0 is a neighborhood of 0 for

T(C(T)). For each n _ 1, there must then be a neighborhood U„ of 0 such that

For each n = 1,2,—, there is a k = kn such that every function equal to 0 on

belongs to U„ (since a sequence of such functions for fe= 1,2, — ,

converges to 0 for C(T)). Let

CO k„

n = l j=l

Then
CO       I CO v

U {*»} u U M\ =J-

Thus for some N, every function equal to 0 on U^=i{{x„}u (J/==» +i^n}

belongs to U1. Hence any function equal to 0 on {*!,•••,:%} belongs to

U1 + U1 + U2 + U3 + - + UN c C/j + l/j + C/i <= [70.

But this is a contradiction, so our assertion is proved.

Other L*-linear spaces (S,C) such that (S, T(C)) is not a topological linear

space are discussed in Theorems 7.4 and 8.5; for example, 2> is such a space.

An interesting subspace of the space of all real-real functions is the set B of

Borel functions. B is T(C)-closed, so in the notation of §3 T(CB) = T(C)B. Of

course B is not Te(C)-closed. Theorem 4.3 and the proof of Theorem 6.4 show

that (B,TC(C)) is bornological, since the class of Borel sets is <r-atomic, and as

in Corollary 6.5 we obtain that TC(C) is the product topology.

7. Quasi-metric linear spaces. If C is convergence with respect to a metric

and T(C) is locally convex (the completion of S for T(C) is an "F-space" or

"Frechet space") then C is convex and T(C)=TC(Q is a CS-topology. We

next consider simple quasi-metric linear spaces. On the dual space S* of a linear
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space S there is always at least one natural L*-convergence, namely pointwise

convergence on S ("weak* convergence").

If (S,p,/) is a simple quasi-metric linear space (i.e., (S,C(p,/)) is an L*-linear

space) we shall use the following notations:

S„ = S(n) = {xeS:f(x)^n},

S(n,s) = {xeS(n):p(0,x)<e},

S(n,e) = closure of S(n,e),

Co(n,e) = convex hull of S(n,e),

Co(n,e) = closure of Co(n,s).

The "convexity" of a sequential convergence C was defined in §6 in terms

of the topology TC(C). Here is a related purely sequential condition:

Definition. An L*-linear space (S,C) is L*-convex if whenever x„->c0 and

for each n,y„ is a convex combination of the xm for m-n, y„-*c®-

A convex //-convergence, being of the form C(T) where Tis locally convex,

is obviously L*-convex. In Theorem 7.6 we shall prove the converse for certain

spaces defined as follows:

Definition. A function / on an L*-linear space (S,C) is an LS-function

if it satisfies (a)-(c) below:

(a) f{x + y) g/(x) +f(y) for all x, y e S, and /(0) = 0.

(b) For each n > 0, S„ is convex and symmetric: f{x) =/(—x).

(c) // x„ -* c x, f(x) ^ lim sup/(x„).

(S,C) is an LS-space (by (pj)) if it is L*-convex and C = C(p,f) where p is

an invariant metric (p(x,y) = p(x — y,0J) and / is an LS-function on S for C.

(a) and (b) together may seem close to the assertion that / is a pseudo-norm,

but the function/on 3>,f{4>) = sup{|x| :c/>(x) ̂  0}, is an LS-function and cannot

be replaced by a pseudo-norm without changing the convergence C(p,f) (dis-

cussed just before Proposition 5.1).

(c) says that / is sequentially lower semi-continuous; if lim sup is replaced by

liminf, an equivalent condition is obtained (consider subsequences).

All the specific locally convex simple quasi-metric linear spaces to be mentioned

in this paper are actually LS-spaces.

Theorem 7.1. // (S,p) is a complete separable metric linear space, S* is

its dual space, and C is weak* sequential convergence in S*, then (S*,C) is an

LS-space.

Proof. We may assume p is a translation-invariant metric on S [10, N and

O, pp. 209-210]. Let erbe a metric on S* such that convergence for o is equiv-

alent to pointwise convergence on a countable dense set D in S, and for x e S*

let
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fix) = sup {I x(s) I /p(0, s): I x(s) \ £ 1, p(0, s) >0}.

It is easy to verify that / is an LS-function for C.

A C-convergent sequence is also convergent for C(o,f) since by the Banach-

Steinhaus theorem [6, p. 52] it is equicontinuous.

Conversely, if x„-+C(aJ)x, then for some k, f(x„ — x) ^ k for all n. Let seS.

Then for some Sj e D,p(s,Sj) -* 0, and t(s — sy) -»0, where t(s') = supog^ ^(0,/ls'),

by joint continuity and compactness. The set of s' 6 S with t(s') ^ 1 jkr is con-

nected, and f(x')gk implies |x'(s')| > 1 or |x'(s')| ^ 1/r on this set, hence

|x'(s')| ^ 1/r for r > 1. Thus if r> 1, |(x„-x)(s-sJ)| ^ 1/r for all n if j is

large enough. Since |(x„ — x)(Sj)| -*0 for each   |(x„-x)(s)| -+0, q.e.d.

It is easy to infer the following from the proof of Proposition 5.2:

Proposition 7.2. The product of two LS-spaces with the product convergence

is an LS-space.

We can explicitly describe the topology TC(C) if C is simple quasi-metric and

L*-convex:

Theorem 7.3. Let (S,C(p,/)) be an L*-convex L*-linear space. For each

sequence {s„}™=1 of positive numbers let V{tn} be the set of all finite sums

£n = i wn where w„eCo(n,s„) for n = l,---,N and N is arbitrary. Then the

collection of all sets        is a base for the neighborhoods of 0 for Tc(C(p,/)).

Proof. Each is obviously convex; let us show that it belongs to T(C)

where C = C(p,/). If j,m-»cJ'e^e„}> then ym — y->c®- Thus for some

K,f(ym-y) = K for all m, and p(0,ym-y)-*0. Let y= 2Z*=1w„ as described,

and r = max(iV,X) + 1. Then p(0,ym-y) < er for m large enough, so that

ym =( £„^=1 w„) + wr(m) where w/m) = ym — y satisfies the required conditions

so that ymeU{en} for m large enough. Thus U^eTc(C).

Now let U be an arbitrary convex neighborhood of 0 for T(C) (and hence

for TC(Q). For each n, there is an e„ > 0 such that Co(n,e„)cz JJjl". For, if

not, a sequence x11,"-,xUl,x2l5—,x2»2,x3lJ— could be constructed, convergent

to 0 for C (/(xjy) ^ n, p(0,Xij) g 1/i for all i,j £ kt) such that L*-convexity

would be contradicted.

If e„ is so chosen for each n, then

oo N

UM c IJ   I U/2n c 17,
N=l n=l

so that the set of all       is a base at 0 for TC(C), q.e.d.

A similar argument yields

Theorem 7.4. If (S,C(p,f)) is L*-convex, TC(C) is the strongest topology T

weaker than T(C) such that (S,T) is a topological linear space.
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Proof. It suffices to show that if U0 is a neighborhood of 0 for T(C) such

that for all n = 1 there is a U„ e T(C) with U„ + U„c Un_u then U0 is a neigh-

borhood of Of or TC(C).

For each n = l, there is an e„ > 0 such that Co(n,e„) c t/n. Then

oo JV

U{tn] c[J   2 Un cz U0, q.e.d.
JV = 1 n = l

Corollary. 7/ (S,C(p,f)) is L*-convex and (S,T(C)) is a topological linear

space then TC{C) = T(C).

Both here and in §6 we have seen that the assertions that (S, T(C)) is a topo-

logical linear space and that T(C) is locally convex are closely related; the latter

always implies the former since if UeT(C) and b > 0, bUeT(C). Of course

there are metrizable nonlocally convex linear spaces.

The proofs of Theorems 7.3 and 7.4 are taken from an outlined problem so-

lution of N. Bourbaki [3, Chapitrell, §2, Probleme 10, p. 68] on inductive limits.

Theorem 7.5. 1/ (S,C(p,f)) is V'-convex then TC(C) is stronger than the

topology of p and hence Hausdorff.

Proof. Given e > 0, choose e„ for all n such that Co(n,s„)cz l>Jm0=1S(m,6/2n).

Then <= {x eS:p(0,x) < e}, so that by Theorem 7.3 TC(C) is stronger than

the p topology, q.e.d.

Theorem 7.6.  If (S,C) is an LS-space by (p,f) then C is convex.

Proof. We must show that B cz C where B — C(TC(C)) (the other inclusion

is immediate).

Let x„-*Bx. Suppose f(x„) is unbounded: then for some yk = x„k — x, f(yk)

>fc(k + l)/2, Ac = 1,2,-". Of course yk —► B0. By lower semi-continuity of /

there is a 8k > 0 for each k such that if /(y) ^ k(k + l)/2, then p(y,yk) = 3k.

Let

ym = min 5kl3m-k.
k<m

Choose em > 0 for each m so that Co(m,sm) a S(m,ym); this is possible by L*-con-

vexity and the fact that S(m) is convex.

Now for k large enough, yk e [7{£mj so that for some M(k),

M(k)

yk=   2 wjk)
m = l

where for each k and m, wm(k)eCo(m,em). Thus p(0,wm(/c)) ^ ym and

f(wm(k)) = m.

But /(2m = 1wm(fc))^fc(/c + l)/2, so
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p 0,   2  wm(/c) Up y*,2 wm(/c) =0t
\    m=t + l / \     m = l /

(and M(k) > k). On the other hand,

p 0    2   wm(/c)    ^    I P(0,wm(/c))
\    m=t+l / m=k+l

M(k) M(k)

g   2  ymg   2 Ökl3m-k<ökß,
m=k+l m=k+l

a contradiction. Thus for some K, f(x„ — x)^K for all «, p(x„,x)-»0 by

Theorem 7.5, so x„->cx, q.e.d.

We now consider LF-spaces. For n = 0,1, ••■, let (S„,pn) be a locally convex

complete metric linear space, with S1 cz S2 ■•■ and p„(xm,x)->0 if and only

if pk(xm, x)->0 for k > n, if xmeS„ for all m. Let S be the union of all the S„.

The inductive limit topology Ton S is the finest locally convex topology coarser

than the p„ topology on S„ for each n. Let C be the sequential convergence

defined by xm-»cx if and only if for some n, xm 6 S„ for all m and p„(xm, x)-»0.

Then it is clear that T= TC(C). Let a„{x,y) = p„(x,y) for x,y eSn, otherwise

an(x>y) = + oo if x   y, and o„(x,x) = 0. Let

p(x,y) = 2 arc tan on(x,y)l2",
n

where arc tan(+ oo) = tc/2. Each <t„ satisfies the triangle inequality (even where

it is infinite), so since arc tan(u +v) ^ arc tanu + arc tant> for any nonnegative

u and v, p is a metric. Let f(x) be the least n such that xeS„. Then clearly

C = C{pJ). Since/is an LS-function forC, (S,C) is an LS-space, and by Theorem

7.6 C(TC(C)) = C. Thus we have proved

Theorem 7.7. If (S,T) is an LF-space then it is a CS-space and (S,C(T))

is an LS-space.

Conversely, LS-spaces are a generalization of LF-spaces in which linear sub-

spaces are replaced by convex subsets.

If (S,p) is a Banach space, then the function / in the proof of Theorem 7.1

is the norm in S*. This norm also defines a standard topology. To compare

the topology T(C(<r,/)) with the norm and weak* topologies, let us review some

definitions and known facts. If S is a topological linear space and X is a linear

set of linear functionals on S, the "X topology" T(X) on S is the weakest topol-

ogy such that each member of X is continuous, and the "bounded X topology"

Tb(X) is the strongest topology on S yielding the same relative topology as T(X)

on each bounded set (see [6, pp. 425-430]). If X is a Banach space and S = X*

is its dual space, a neighborhood base for Tb(X) at the origin in S is given by

all sets of the form
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{seS: |s(x„)|<l, n = l,2,-}

where || x„ || -»0, x„ e X. Thus if X is infinite-dimensional and T is the norm

topology on X*,

T(X) cz T„(X) cz T

and both inclusions are strict. From the present viewpoint we can add the fol-

lowing:

Theorem 7.8.  // X is a separable, infinite-dimensional Banach space, then

T(C(T(X))) = TC(C(T(X))) = Tb(X)

on X*, so that Tb(X) is both sequential and a CS-topology but T(X) is neither.

Proof. Since X is separable, T(X) yields a metrizable relative topology on

each bounded set in X* (see [6, p. 426]). By the Banach-Steinhaus theorem a

sequence convergent for T(X) is bounded. Thus T(C(T(X))) is the strongest

topology equal to T(X) on bounded sets, i.e., Tb(X). Since Tb(X) is locally

convex, it is also equal to TC(C(T(X))). Thus Tb(X) is the weakest sequential

or CS-topology finer than T(X), and T(X) has neither property, q.e.d.

A base for Tb(X) at 0 was mentioned above, while Theorem 7.3 also furnishes

a base according to Theorems 7.1 and 7.6. It can be proved directly (without

7.1 and 7.6) that these bases define the same topology.

A topology T(C) on a linear space, not defined by a metric, is seldom locally

convex (equal to TC(C)). Theorem 8.5 below shows when this occurs for complete

LS-spaces. Here Tb(X) was locally convex since each S(n) is p-compact.

Let X and Y be Banach spaces, X separable, and let 38 = 38(X, Y) be the linear

space of bounded linear operators from X to Y. Let Tbe the "strong" topology

on 38 for which a base at 0 is given by all sets of the form

{Be38: max(|| Bx, ||, • • •, | Bx„ ||) < e},

where e > 0 and {x1; • • -,xn} is any finite subset of X. Then C(T) is convergence

of B(x) in the norm of Yfor each xeX. By the Banach-Steinhaus theorem, a

C(T)-convergent sequence in 36 is uniformly bounded in the operator norm.

Thus C(T) = C(p,/) where convergence for p is equivalent to convergence of

B(x) in the norm of Y for each x in a countable dense set in X, and / is the opera-

tor norm:

f(B)= sup ||ß(x)||/||x||.
li*ll*o

It is easy to see that (38,C(Tj) is an LS-space by (p,/). We can then infer

from Theorem 7.3 that TC(C(T)) is strictly stronger than T if X is infinite-

dimensional.
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There is an important difference between this situation and that of Theorem

7.8 if X and Tare both infinite-dimensional in that {B e &:f(B) g n] is not

T-compact. In fact, Theorem 8.5 below implies that T(C(T)) is strictly stronger

than TC(C(T)).

8. Completeness and category arguments.

Definition. A sequence {x„} in an L*-linear space (S,C) is a C-Cauchy se-

quence if m(n) St n for all n implies x„ — xm(B)->c0. If every such sequence is

C-convergent, (S,C) is complete (S is C-complete).

If S is the space of Borel functions on the unit interval [0,1] and C is point-

wise convergence, then S is C-complete but is not complete for the TC(C) uni-

formity. However, we have

Theorem 8.1.  A complete LS-space (S,C) by (p,f) is complete for TC(C).

Proof. Again, we use an adaptation of a method indicated by N. Bourbaki

[3, Chapitre II, §2, Probleme 9, p. 68].

Let & be a Cauchy filter in S for TC(C). Let £f be the filter with a base of all

sets of the form F + U, where F e !F and U is a neighborhood of 0 in S for TC(C).

Then ¥ is also a Cauchy filter, and y is convergent if and only if there is a p e S

with p e V for all Ve y.

If for some n, Vn Sn is nonempty for all VeSf, then the set £fn of all VC\ S„,

Ve y, is a filter in Sn. Sfn is a p-Cauchy filter and S„ is complete for p by lower

semi-continuity of / and L*-completeness. Thus if„ converges for p to some

point x e S„, i.e., for any Fef and neighborhood U of 0 in S, x belongs to the

p-closure of (F + 1//2) nS„, so xeF + (/. Thus y converges to x and does

also.

Now suppose that for each n = 1,2,—, there is a Vne£f with V„ nS„ empty.

We may assume V„ = F„ + U„ where Fne3F, U„ is a convex, symmetric neigh-

borhood of 0 in S, and the U„ form a decreasing sequence of sets. Then

Y„ = ^(U2nr\ S„) is a convex symmetric neighborhood of 0 in Sn. Let W„ be

the convex hull of \ U2„ and all the Yk for fe < n; then the W„ form a decreasing

sequence of sets all including W, the convex hull of all the Yk. Wis a convex sym-

metric neighborhood of 0 in S.

Now, if q e W„, then q = r + s where reS„ and s e ^ C/2n. If

p ePn = F2n + i U2n,   f(p + q) S;/(p + s) -/(r) > 2n - n = n,

i.e., p + q$S„.

Thus for all n, P„ + Wdoes not intersect S„. Since Wis a neighborhood of 0,

there are ueS and Qe^ such that g c u + If. Suppose /(w)^n; then

6 <= S„ + W = S„ - W, so that ß does not intersect P„, contradicting the fact

that y is a filter. Thus the proof is complete.
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We now prove two results using only the formally weaker condition of se-

quential completeness; the first is a "Banach-Steinhaus theorem" or "principle

of uniform boundedness."

Theorem 8.2. Let (S,C) be a complete LS-space by (p,f) and Jf a collec-

tion of pseudo-norms on S, each continuous for C, such that for every xeS,

M(x) = sup N(x) < + co.

Then M is a continuous pseudo-norm on S for TC(C).

Proof. First, if N is a sequentially continuous pseudo-norm and £ > 0, then

Ve = {x: N(x) < s} is convex and belongs to T(C), hence to TC(C), while for

any A ~— 0,{x:N(X) > A} is a union of sets y + Ve where N(y) > A + e. Thus

N is continuous for TC(C).

Each S„, n = 1,2,"-, is p-complete, so by the Baire category theorem there

is a positive integer m such that the p-closed set

An>m= {xeSn:M(x)^m}

has a nonempty interior. Thus A„m is a neighborhood of 0inS„. Clearly Mis a

pseudo-norm, and A„ mjm is included in An l which is hence also a neighbor-

hood of 0 in S„, so that for some 8n > 0, Co(n,8n)cz An i. If x e Co(n,öJ2n), then

2"x e Co(n,ön) so that M(x) g 1 /2". Thus

rj{<iii/2„}c={xeS: M(x)^l}

so that M is Tc(C)-continuous, q.e.d.

Using Theorem 8.2 we can make a further step along the line begun in Theorem

7.1 by proving the following:

Theorem 8.3. // (S,C) is a complete LS-space by (p,/) with a countable

dense subset, then in its dual space S*, weak* sequential convergence Cw is

countably quasi-metric.

Proof. Since (S, T(C(p,/))) has a countable dense subset so does the metric

space (S,p) and each subspace (S„,p). Let X be a union of countable sets dense

in (S„,p) for n = 1,2,-.

Let a be a metric on S* such that convergence for a is equivalent to pointwise

convergence on X. For n = \,2,—,AeS*, let

gn(A) = inf {X > 0: | A(x) | < 1 [n for x e S(n, 1 jX)}.

Continuity of A implies gn(A) finite for all n. (Incidentally, we do not claim

that the g„ are LS-functions, and leave open the question of whether they can

be so chosen.) Let G be the set of all gn,n = 1,2, •••.
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First, if Ak-+C(a G)A, let yeS, e > 0, and n > max(/(y),l /e). Then there are

Xj eSnC\X with p(xj, y)-*0, so that since g2„(Ak — A) is bounded and/(xj — y)g In

for all j, \ (Ak- A)(xj — y) \ < 1/2« < e/2 for all k if j is large enough, so since

(Ak- A)(xj)-y0 for each j, \(Ak-A)(y)\ <e for large k, so (Ak-A)(y)->0,

Conversely, if Ak-+CviA clearly a(Ak,A)->0. By Theorem 8.2 there is a <5„>0

such that if xeS(n,<5„), \Ak(x)\<\jn, so that g„(^k) ^ 1 /<5„ for all k, and

We now give a necessary and sufficient condition that T(C) = TC(C) for com-

plete LS-spaces, using

Lemma 8.4. // (S,C) is a complete LS-space by (p,f) and for some n and

e >0 S(n,s) is (p-) compact, then Co(n,e) is (p-) compact.

Proof. Both sets S(n,8) and Co{n,e) are included in S(n) and hence their

relative TC(C) topologies are both the p topology by Theorem 7.5 and definition

of quasi-metric convergence. Thus p-compactness for them is equivalent to

TC(C) compactness. Also (S,TC(C)) is complete by Theorem 8.1 and Hausdorff

by Theorem 7.5. Thus we need only apply the fact that the closed convex hull

of a compact set in a complete locally convex Hausdorff linear space is compact

[3, Chapitre II, §4, 1, Probleme 2, p. 80, Corollaire, p. 81].

Theorem 8.5. If (S,C) is a complete LS-space by (p,f) then T(C) TC(Q

if and only if both the following conditions hold:

(a) There is an n such that S(n,e) is not compact for any e>0.

(b) There are arbitrarily large values of m such that 0 is the limit of a se-

quence in Sm ~ Sm_t.

Proof. First suppose (a) is false. Then for each n = l,2,--, there is an

e„>0 such that S(n,s„) is compact (for p). Let 0 e [/ e T(C). There is a

ölt 0< o\ ^ 8l5 such that Co(l,<51) c U. Given Slt ••-,^„, 0 < Sj ^ Bj, j = l,—,n,

such that

A„ = B„_i + Co(n,ö„) c U,

where B„= 2"=1 Co~(J,Sjjl), let

^n+1(x) = sup{<5:x + Co{n + 1,5) c U] .

Sn+1(x) > 0 for each x<=A„ by L*-convexity. Since B„ is p-compact by Lemma

8.4, there is a <5„+1>0 such that Sn+1(x) = 5„+1 for all x6v3„, <5„+1 gen+1.

Thus by induction we obtain a sequence {<5„} such that l/{ä„/2} c l^, so that U

is a Tc(C)-neighborhood of 0 and T(C) = TC(C).

Next, suppose (b) is false. Then there is an m0 such that for m> m0 there

is a c5m > 0 such that S(m,öm) c S(m0,8J. If 0e l/e T(C), then there are <5m
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for I _ m _ m0 such that 2ZZ°=iCo(m,8m) <= U, and so U{Sm/2m} <= U, so

T(C)=T£C).
Now suppose (a) and (b) both hold. Let nl be such that ^(n^l/m) is not

compact for any m = 1,2,—. Since each £(^,1 /m) is p-complete, there exist

for each m an em > 0 and an infinite sequence ymj,j = 1,2,—, of elements of

S(nltl Im) such that p(ymJ,ymk) = em for ; == fe.

Also, according to (b) there are n2,n3, ■••,nl< n2 < n3 and infinite se-

quences {zmr} such that zmreS(nm) ~ S(/im - 1) and p(0,zmr)<l/r for all m

and r. We shall assume nm+1 > nm + 2nl + I for all w.

Since / is lower semi-continuous there is an emr > 0 for each m and r such

that if u 6 S(nm_1 + 2nt), p(w,zmr) > emr.

Let U1 = S(2ni,2). Given fj,, [/,„_ 1; let x £ Um if and only if xeS(«! + nm)

and there is a y £ [/m_x such that p(x,y) < S(m,y), where

ö(m,y) = min(e(m, y),y(m, y),em/4)

and e and y are defined as follows:

E(m,y) = mf{p(y,w):weS(nm_1 + n{)~ l/m_i},

and

y(m, j>) = inf [p(y,ym;) - em/3]

if this is positive; if not, then p(y,ymJ) < sm/2 for exactly one value of j, with

P(y,ymj) £«»/3, and we define y(m,)0 = emj-.

It is clear that Um is relatively open in S(nm + for all m and that

Um+l nS(nm + nt) = l/m for all m since c?(m,y) ^ e(m,y). Thus the union U

of all the Um belongs to T(C), and U nS(n„ + nj = L"m for all m.

Now suppose U e TC(C). Then since 0 e U there is a sequence {5,} of positive

numbers such that t/{a,}<= [7. Fix m with 1 /m < <5BI. Then if 1/r < <5„m, ymy- + zmr

belongs to U for all j, and since ymj + zmr e S(nm + nx) there is for all j a

vJreS(nm_l + «i) such that

P(Vjr,Zmr + ymj)<Ö(m,VJr).

Since p(ymJ,zmr + ymj) = p(0,zmr) < 1/r,

p(p]r,ymj) < 1/r + 5(m,»Jr) = 1/r + em/4.

Thus for r large enough, p(vJr,ymj) < £m/3 for all j so that y(m,i;jr) = emj. Thus

P(zmP, P> - ymj) = P(Vjr, Zmr + Vnj) < £mj

for all large r and all but vJr — ymj e S(nm_1 + 2nj), so this contradicts the

definition of emr if we take j=r for r sufficiently large, and the proof is complete.
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9. Topologies on test functions and distributions. Let 3' be the space of

distributions on a Euclidean space, Tw its standard weak* topology as dual of

3, and Tthe "strong" topology of uniform convergence (of nets or filters) on

bounded sets in 3 (see Schwartz [12, Tome I,Chapitre III, §3]). Now C(T) = C(TW)

(ibid.,Theoreme XIII, p. 74) and T is locally convex, so the topology Ts= TC(C(TJ)

is at least as strong as T:

TwcT£Ts.

3', as well as the spaces 8' and to be discussed later, are bornological

with their strong topologies (see Schwartz [13, I, p. 44] and Grothendieck [8,

Theoreme 10, p. 85]). Thus T is a CS-topology by Theorem 6.3, so

TS=TC{C(T))=T.

Thus by Theorem 6.1, sequential continuity is equivalent to continuity for linear

maps from (3',T) to other CS-spaces.

The convergence C(T) on 3', being equal to weak* convergence, is countably

quasi-metric by Theorem 8.3. A direct proof of this, including an explicit form of

the metric a and functions g„, can be obtained from [12, Chapitre III, §6,

Theoreme XXIII, p. 86].

An alternate method of proving that T = Ts is to show that 3 is the dual of

3' with the topology Ts, and to apply Mackey's theorem [3, Chapitre IV, §2,

Theoreme 2, p. 68, Corollaire, p. 69].

Now let us consider other spaces of test functions and distributions, first the

space 8 of all Cx fnctions on R *and its dual 8' [12, Chapitre III, §7]. The usual

topology on 8' is that of uniform convergence of each partial derivative on each

compact set. Since this defines a metrizable topology T on 8, T= (C) where C is

sequential convergence in the sense described above, and T(C) = TC(C) since T is

locally convex. Thus the dual space 8' of 8 in the usual sense is the set of sequen-

tially continuous complex linear functions on 8. Since 3 is a dense subset of 8

and has a finer topology, 8' may be identified with a subset of 3', namely the

distributions with compact support (see [12, Chapitre III, §7, Theoreme XXV,

p. 89]).
A sequence of members of 8' convergent pointwise on 8 is equicontinuous

by the Banach-Steinhaus theorem and hence uniformly convergent on compact

sets. Also, 8 is a Montel space: a bounded closed set in 8 is compact [12, Cha-

pitre m, §7, p. 89] and so C(T) = C(T*) on 8' where T* is the weak* and T

the strong topology. Thus TC(C(T*)) => T.

Since 8' is bornological, TC(C(T*)) = TC(C(T)) = T in this case also. Again,

the alternate method of proof based on Mackey's theorem is available. C(T)

is simple quasi-metric by Theorem 7.1.

The situation described above for 8 and 8' is the same for     the space of
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rapidly decreasing C00 functions, and its dual Sf" (the tempered distributions),

as denned in [12, Tome II, Chapitre VII].

Returning to 3> with its usual convergence C = C(p,/), it is easy to verify

that hypotheses (a) and (b) of Theorem 8.5 are satisfied, so that T(C) is not

locally convex. Hence by Theorem 7.4, (£F,T(C)) is not a topological linear

space, and T(C) is pathological as compared with the usual strong topology

TC(C) on 2>. The same is true in the LS-spaces &' and 9".

(ß,C) and its dual 3l' with weak* convergence C (which is actually strong

convergence) provide an example of two L*-spaces on whose product the to-

pology T(C") of the product convergence C" of C and C is not the product

topology of T(C) and T(C'). The function (<p,L) -» L(c6) on 3) x 2' to the

complex numbers is continuous for C" [12, Tome II, Chapitre III, §3, Theoreme

XI, p. 73] and hence for T(C") by Theorem 2.2, but it is not continuous for the

product topology of T(C) and T(C') since a neighborhood of 0 for T(C') con-

tains all distributions which vanish on a sufficiently large open set, and a neigh-

borhood of 0 for T(C) contains some functions whose support is not included

in the closure of this open set. Thus the topologies are different.

TC(C") and the product topology of TC(C) and TC(C') are equal by Theorem

6.2. (c/>,L) -» L(c/>) is not continuous for this topology since it is weaker than the

product of T(C) and T(C'). (Note that this is a bilinear, not a linear function

and Theorem 6.1 does not apply.)

Let us sum up the information we have obtained on sequential convergence

and the theory of distributions. It appears that all the spaces of test functions

and distributions (including those not specifically discussed here) are borno-

logical, and hence CS-spaces, so that continuity is always equivalent to sequential

continuity for linear maps. The types of sequential convergence arising are metric,

simple quasi-metric, and countably quasi-metric; if a space of test functions

has one type of convergence, its dual space will have the next more complicated

type (although this is not true for spaces of distributions, whose duals are the

corresponding spaces of test functions). Weak and strong sequential convergence

will coincide since the spaces are Montel spaces. Finally, the topologies T{C)

are not locally convex nor compatible with vector space structures unless they

are metrizable, so that TC(C), the usual strong topology, must be used in each

case.
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