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I. Introduction. It is known that if R is a symmetric ring of bounded operators

on a separable Hubert space H and f 0 is a vector in H which is cyclic with respect

to R, then the positive functional F(A)= (AÇ0, £0), for A e R, may be written as a

direct integral over a compact Hausdorff space M, i.e., F(A) = ¡Mfm(A)dp(m)

where p is a positive regular Borel measure and the functionals fm are indecompos-

able except, at most, for m eM0 <= M and p(M0) — 0. This decomposition of F

induces a representation of R as a direct integral of rings Rm of operators on a

Hubert space Z/m and for almost all m (mod p), Rm is an irreducible ring on Hm.

The problem of extending this type of decomposition to rings of operators on an

arbitrary Hubert space was attacked in 1954byTomita (cf. [6]) using extremely

penetrating techniques. However, certain parts of Tomita's development of his

decomposition theory require a special measure theoretic result which is not

valid in general. Consequently, the question of whether or not this measure

theoretic difficulty could be circumvented arose ; i.e., did the Tomita decomposition

hold for arbitrary rings and, if not, for what type of rings did it hold?

In this paper we shall first show (Theorem 2.3) that in case R is a weakly closed

symmetric ring which contains its commutant, then the Tomita decomposition

holds and, in fact, all of the rings Rm are irreducible ; furthermore R is completely

determined by the representation of H as a direct integral. In §3 of this paper

we shall construct a symmetric ring R where the Tomita decomposition fails

to hold (Theorem 3.3). In our example no one of the rings Rm is irreducible. We

conclude the paper in §4 with some remarks indicating how recent results of

Loomis [4] can be applied to obtain irreducible decomposition of rings of

operators.

II. Notation and terminology. Throughout this paper we shall use the notation

and terminology employed in Nalmark's treatise, [5]. Also, we shall use the ring

theory developed in [5] together with those parts of Tomita's formulation of the

decomposition problem which are valid.

Let H denote an arbitrary Hubert space, Ry a symmetric Banach ring of opera-

tors on H, and E a maximal commutative subring contained in the commutant of

Ry. Let R= Ry\jE; hence, E is both the center and the commutant of R. We
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shall denote the maximal ideal space of £ by M and the continuous functions on

M by C(M). N will denote the set of normalized indecomposable positive function-

als on R and Ñ the closure of N in the weak-* topology of R*, where R* is the

dual of R. Finally, we shall assume that H contains a vector n0 of norm one such

that n0 is cyclic with respect to R. We set F(A) = (Ah0, h0), AeR,so that F e R*.

Theorem 2.1 and 2.2 below summarize certain parts of Tomita's theory that we

shall need; for the details of these theorems, the reader is referred to [5].

Theorem 2.1. There exists a homeomorphism, denoted by m -*fm, of M into

Ñ and a positive, normalized regular Borel measure p on M such that

(1) F(A)= (Mfm(A)dp(m),for each AeR,

(2) fm(AB) =fm(A)xB(m), for each AeR and each BeE, where B-*xB(m) is

the natural isomorphism of E onto C(M),

(3) the mapping m-+fm and the measure p are uniquely determined by (1)

and (2), and

(4) the carrier of p is all of M.

For the verification of these statements see [5], in particular, II, p. 507 ; Theorem

1, p. 493, and III, p. 507.

Before stating Theorem 2.2, we shall use the above theorem to formulate the

notion of a direct integral Hubert space. This is done in the following manner.

For each meM, the functional fm determines a Hubert space Hm, a ring of

operators Rm on Hm, and a representation A -* Am of the ring R onto the ring Rm.

There exists a vector Ç0(m) e Hm of norm one such that Ç0(m) is cyclic with respect

to Rm and fm(A) = (AmÇ0(m),Ç0(m)) for all AeR. The set S of all vector valued

functions of the form n(m) = AmÇ0(m), A e R, is a Euclidean space under the

inner product

(£,") =    f   (ï(m),n(m))dp(m) =  f  fm(A*C)dp(m),
JM JM

where A,CeR, ¿;(m) = Cmc;0(m),A* is the adjoint of ,4.The completion of S,

denoted by Ê, is a Hubert space and is called the direct integral of the spaces

Hm with respect to p. S is called the basis of the direct integral space Ê.

Theorem 2.2. There exists a unitary operator U mapping H onto Ê and an

isometric mapping A-*Â of R into B(H) such that

(1) A=U-lÂU, for AeR,

(2) AS c S, for AeR,

(3) (ÂÇ)(m) = AJ(m), for AeR, c^eS, meM, and

(4) if BeE, then (ÊÇ)(m) = x B(m)(;(m) for £eS and meM; moreover, every

continuous function on M defines an operator B in this fashion.

We refer the reader to pp. 512-515 in [5].
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The image R under the mapping A -» Â is called a direct integral of the rings Rm.

(3) shows that each operator Â may be considered as an operator valued function

on M with values in the rings Rm. The essential problem in this type of decompo-

sition is to determine if almost all of the rings Rm are irreducible; i.e., Rm is

irreducible except for m e M0 where p(M0) = 0. We shall now show that this is

the case when R is weakly closed. We note that if R is weakly closed then R is the

commutant of E.

We shall need two lemmas. In these lemmas we continue to use the notations

and facts cited above.

Lemma 2.1. If y is an essentially bounded p measurable function on M, then

there exists BeE such that y(m) = xB(m) almost everywhere, where B-*xB(m)

is in accordance with (2) of Theorem 2.1.

Proof. Suppose y e Lm(p) and 0 ^ y(m) ^ 1 for almost all meM. We define

G(A) = \Mfm(A)y(m)dp(m) for A e R; hence, G is a positive functional on R and

G(A) t% F(A) = (Ah0,h0), whenever A is a positive definite operator. Under these

circumstances, there exists BeE such that G(A) = F(AB) for AeR (cf. Theorem 1,

p. 262 of [5]). Hence ¡Mfm(A)y(m)dp(m) = ¡Mfm(A)xB(m)dp(m) for AeR.

In particular, the equality holds if we replace A by C,CeE, and, using

/«(C) =/m(/C) =fm(I)xc(m) = xc(m) ((2) of Theorem 2.1), we have that

(Mk(m)y(m)dp(m) = lMk(m)xB(m)dp(m) for every continuous function k on M.

Hence, xB(m) = y(m) almost everywhere. The conclusion of Lemma 2.1 now

follows immediately inasmuch as any function in LJji) is a linear combination of

functions of the above type.

Lemma 2.2. M is extremely disconnected, i.e., the closure of any open set is

open.

Proof. Suppose Fis an open subset of M and Xv the characteristic function of

Fon M. In accordance with Lemma 2.1, there exists a continuous function xB,

such that 0^ xB^ 1, and xB = Xv almost everywhere. Hence, if Vy = {meM;

xB(m) = 1} and V2 = {meM: xB(m) > 0}, then Vy is a closed set and V2 is an

open set. It follows that p(Fn(M - Vy)) = 0inasmuch as xB<xv on V(~\(M— Vy).

However, the set FO(M — Vy) is an open set and, in view of (4) of Theorem 2.1,

we must have VC\(M - Vy)=0 or, what is the same, VczVy. Also, if V denotes

the closure of V, a similar argument shows that V2 (~\(M — V) = 0, or V2czV.

Hence, VcVy<zzV2cz Fand, since Vy is a closed set, Vy = V, so that Vy = V2 = V.

Since V2 is an open set, V is an open set.

Theorem 2.3. Suppose R is a symmetric ring of operator over a Hilbert

space H such that

(1) the center E of R is also the commutant of R,

(2) R is weakly closed, and
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(3) there exists a vector h0eH with norm one which is cyclic with respect to R

and F(A) = (Ah0,h0) for AeR.

Then (a) the direct integral decomposition F(A) = jMfm(A)dp(m) has the

property that each of the functionals fm is indecomposable, and

(b) the direct integral decomposition of R given by Theorem 2.2 has the

property that each of the rings Rm is irreducible over the Hilbert space Hm.

Proof. We will show that each of the rings Rm is irreducible and it will follow

from this that each of the functionals fm is indecomposable, inasmuch as the ring

Rm is the image of R under the representation generated by/m. In order to show

that the ring Rm is irreducible, it is sufficient to prove that if neM, r¡neH„,

yneH„, y„ # 0, and e > 0, then there exists AeR such that | A„y„ — w„ | < e.

We shall prove this first for the case where r\„ and y„ are of the form n„ = CnÇQ(n)

and y„ = DnÇ0(n) for CeR and DeR.

If y„#0, then, since the function | Dm|0(m) |2 =f(D*Dm) is a continuous

function on M, there exists an open set V cz M such that n e V, [ Dm^0(m) |

«> 2_1| D„£o(n) | = «5„ and | CmUm) \ ̂  \ C„Un) \ + 1 = h, for m e V. In view

of Lemma 2.2 we can select F so that it is compact and, hence, the characteristic

function of Von M, say Xr> IS a continuous function and there exists a PeE

such that xP = Xv everywhere. We note that P2 = P.

We now define the subspace K of H to be the closed subspace generated by

vectors of the form nt= BPh0 for BeE. For each such vector nx we have

|ö"t|2 - ¡M\DmPmBJ0(m)\2dp(m) = ¡M\xP(m)xB(m) \2\ DJ0(m) \2dp(m)

= ¡v\xB(m)\2\DmUm)\2dp(m)^ö\ ¡v\xB(m)\2dp(m) = ö2 \M | PmBmf0 (m) \2 dp(m)

= «52| /ij |2. Similarly, | Ch1 \ ^ ö2\ hx \.

Now each vector he H can be uniquely expressed in the form n = Dh1 + h2

where h1 eK and h2 is in the orthogonal complement of the space DK. Thence,

if we define a linear operator A on H by Ah = Chu then

| Ah | -1 Chi | -1 Chi |(| Dht I)"1! Dhi | g ¿A1! Dhi + h21,

so that A is a bounded operator and | A | ^<52¿x1. Now, if BeE, then BAh

= BChi = CBhl, but Bh^eK and Bh2 1DK, so that CBh1=A(DBhl + Bh2)

= A(BDhl + Bh2) = ABh. Hence, A is in the commutant of E and, since R is

weakly closed, the commutant of £ is R; i.e., A e R. We also have

AByn = AnDMn) = tfH0)(n) = (^0)(n) = C¿0(n) = »„,

which establishes the assertion we made above for vectors of the form n„ = Cn<l0(n)

and y„ = DnÇ0(n). Finally, we also note that

| A | ^ ô25;1 Í 2(| C£0(n) | + 1) (| DMn) l)"1.

Suppose aB and ßn are arbitrary vectors in H„, a„^0, and e>0. Since the

vectors C„Ç0(n), CeR, are dense in H„, there exist CeR and DeR such that
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| CM") - A. | < 2-h, | DMn) - a„ | < e(4| a„ |)-»(| ß„ | + 1), | C„£0(n) | = | ß„\,
and | DnÇ0(n) j = j ot„ |. On the basis of the construction in the preceding paragraph

there exists an operator AeR such that AnDnÇ0(n) — C„ÇQ(n) and | A|

< 2(| CMn) | + D(| DM«) |_1) = 2(| ß„ | + 1)(| an I"1). Hence,

| ¿nan - ft | z% | ¿AioW - A„an | + | A.O.{0(») ~ «„(») | + | CM") ~ ßn \

= \AnDMn)-Anan\+\CMn)-ßn\

£\A\-\DMn)-*n\ + \CMn)-ß.\<s.

This completes the proof of Theorem 2.3.

III. An example. Suppose Ry is a symmetric Banach ring of operators on the

Hubert space H, E a maximal commutative subring of the commutant of Ry,R2

= Ry (jE, and R the weak closure of R2 (i.e., R is the commutant of E). Then, in

accordance with Theorem 2.3, the Tomita decomposition of R yields a represen-

tation of R as a direct integral of irreducible rings over M; the maximal ideal

space of E ; moreover, R is completely determined by the representation of H as a

direct integral over M, since R is the commutant of E and E is precisely (within

unitary equivalence) the ring of operators (on this direct integral space) determined

by the continuous functions on M. The ring R2 also has a Tomita decomposition

and it is related to the decomposition of the ring R in the following manner; in

the representation of R as a direct integral of rings Rm, the image of R2 is exactly

the Tomita representation of R2 as a direct integral of the rings R2mczRm.

However, the rings R2m may no longer be irreducible; furthermore, R2 is not

characterized by the representation of H as a direct integral, and certainly Ry is

not characterized in this manner. We shall verify all of these statements by an

example. Several lemmas and definitions will be needed in order to obtain our

example.

Lemma 3.1. There exists a compact Hausdorff space M and a regular Borel

measure p on M such that

(1) the carrier of p is M,

(2) M has no isolated points, and

(3) if y is an essentially bounded p-measurable function on M, then there

exists a continuous function x on M such that x(m) = y(m) almost everywhere.

Proof. Let v denote the Lebesgue measure on [0,1], The ring L^v) determines

a commutative ring of operators, say Z, on L2(v) in the following manner; for

xeL^v) and yeL2(v), let (Bxy)(t) = x(t)y(t) and Z= {Bx: xeLœ(v)}. Z is

isomorphic and isometric to Lœ(v) and we shall show that Z is its own commutant.

To this end suppose .4eB(L2(v)) and ABX = BXA for all xeLœ(v), and let

xA(t) — (AI)(t), where / is the identically one function in L2(v). Hence, if

y e LM(v) c L2(v), then (Ay)«) = (AByI)(t) = (ByAI)(t) - y(t) (AI)(t) = y(t)xA(t).
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Since Lœ(v) is dense in L2(v) it follows that A is the operator that is determined

by pointwise multiplication with the function xA, xA e Lœ(v), and Z is its own

commutant.

It follows from Theorem 2.1 and Lemma 2.1 that if M is the maximal ideal

space of Z and p is the measure on M determined by the functional F(BX)

= (BXI, I) = ¡ox(t)dv(t), then M and p satisfy (1) and (3) of this lemma. That M

has no isolated points follows from the fact that v is a continuous measure;

i.e., v has no atomic parts.

This completes the proof of Lemma 3.1. Throughout the remainder of this

paper, M and p will remain fixed in accordance with Lemma 3.1.

Definition 3.1. Let G denote the collection of all functions g from M to the two

point group I2 = {0,1}. We define addition in G to be the pointwise addition and

the topology of G to be the cross product topology of 12, so that G is a compact

topological Abelian group. Let p denote the normalized Haar measure on G and

p x p the cross product measure induced by p and p on the space G x M. %>

denotes L2(p x p), H denotes L2(p), and B(§>) (resp. B(H)) denotes the space of

bounded linear operators on § (resp. H).

Definition 3.2. (a) If a is a continuous function on GxM, then the operator

Aa e B(%>) is defined by (Aaß)(g, m) = a(g, m) ß (g, m) for ß e§. G is the collection

of all such operators.

(b) If U is a compact-open set in M and g' eG such that g'(m) = 0 for m £ U,

then the operator Tüig.eB(§) is defined by (TUg.ß)(g,m) = ß(g + g',m) for

m e U and (TVig'ß)(g, m) = 0 for m $ U. Tis the collection of all such operators.

(c) K c C(M) <= § is defined to be the collection of all characteristic functions

of the form Xvxu> where U is a compact-open subset of M and Fis a compact-

open subset of G defined by V = {g e G : g(m¡) = g0(m¡)} for g0 e G and

{mi}"=i a finite subset of M.

(d) For meM, V°m = {geG: g(m) = 0}, Vlm = {geG: g(m) = 1},H° = {aeH:

a(g) = 0foxge Vl), and H¿ = {a e H ; a(g) = 0foxge V°m}.

(e) R is the smallest norm-closed subring of B(%>) containing G u T. We note

since f£* = «X and T* = T that R is a symmetric ring.

Lemma 3.2. The linear subspace generated by K is dense in C(G x M)

under the sup norm topology and is dense in the space §> under the L2 topology.

Proof. It follows from Lemma 2.2 that M has topological basis of open-

compact sets. Also, the sets V= {geG: g(m¡) — g0(m¡)> ''■ = 1>•••>«} form a basis

for G. Hence, the sets V x U, U open-compact in M and V of the above form,

constitute a compact-open neighborhood basis for GxM. Thus the linear

subspace generated by K is dense in C(G x M) and, consequently, in $>.

Lemma 3.3.   If BeB(%¡) and B commutes with all the operators in (T, then
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there exists ßeLm(pxp) such  that, for oce§, (Ba)(g, m) = ß(g, m)a(g, m)

almost everywhere (mod p x p).

Proof. Let ß(g, m) = (BI)(g, m), where I(g,m) s 1. Hence, if a e C(G x M),

then A. e G and (Pa) (g, m) = (BAJ) (g, m) = (AaBI) (g, m) = a(g, m)ß(g, m) almost

everywhere. Since the extreme ends of the last chain of equalities holds for

a. e C(G x M), it must hold for cc e §. Also, if a = Xrxv 6 ^> then

f       \ß(g,m)\2dpxp = \Ba\2i%\B\2\a\2 = \B\2(pxp(VxU))2
JVxU

so that ßeLK(p x p) and, moreover, its L«, norm is | B |.

Theorem 3.1. If BeB(§) and B commutes with all the operators in R,

then there exists a continuous function xB on M such that, for aeíñ,(Ba)(g,m)

= xB(m)a(g,m) almost everywhere (mod p x p).

Proof. In view of Lemma 3.3, there exists ß e Lx(p x p) such that (Ba)(g, m)

= ß(g,m)a(g,m). If y(m) = ¡Gß(g,m)dp(g), then yeLœ(p) and, by Lemma 3.1,

there exists xB e C(M) such that xB(m) = y(m) almost everywhere (mod p). Let B'

be the operator in B(§>) such that, for a e§>,(B'a)(g,m) = xB(m)a(g,m). We shall

show that if a eK, then (Ba,I) = (B'a,I) and, since K generates §, it will follow

that (Ba,I) = (B'a,I) for a e§. This, in turn, will imply that (B'A*a,I) = (BA*a, I)

for Are<5i,, and, since B' and B commute with all operators in (i,(B'a,y) = (Ba,y)

for yeC(GxM); consequently, (B'a,y) = (Ba,y) for arbitrary a,ye§ and,

hence, B = B'.

In order to prove that (B'a,I) = (Ba,I) for aeK, let a = Xrxu where L/ is

compact-open in M and F= {geG: g(m,) = g0(m¡),i = 1,—,n}. Let (a,j,—,anj),

j = l,.--,2", be all possible n-tuples of zeros and ones and set gj(m,)= a,j and

g/m) = 0 for m # m„i = 1,••-,«. The collection of sets {F + gy}2!! form a

pairwise disjoint compact-open cover of G.

Now parts (1) and (2) of Lemma 3.1 imply that no point of M has positive p

measure; hence, for ô > 0, there exists a compact open set V <zzU such that

p(U - U')<0 and m,$U' for i= l,---,n.

It follows now (cf. (b) of Definition 3.2) that the operator Tv.¡gj e T for

j - l,-,2"; moreover (BTv.¡gja,I) = (T^Pa,/),^.,

J   ß(g, m)Xv *v(g + gj, m)dp(g)dp(m)

ß(g + gj,m)Xrxv(g + gp^)dp(g)dp(m).
Jti   JG

Now using the invariance of the Haar measure and the facts p(V) = 2~" and

— g- g, we have:
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"i Í
Jm Jg

ß(g,rn)Xvxv(S,rn)dp(g)dp(m)
Jm J g

= 2""  Z   i      i ß(g + gj,m)xvxv(g + gpm)dp(g)dp(m)
j = l J M     J G

= 2""  I     |      |  ß(g,m)xvxv(g + gj,m)dp(g)dp(m)
j = i   Jm Jg

= 2""   f   I     f     ß(g,m)dp(g)dp(m) = 2-1   f     f ß(g,m)dp(g)dp(m)
Jvj = i  Jr+g, Jv Jg

= 2~n   [   xB(m)dp(m) = p(V) f xB(m)dp(m)
Jv Jv

xÁ™)Xv x v(m,g)dp(g)dp(m).
IG

Letting Ô approach zero, this yields

(Ba,I) = ß(g,m)xvxv(g,™)dp(g)dp(m)
Jm Jg

xB(m)XvxV(g,m)dp(g)dp(m) = (B'a,I).
Jm Jg

This completes the proof of Theorem 3.1.

Corollary 3.1. If E is the ring of operators B on £ of the form (Ba)(g,m)

= xB(m)a(g,m) for xBeC(M), then E is both the commutant and center of R;

moreover, M is the maximal ideal space of E.

Proof. Clearly £ <= (£ c R and, on the basis of Theorem 3.1, the commutant

of R is £. It follows that £ is the center of R. The mapping B«->xB is an isometry

of £ onto C(M), so that M is the maximal ideal space of £.

Lemma  3.4.   Let S be the subset of$> defined by S = {AJ: Aa e (£}. Then

(a) S is dense in §,

(b) AS c S for each AeR, and

(c) each L2(p x p) equivalence class of S contains exactly one continuous

function.

Proof, (a) follows directly from the definition of (£. The set R«, of all A in R

such that AS c S is a norm-closed subring of R; moreover, AaS c S for Aae(i

and TUtg,Sc=.S for TUtg.eT, hence HUTc R«. and, hence, R«, = R. (c) follows

from the fact that the carrier of p x p is G x M.
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Lemma 3.5. For each AeR and meM, there is a unique operator AmeB(H)

such that (Aa)(g,m) = (Amam)(g), where ameH and is the function determined

by am(g) = a(m,g)for aeS; finally, the correspondence A-+ Am is a symmetric

and norm-decreasing representation of the ring R onto a ring Rm a B(H).

Proof. For a fixed neM, let Ry be the set of all operators A in R for which

there exists an operator A„ eB(H) such that (Aa)(n,g) = (Anan)(g) for all aeS.

Ry is a norm-closed subring of R which contains (£ and T, consequently, Ry = R.

The set {a,:ae S} is dense in H and for each AeR and a e S, Aa defines a unique

continuous function in S. Hence, An is uniquely defined by A. Finally, it is easily

seen that the correspondence A -* An is a symmetric representation of R and

\A\ =supB6M|^B|.

Theorem 3.2. If, for AeR,F(A) = (AI,T), I the identically one function

onGxM, andfm(A) = ¡G(Al)(g,m)dp(g), then (a) F(A) = ¡Mfm(A)dp(m) is the

Tomita decomposition of F described in Theorem 2.1, and (b) the correspondence

A-+Am of Lemma 3.5, is the representation of A induced by fm.

Proof. F(A) = (A/,/) = JM¡G(AI)(g,m)dp(g)dp(m)= ¡Mfm(A)dp(m);also.for

B eE,fm(BA) = fGxB(m) (AI)(g,m)dp(g) = xB(m)fm(A), and/m04) is a continuous

function of m for fixed A. Hence, in accordance with (1), (2) and (3) of Theorem

2.1, F(A) = \Mfm(A)dp(m) is the Tomita decomposition of F. Now, from Lemma

3.5, fm(A)= UAI)(g,m)dp(g)= U(AJm)(g)dp(g) = (AJm,Im) in H. This
equality, along with the fact that {AmIm: AeR] is dense in H, uniquely defines

the representation generated by/m to within unitary equivalence. Hence, A-* Am

is this representation.

Theorem 3.3. No one of the functionals fm, described in Theorem 3.2, is

indecomposable and no one of the rings Rm is irreducible.

Proof. We shall prove the theorem by showing that the spaces H% and //*

are invariant under the ring Rm. To this end, let Pm denote the norm-closed ring

consisting of all operators Am e Rm such that AmH°m <zz //m and v4m//m c H]„ (cf.(d)

of Definition 3.2). Clearly, dm = {Am: Ae<i} cz R°. Let Tm = {Am:AeT}. If

Tütí¡. e T, then g'(m) = 0 for meU, (Tv g.a)(g,m) = a(g + g',m) for meU, and

(Tv,g'0t)(g,m) = 0 for m $ U. Hence, ifaeS and ameH°, then (Tu¡g,a)(g,m) = 0

for m <£ U and geV^,. Hence, ,4mam e Z7° for ame//°and A e T. A similar

argument shows that the same is true for the space //m. Since (£m u Tm generates

Rm and (£m u Tm cz R° cz Rm, we have Rm = P° and, consequently, //° and /7m

are invariant subspaces of Rm. Hence, no Rm is irreducible and no/m is indecom-

posable.

This concludes the proof of Theorem 3.3; however, a few observations about

the functional fm may be worthwhile. For each meM, the functional fm can be

written as/m +f„ where
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fm(A) =   j\   (AJm)(g)dp  and flm(A) =   J    (4mfm)(^P, ̂R.

Thefunctionalsy^and/^ are distinct positive functionals on R having the

interesting property that ¡Mfm(A)dp = ¡Mfl(A)dp = 2"' ¡Mfm(A)dp for AeR.

This emphasizes one essential drawback of the Tomita decomposition, namely,

unless R is weakly closed, the rings R„ may have important properties individually

which are not reflected in the behavior of R as a ring of operators in <Fj.

IV. Remark. Since the publication of Tomita's paper, several papers have

appeared on the more general problem of expressing a point in a convex-compact

set K as a direct integral over the set N of extremal points of K. Choquet [2], [3],

Bishop and deLeeuw [1], and Loomis [4] have all obtained results on this problem.

Referring to Loomis's paper, we note that these results can be applied to the

Tomita problem when K is the set of normalized positive functionals on a ring R

which contains its commutant £. The results of Loomis yield a unique measure p

on K having the properties (1) F(A) = jKf(A)dp(f), and (2) p is zero on any Gs

set which misses N. The carrier of p is homeomorphic to M ; however, Theorem

3.3 shows that the carrier of p may be disjoint from N in spite of (2).

It is possible to use the measure p to define a measure co on the set algebra

consisting of all sets of the form NO A where A is a Baire set of K. With a slight

modification of the definition of direct integrals, co yields a direct integral de-

composition of R into irreducible rings Rf. Unfortunately co is not a regular

Borel measure on a compact space, so that some of the important properties of a

direct integral are lost.
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