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1. The normalizers of the system normalizers are subgroups of some im-

portance in the theory of solvable groups initiated by P. Hall [1-5]. For example,

P. Hill observed [4] that a system normalizer was contained in the hypercenter

of its normalizer. R. Carter analyzed extensively the class of solvable groups

which have sslf-normalizing system normalizers [6]. Furthermore, Carter, in a

recent paper [7], has pointed out the importance of the question of the homo-

morphic invariance of the normalizers of the system normalizers. That is, if H

is the normalizer of a system normalizer D of a solvable group G and N is a

normal subgroup of G, is HN/N the normalizer of the system normalizer DN/N

of G/NI This is equivalent with the following question(2): If DN/N is the nor-

malizer of the system Tof G/N, is there a system S of G with normalizer D such

that S is carried onto T by the natural homomorphism of G onto G/N1

For thsse reasons we have undertaken an investigation of the subgroups in

the title of this paper. Our first result gives some more information about the

embedding of a system normalizer in its normalizer.

Theorem 1. Let G be a solvable group of p-length one for all primes p.

If D is a system normalizer of G then

N(D) = DC(D).

In particular this means that the normalizer of D induces only inner auto-

morphisms on D. Furthermore, this theorem is false if the restrictions on p-length

are relaxed. For example, if G is the general linear group of two dimensions

over the fiîld of three elements, then G is a nonsplit central extension of a cyclic

group of order two by S4, the symmetric group on four letters. The system normal-

izers of G are elementary abelian of order four while their normalizers are di-

hedral groups of order eight.

The first theorem will be derived from the

Theorem 2. Let A be a group of automorphisms of the group G. Suppose

that A and G have relatively prime orders and that at least one of the groups
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A or G is solvable(3). If F is the subgroup of G consisting of all elements left

fixed by all automorphisms in A, then

NG(F) = FCG(F).

This will be shown to be a corollary of the conjugacy statement of the Schur-

Zassenhaus theorem [8, p. 162].

We shall now digress and state a recent result of J. Thompson which we will

show follows from the above theorem.

Corollary. Let PxQ be a group of automorphisms of the p-group G with

P a p-group and Q a p'-group. If every element of G left fixed by P is left fixed

by Q then g = 1.

Finally, we shall answer in the negative the question raised by Carter, which

we mentioned above.

Theorem 3. There exists a solvable group G of nilpotent length three

which has a system normalizer D, normal subgroup N and maximal subgroup

M containing D such that

(1) NG/N(DN/N) # NG(D)N/N,
(2) D normalizes no system of M.

The second part of the statement of the theorem also answers a question raised

by Carter [7]. Furthermore, the existence of this example seems to indicate

many difficulties ahead. It stands directly in the path of attempts to prove certain

conjectures by induction. In particular, Carter's "convergence" theorem [7,

p. 549] may well be true in general, but an entirely new method of proof would

be needed to show this.

The organization of the remainder of this paper is as follows. The rest of this

section is devoted to a description of notation and relevant definitions, §2 con-

tains a proof of Theorem 2, while §3 contains a proof of the corollary. §4 is

devoted to Theorem 1 and the last section gives a description of the example

of Theorem 3.

Let G be a group with elements x and y and subgroups G and K. We denote

the commutator (x,y) = x~1y~1xy and set xv = y~1xy. The subgroup generated

by all commutators (h,k) for hell, keK will be written as (H,K). The con-

jugate of H by x is Hx. The largest subgroup of H which normalizes K is

NH(K) and the greatest subgroup of H which centralizes K is CH(K). If H should

contain K then (H : K) is the index of K in H.

Now assume that this group G is solvable. The Fitting subgroup F of G is

the greatest normal nilpotent subgroup of G. If G is nilpotent we say that G

(3) This is superfluous in view of the work of Feit and Thompson showing all groups of

odd order are solvable.
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has nilpotent length one. Otherwise, we define the nilpotent length recursively,

letting G have nilpotent length one more than the nilpotent length of G/F. If

pis a prime and Sp is a Sylow p-subgroup of G we say that G has p-length one

provided there is a normal p'-subgroup N of G such that NSp is a normal sub-

group of G. Here, a p'-subgroup is a subgroup of order prime to p.

The definitions of systems and system normalizers are contained in Hall's

papers [3; 4]. The system normalizers form a conjugate class of nilpotent sub-

groups of any solvable group. Some of the most important properties of these

subgroups are their "covering" and "avoidance" properties. This is described

as follows : If H/K is a chief factor of the solvable group G and D is a system

normalizer of G then each coset of K in H contains elements of D (D covers

H/K) if H/K is central in G/K and no coset of K in H, other than K itself,

contains any element of D (D avoids H/K)if H/Kis not central in G/K. Further-

more, if N is a normal subgroup of G then the system normalizers of G/N are

precisely the subgroups DN/N.

If G is a p-group then we need to recall that every proper subgroup of G is a

proper subgroup of its normalizer. Also, if A is a group of automorphisms of

G and A leaves invariant a series of normal subgroups of G and induces only

the identity automorphisms on the successive factors, then A is also a p-group.

Such a series of subgroups is called a stability series for A.

2. The fixed-point theorem. We now turn to a proof of Theorem 2 and we

let A, F and G be as described in the statement of that theorem. Since A leaves

fixed each element of F, it certainly leaves F fixed as a subgroup. Therefore,

each element of A maps NG(F) onto itself. Thus, in order to prove the theorem,

it is now clear that we may assume that F is normal in G and show that G = FCG(F).

We first note that if N is a normal ^-invariant subgroup of G then FN/N

is the subgroup of G/N of elements left fixed by the automorphisms induced on

G/N by the elements of A. In order to see this, we construct the splitting ex-

tension GA of G by A. An element of G is in F if and only if it lies in NG(A).

Similarly, we form the splitting extension (G/N)A, so if xeG then xNeG/N

is left fixed by the automorphisms induced by A if and only if xA7 e NG/N(A).

However, this is true if and only if x e NG(NA). In this case A and Ax are both

complements of N in NA. By the Schur-Zassenhaus theorem [8, p. 162], A and

Ax are conjugate subgroups of AN. That is, there is yeN so that Axy=A.

Hence, xyeNG(A) or xyeF so xeFN and the assertion at the beginning of

the paragraph is proved.

In view of this, a proof of the theorem requires only a demonstration that A

induces only the identity automorphisms on G/CG(F). For then G/CG(F)

= FCG(F)/CG(F). However, suppose xeG, aeA and/eF. Then

r=(/T=(/°r=/xa
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so x~1xaeCG(F) or xCG(F) = xaCG(F) for all aeA and xeG. Therefore, the

proof of Theorem 2 is complete.

In the case that A is cyclic there is another proof of Theorem 2 available.

Because this second proof is so different from the above one and in no way

relies on the fundamental Schur-Zassenhaus theorem, we include this alternative

method, in the hope that it may be of use elsewhere.

As above, we may assume that F is a normal subgroup of G. Let x be a gen-

erator of A and suppose that x has order n. Two paragraphs above we have

shown that if F is normal in G, a e A, geG then (g, a)eCG(F). Thus, we need

only show that each coset of F in G contains elements of the form (g, a).

However, if g and n are in the same coset of F in G then (x, g) = (x, n), since

x fixes each element of F. Therefore, to conclude this part of the proof, we need

only show that if g,heG and F(x,g) = F(x,h) then g and h lie in the same coset

ofFinG.lf(x,g)eF(x,h)then(g-í)xgF(h-1)xh = (h-í)xFhox(hg-1)xeFhg-1.

Therefore, (ng-1)* =f(hg_1) for some/eF. Hence, we next obtain (ng-1)*2

= fx(hg-1)x=f2hg-1 so finally

hg-^fhg-1

and/" = 1. Since G has order relatively prime to n we deduce that/= 1 so

(ng_1)x = hg~1. Thus hg~1eF and heFg.

3. The corollary. Let P, Q and G be as in the statement of the corollary.

We first form the splitting extension GP of G by P. Since G and P are p-groups

so will GP also be a p-group. Since P and Q generate their direct product we

may consider g as a group of automorphisms of GP. The subgroup of elements of

GP left fixed by Q will then be a product FP of P and the subgroup F of G of

elements left fixed by Q. The theorem now gives us that

NGP(FP) = FPCGP(FP).

However, CGP(FP) is a subgroup of CGP(P) and the hypothesis of the corollary

is no more than the assertion that CG(P) is a subgroup of F. Thus, CGP(P) is a

subgroup of FP so the above application of the theorem gives

NGP(FP) = FP.

But GP is a p-group so this implies that FP = GP or F = G and finally Q = 1.

4. The central product theorem. Let G be a solvable group of /»-length one,

with system normalizer D, Sylow //-subgroup Dp of D and Sylow p-subgroup

Sp of G containing Dp. As a first step toward proving Theorem 1 we shall show

that a similar statement holds for the embedding of Dp in Sp, namely,

NSn(Dp) = DpCSp(Dp).
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Furthermore, in proving this, we shall proceed by induction on the order

of G.

Let N be the largest normal subgroup of G of order prime to p and suppose

N ^ 1. Let x e NSn(Dp) so xN normalizes DpN/N in G/N. Since N # 1, we may

apply the induction hypothesis to G/N, so that we have x = yz where y e DpN

and z e SpN with zN centralizing DpN/N in SpN/N. Thus we may let y = um,

z = vn where ueDp,veSp,m,neN and u centralizing Dp modulo N. Therefore,

x = umvn = uvmvn sox = uc and m"n = 1. To conclude the proof in the case

when A7 # 1 we need only see that v e Cs(Dp). But if d e Dp then (d, v) e N n Dp = 1

and we are done in this case.

However, if N = 1 then Sp is a normal subgroup of G because G has p-length

one. We now let A be a complement of Sp in G. The subgroup A induces a group

of automorphisms on Sp and a direct application of the theorem now disposes

of this case.

As a second step toward the proof of Theorem 1 we shall show that, with

the notation above,

NG(Dp) = DpCG(Dp).

Let G = G0 > Gy > ■■■ > G„ = 1 be a chief series for G. Let K¡ = Dpr\G¡ for

i = 0,l,-..,n. If xeNG(Dp) then x normalizes each subgroup K¡ since x cer-

tainly normalizes the subgroups G¡. By the avoidance property of system normal-

izers, we will have K¡ = Ki+1 if GJGi+y is a noncentral chief factor of G. There-

fore, if Ki^Ki+l, x will centralize GJGi+y and so will centralize K,/Ki+y.

Hence, the group of automorphisms NG(Dp)/CG(Dp) of Dp stabilizes the series

of subgroups Dp = K0 ^ K¡ ^ ■•• _ K„ = 1. Therefore, since Dp is a p-group,

NG(Dp)/CG(Dp) is a p-group. The desired conclusion now follows from the as-

sertion proved at the beginning of this section. Indeed, NG(Dp) = NsJiDp)H

where H is a p'-subgroup of NG(Dp), so H centralizes Dp and Ns (Dp) = DpCs (Dp)

and we have NG(Z)p) = DpCG(Dp).

We now proceed with the proof of Theorem 1. Let P\,p2,---,pn De the distinct

primes dividing the order of G and assume that G has prlength one for all

p¡,i = 1,2,•••,«. Let Z) = Z)pi x Z)p, x ••• x Z)Pi where DPI is the Sylow p¡-sub-

group of D. Let x e NG(D). Thus x e NG(DPl) because DPl is a characteristic

subgroup of D. Therefore, we may write x = yyXy where t^ e DPl and Xy e CG(DP¡).

Thus Xy= y\~1xe NG(D) since j^ e D. Similarly, we may express Xy = y2x2 where

y2eDP2and x2eCG(/)P2). However, x2 = y\~ XyeCG(Dp¡) since y2eDP2 and

jqeCgiDp). Thus x2eCG(Dp, x Z)p2). Continuing in this way we finally obtain

the expression

x = yyy2-y„x„

where }>|eZ)Pi, i = l,2,—,n and x„eCG(Dpi x ••• x DPJ = CG(D). This com-

pletes the proof.
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5. The example. We shall now construct and analyze the group described

in Theorem 3. As a first step, we let p be a prime other than two or three. Let P

be the largest group on three generators which is of exponent p and nilpotent

of class two. Then P has generators u1, u2 and w3 subject to the defining

relations

U\ = uP2 = UP3 = («,-, Uj, uk) = 1.

If we denote u¡. = (u¡,u¡) for 1 ^ i <j ^ 3 then ul} has order p and every element

of P has a unique representation in the form

u"1 n a2ii"3 iiai2ii"13 a "21"1 "2 "3 "12 "13 "23

where the a; and aJk axe integers with 0^ a„aJk < p. The center and derived

group of P coincide and consist of the elements which have ax = a2 = a3 = 0

when expressed in this way.

The symmetric group S3 on three letters permutes the elements «l5 «2 and u3

and these three permutations induce a group of automorphisms of P isomorphic

with S3. Let x be the automorphism which interchanges ut and u2 and leaves

«3 fixed and let y be the automorphism which maps «x to w2, «2 to u3 and u3

to «!. We now let G be the splitting extension of P by S3 with S3 acting as a group

of automorphisms as just described.

Hence, the subgroups X, Y and P, where X and Y axe the cyclic subgroups

generated by x and y respectively, are a Sylow 2-subgroup, Sylow 3-subgroup

and a Sylow p-subgroup of G. Furthermore, these three subgroups and their

products form a Sylow system of G. If we let D he the normalizer of this system,

then the Sylow 2-subgroup D2 of D is the largest subgroup of X normalizing

YP and so is X itself. Similarly, the Sylow 3-subgroup D3 of G is the largest

subgroup of T normalizing XP. However, (x,y) = (y~x)xy = y2 $XP, so D3 = 1.

The Sylow p-subgroup Dp of D consists of those elements of P left fixed by the

automorphisms induced by XY. However, if « is an element of P, written in

the canonical form given above, then « is sent by x into the element

uaiiia2ua3u~ai2iiai3iia23   —   ,,02,.«l.,«3.,-ai2-oi.a2,,«23,,Oi3
U2UÍU3UÍ2     «23"i3   —   U1U2U3U12 "l3U23

so if « is centralized by x then axa2 + a12 = 0, al3 = a23 (congruences modulo p).

Similarly, « is sent by y into

,«O1«ia2II031lO12l<_ai3«/_fl23    —     „a3„''l„02„-alfl3-a13    „-«23-0203     -«23
U2U3U1U23U12    M13        —   «j «2 «3 M12 M13 M23

so if « is centralized by y then

a1 = a2 = a3,     a23= -a23,     ai3 + aLa3 s a23 + a2a3 = 0.
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Therefore, it is easy to see that Dp is cyclic and of order p and generated by

d = UyU2U3Uy2U2Uy~3ll2U23112.

Consequently, D is the subgroup of order 2p generated by x and d. i

The normalizer N(D) of D is easy to calculate. Indeed, any element of g e G

which normalizes D must normalize D2 = X and so commute with x. Further-

more g must normalize the subgroup Dp. In fact N(D) is the subgroup of order

2p2 generated by x,d and «i3«23.

However, if we let N be the derived group of P, then N is a normal subgroup

of G. Furthermore, the element UyU2N of G/N normalizes DM/N but no element

of G in the coset UyU2N lies in N(D). Therefore, N has the properties required

by the theorem.

Furthermore, if we let M be the subgroup of G generated by X Y together

with UyU2u3 and N, then it is easy to see that M is a maximal subgroup of G

of index p2 in G. Indeed, any coset of M in G contains an element of the form

«î«2 and M and any such element generate G. Let v = UyU2Uy2112 so v centralizes

X and let Dy = D". Thus, Dy is a system normalizer of G and is contained in

M. We shall show that Dy normalizes no system of M by proving that Dy nor-

malizes no Sylow 3-subgroup of M.

To accomplish this we shall first determine the Sylow 3-subgroups of G nor-

malized by D. We note that any two systems of G normalized by D are conjugate

by an element of N(D). For, if S and T are two systems normalized by D they

are certainly conjugate in G, say by an element g. Thus D = N(S) so

Dg = N(Se) = N(T). But N(T) = D so D = Dg and geN(D). Now, if IF is a

Sylow 3-subgroup of G normalized by D then X normalizes IF so that S, Wand P

and their products form a Sylow system of G normalized by D. Thus, in order

to find the Sylow 3-subgroups of G normalized by D we need only determine

the Sylow 3-subgroups of the systems normalized by D. But, as we have just

seen above, these are the conjugates of Y by the elements of N(D). Thus, the

conjugates of Y normalized by D are precisely the subgroups Yw" when

w = uX3u23 and a = 0,l,"-,p—1.

To conclude, we recall that Dy = D" so therefore the Sylow 3-subgroups of

G normalized by Dy are the subgroups yw°v. However, it is easy to check that

none of these Sylow groups is contained in M so Dy is contained in M and nor-

malizes no system of M. Hence, D is contained in M"~' = My and normalizes

no system of My. This completes the proof of Theorem 3.

Concluding Remarks. The above results suggest two directions for possible

further investigations. The first would be a search for an analog of Theorem 1

for groups of arbitrary p-length. The second direction, and this is vague, would

be an attempt to try and get around all the difficulties presented by Theorem 3.

Progress in either direction would certainly bring us deeper knowledge of the

structure of solvable groups.
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