
CHANDRASEKHAR'S X AND Y EQUATIONSO

BY

T. W. MULLIKIN

1. Introduction. In his study of radiative transfer in homogeneous plane-

parallel atmospheres of finite thickness, Chandrasekhar [4] introduces nonlinear

integral equations for determining certain X and Y functions. For semi-infinite

atmospheres the Y function is identically zero, and the X function is usually

denoted by H. In two recent papers Fox [5] and Busbridge [2] have studied the

existence and uniqueness questions for the H equation.

In a recent paper we [7] have given an exact criterion for uniqueness of solutions

to the X and Y equations. In case of nonuniqueness we have given a simple

representation of all solutions in terms of a particular solution studied by Bus-

bridge [1]. These results contain those of Busbridge for the H equation [2].

The purpose of this paper is two-fold. First we complete the X and Y equations

by additional linear constraints so that a unique pair of functions is specified by

the requirement of analyticity in a half-plane. These constraints also serve to com-

plete certain linear singular integral equations for X and Y functions.

The second purpose of this paper is to transform the linear singular equations

and linear constraints into a form suitable for numerical computation. We first

use the theory of singular integral equations [8] to obtain Fredholm equations

for the values on the interval [0,1] of X and Y functions which are analytic in a

half-plane. A similar development is given by Busbridge [3] for X and Y func-

tions simply related to these. Busbridge is able to prove only that her Fredholm

operators are contracting for sufficiently large atmospheric thickness.

We improve upon Busbridge's results. Extending methods developed with

Leonard in a previous paper [6], we use analytic continuation to transform our

first set of Fredholm equations to different Fredholm equations with simpler

kernels which are continuous and nonnegative. We show that the new Fredholm

operators are contracting for all values of the atmospheric thickness. Hence, the

equations can be solved by iteration, with very rapid convergence for thick

atmospheres.
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For the semi-infinite atmosphere, the Fredholm equations are solved exactly

to give a determination of the H function in terms of simple quadratures. This

amounts to a further reduction of Fox's solution [5].

2. The X and F equations. In the study of radiative transfer problems for

three different types of phase functions, which describe local scattering,

Chandrasekhar [4, Chapter VIII] introduces the nonlinear integral equations

pX(p)X(v)-F(p)F(v)

Jo v + p

e-„+   f'^yw-YOTv)
Jo v-p

for 0 ^ p ^ 1 and 0 ^ t < oo.

The function *¥ is known as the characteristic function. For radiative transfer

problems it satisfies the inequality

(2.2) J»P(v)dv^l.

The function *F is said to be conservative when equality holds, nonconservative

otherwise. We shall assume in this paper that ¥ is nonnegative and satisfies a

Holder condition on the interval 0 ^ p ;£ 1.

Busbridge [1] demonstrated existence of solutions to (2.1) by investigating the

auxiliary integral equation

(2.3) J(x,p) = e-"" + i' ^r Í ' e-^-^Jiy,p)dydv.
Jo      v   Jo

She showed that a solution to (2.1) is given by

(2.4) X0ip) = J(0,p),    Y0ip)   = J(T,p),

and that X0 and Y0 are defined, for all complex p, \p\ > 0, to be real and non-

negative for real p ¥= 0 and to be analytic in the extended complex p-plane except

near p = 0.

We have investigated [7] uniqueness of solutions to (2.1). Let the function X be

defined for z outside the interval [ - 1,1] by

Then three cases arise [1, p. 15] for z in the extended complex plane, cut along

the open interval ( - 1,1):

Xip) =

(2.1)

1a» =
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(i)   X has no zeros.

,- „ (ii) The only zeros of X are at ± 1/fc, 0 _ k < 1, where k = 0 if and only if

1    ' equality holds in (2.2).

(iii) X has a zero at ± 1.

For simplicity in the following presentation we assume that *F never satisfies

(iii). A treatment of this case requires detailed knowledge of *F near p = 1.

We have shown in [7] that if (i) of (2.6) is true, then (2.4) gives the only bounded

solution to (2.1). If (ii) of (2.6) holds, a one-parameter family of solutions exists.

For nonconservative *F (0 < k < 1), all solutions to (2.1) are given in terms

of the solution (2.4) by

(2.7)

*w - ['+ r^ - t&<*> + [r% - rrfc]™

The constants a, ß and k are given by

and a and f> are constants constrained only by the quadratic relation

(2.9) (a2 - b2)(a2 - ß2) -2xak- 2ßbk = 0.

For t = oo, Y = 0, and ß = b = 0, these reduce to Busbridge's results [2].

For conservative *F (fc = 0), all solutions to (2.1) are given by

Xip) = X0ip) + apiXQip) + Y0(p)) + bp[yX0ip) + piX0ip) + Y0ip))l

(2.10)
Yip) = Y0ip) - apiXoip) + Y0ip)) - fcp[y Y0(p) - piX0ip) + Y0ip))l

The constant y is given by

(2.11) T--*^.
so

where

x„= f   v"»F(v)Xo(v)dv,
Jo

(2.12)

y„ = j   v"»F(v) Y0iv)dv,   for « - 0,1, - .
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The constants a and b are constrained only by the relation

(2.13) b\by2 + 2ay - 2] = 0.

This complete result for conservative M* is not given in [7], but it is easily

checked by substitution in (2.1). For b = 0 this reduces to Chandrasekhar's

result [4, p. 190].

In the next section we show that linear constraints can be imposed which

together with (2.1) uniquely determine the pair of functions (2.4). This will come

from an extension of these functions to complex values of p.

For applications, p is restricted to the interval [0,1] as the cosine of an angle

in [0,7r/2]. However, if we define S and T from (2.3) by

Siv,p) =  fV*/vJ(x,p)dx,
Jo

(2.14)

Tiv,p) =  I"* e-^-x)hJix,p)dx,
Jo

it is easily shown [1, Chapter 8] that

S<?'rt = -x-[*o(v)X0(p)-Y0(v)y0(p)],

(2.15)

T^'^  = -z^[Xo(v)Y0(p)-Y0(v)X0(p)].
v      p

As functions that determine the Laplace transform of the function J, set equal

to zero outside 0 = x ;£ z, it is natural that properties of X0 and Y0 in the complex

plane play an important role. This also shows the connection between the methods

developed in §4 and the Wiener-Hopf method [9] as applied to equation (2.3).

3. A completion of the X and Y equations. We shall now complete equations

(2.1) in the sense that the pair of X and Y functions in (2.4) will be

shown to be the unique solution to (2.1) supplemented by two linear con-

straints. By (2.7) and (2.10) it is sufficient to determine the solution (2.4)

to know all solutions to (2.1). For applications it has to be decided which of

these functions is selected by the physical problem.

Suppose a solution has been found to (2.1) for 0 _ p g 1. Then if p in (2.1) is

replaced by any complex number z which is not in the interval [—1,1], the in-

tegrals are well defined and an extension of X and Y is given by

(3i) "i1-H^M^!:j^su'-1'

<31) r(2,[,+zj;^m<iv]-wj;i^)„.c-«..
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As a system of linear equations in X(z) and Yiz), (3.1) has a unique solution

where the determinant does not vanish. It is easily shown [1, §40] that the deter-

minant is just the function X given by (2.5). This explains the importance of the

zeros of A in (2.7) and (2.10).

For brevity we are going to introduce notation for two operators given by

u(XKz)S!r^>mdv,
Jo      v + z

(3.2)

J o
Yf>dv,

for z outside the interval [—1,1]. For z with — 1 5¡ z ^ 1, the singular integrals

will be understood as Cauchy principal values without further notation to indicate

this. These operators map functions defined on 0 ^ p s¡ 1 into sectionally holo-

morphic functions in the z-plane cut along [ — 1,1]. By Plemelj's formula [8]

we have, for example, for 0 < p < 1,

V+iX)ip) = nipVip)Xip) + ViX)ip),
(3.3)

V~iX)ip) = - nip^ip)Xip) + ViX)ip)

where the superscript " + " denotes the limit from the upper half-plane and the

superscript " — " denotes the limit from the lower half-plane. For (3.3) to be valid,

it is sufficient that *FX satisfy a Holder condition on 0 ^ p ^ 1. These formulae

do not hold at the endpoint p = 1.

In this notation we have the determinant of (3.1) given by

(3.4) X = [1 - [/(X)] [1 + F(X)] + t/(F)ViY)

for z outside [ — 1,1]. Using Plemelj's formula, we findforO < p < 1,

A+(p) = [1 - C/(X)(p)][l + ViX)ipy\ + UiY)ip)ViY)ip)

+ 7dp*F(p)[X(p)(l - UiX)ip)) + F(p)l/(F)(p)].

By the definition (2.5) of X we have

(3.6) A+(p) = X0ip) + nipVip),

with

,,™    wx     <        C1 ¥iv)dv        f1  ¥(v)-*F(p) ,        m/ s,    1-p(3.7) A0(p) = l-p       -3J^ + fll       w       w¿v + ^(Af)in-Mp
Jo     M + v        Jo v — p p

Equating real parts of (3.5) and (3.6), we have for 0 ^ p ^ 1,

(3.8) X0 - [1 - C/(X)] [1 + F(X)] + C/(F) F(F).

The statement of equality of the imaginary parts is simply the first equation of (2.1).
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We now solve the system of linear equations (3.1) for z outside [ — 1,1] to get

XX = 1 + ViX) - hUiY),
(3.9)

XY = hil - UiX)) + ViY),

where h is defined by

(3.10) n(z) = e~l/z.

We have [3]

Theorem 1. Let X and Y be any real-valued solution of (2.1) for 0 g p g 1.

Trien (3.9) defines the meromorphic extension ofX and Y to the complex domain

\z\ > 0. This extension gives functions analytic in \z\ >0 except for possible

poles at the zeros of X. In addition, X and Y satisfy the singular linear integral

equations

X0X = 1 + ViX) - hUiY),
(3.11)

A0Y=n[l-i/(X)] + F(Y),    0^p<l.

Proof. We certainly have a sectionally meromorphic function defined for z

not in [-1,1] by (3.9) as

(3.12) X = 1 + F(X)-feL/(Y).

à

We want to show that indeed this function is meromorphic in | z | > 0; we must

avoid the essential singularity of the h function at z = 0.

By (3.8), for 0 ^ p < 1, we have

X0X - [1 + ViX) - hUiY)-] m [X(l - UiX)) - 1] [1 + F(X)]
(3.13)

+ C7( Y)[n + ZF(Y)];

by (2.1) this gives

(3.14)     X0X - 1 - ViX) + hUiY) = UiY)[h + XF(Y) - Y - YFLY)] = 0.

This establishes the first equation in (3.11), and a similar argument will establish

the second equation.

Now for 0 < p < 1 we have

,,.,, v+, , _ 1 + VjX)ip) - «(p) l/(Y)(p) + 7nyP(p)X(p)
(115)    x (/l)-x0ip)+mßnp)       "     •

By (3.14) this reduces to

(3.16) X+(p) = X(p),        0<p<l.
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A similar argument gives

(3.17) X~ (p) = Xip),    0 < p < 1.

This shows that X defined by (3.12) is continuous across (0,1) and real valued

on (0,1). Hence (3.12) does indeed define a meromorphic extension of X, at

least in the region 0 < Re(z) < 1.

To show that (3.12) defines a meromorphic function in all of the domain

Re(z) > 0, we have to investigate X near z = 1, where the Plemelj formula does

not hold in general. By assumption on XV, the function X vanishes at most

at the points ±l/k in the plane cut along ( — 1,1). Since X is analytic in

Re(z) > 0 except possibly at 1 and 1/fc and A(1)^0, it follows readily that

z = 1 is a removable singularity.

We can continue X by (3.12) into Re(z) < 0 provided it is analytic for

- 1 ̂  z < 0. We have from (3.12) and (3.2) for 0 < p < 1

(3 18Ï     X+(-u) =   1 ~ U(X)(li) + K~ WWW + 7cipT(p)F(p)]
*■ ' Kill) + nip^ip)

By (3.11) this reduces to

(3.19) X+i-p) = e""Yip).

A similar result for X~i~p) shows X to be continuous across and real valued on

( — 1,0). Analyticity at z = — 1 is proved as above for z = 1. We have therefore

shown that (3.12) defines a meromorphic function in Izl >0. A similar argument

applies to the function Y defined by (3.9). The proof is complete.

As a consequence of the analyticity of X and F, we obtain from (3.19) the

fact that [3,4]

(3.20) X(-z) = et/zF(z)

for all z, | z | > 0.

The solution (2.4) to (2.1) is regular in \z\ > 0. From (3.9) we obtain the

constraints necessary to specify this solution. In view of (3.20) it is sufficient to

specify regularity of X and F at the single zero 1/k of A. For nonconservative

*P (0 < k < 1) we have

Jo   l-fcv J0   l + fcv

(3.21)

J0    1 + kv J0     1-kv
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For conservative *F ik = 0) X has a double zero at co and we obtain the constraints

1  -   f  [X(v)+Y(v)]T(v)dv,
Jo

(3.22)

f Y(v)¥(v)dv  =   f  [I(v)-y(v)]vT(v)dv.
Jo Jo

In our previous study [7] we used the linear singular integral equations (3.11)

to determine the solutions (2.7) and (2.10) with a and b arbitrary. Since all

solutions to (2.1) satisfy (3.11) by Theorem 1, these nonlinear equations serve

only to impose the constraints (2.9) and (2.13) on the parameters a and b. The

above constraints (3.21) and (3.22) serve to specify uniquely the solution (2.4)

to the linear equations (3.11) and to the nonlinear equations (2.1).

The linear equations (3.11), derived here from the nonlinear equations (2.1),

arise in a more natural way in the study of a linear Boltzmann equation. This

will be presented in a subsequent paper.

4. Fredholm equations. We now use the linear equations (3.11), and the

constraints (3.21) or (3.22) to obtain Fredholm equations which can be solved

easily by iteration. These equations will be especially good for computing X0 and

Y0 functions for large values of the parameter z. Any of the other X and Y

functions given by (2.7) and (2.10) are determined by a knowledge of X0 and Y0.

We define functions/ and g by

(4.1) fsl-hUiY),

and

(4.2) g = h[l-UiXy].

These define analytic functions in the complex z-plane, cut along [ — 1,0] and

excluding a neighborhood of z = 0. We shall apply the theory of singular integral

equations [8] to (3.11), written now as

X0X=f + ViX),

(4'3) X0Y = g+ViY).

It is first necessary to study the homogeneous singular equation

(4.4) A0(p)N0(p) = p fljyo(v)y(v)dV) 0 = p = 1.

Jo     v — p

We add to the assumptions on *P made in §2 the following one :

(4.5) yt + Xl^O.

We have the following :
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Lemma 1.   //(i) of (2.6) holds, the only bounded solution of (4.4) is N = 0.

If (ii) o/(2.6) holds, then all solutions o/(4.4) are proportional to the function

(4.6) N0ip)

where

r p ö(,)-0o,)   -i

L n J      (Wp)]2 + inpnp)yy/

Proof. Following [8], we define the sectionally holomorphic function £ by

(4.8) £(z) = exp[r(z)]

where

(4.9) F(z)=f0-^, z*[0,l],
Jo    r — z

with 0 defined by (4.7).

The function £ is a solution to the Hubert problem of finding a sectionally

holomorphic function such that the limits, £ + and E " of £ from the upper and

lower half-planes, respectively, satisfy

(4.10) £+r=E"l+,       0<p<l.

The equation (4.4) has a nontrivial solution provided this Hubert problem has a

solution which vanishes at co, and this is possible if the index k of the function 9

is positive [8, Chapter 14]. In (4.7) the index is given by

(4.11) k = 0(1).

The function X of (2.5) is analytic in the extended complex plane cut along

[ — 1,1]. By Plemelj's formula we have

X+iu) = X0iu) + niuVip),

X~ip) = X0ip) - nip^ip),       — 1 < p < 1.

By this and an application of the argument principle to X it follows readily that

the index equals one half the number of zeros of X in the extended complex plan

cut along [ - 1,1]. We have

k = 0 for  (i)  of (2.6),
(4.13)

K = 1  for  (ii)  of (2.6).

We define a function N by

(4.14) Niz) =    £(Z)
(1-z)k  '
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and this also is a solution to the Hilbert problem (4.10) [8, Chapter 10]. For (ii)

of (2.6), N vanishes at oo and determines the solution of (4.6) to (4.4) by

<«5> *«-**&£""■   °s,<i.

This completes the proof.

We now define sectionally holomorphic functions cbx and c\>2 by

AM-  xr/.xf1     *W(0      dt
cbAz)=Niz)joN+(t);i_{t)t-—z,

(4.16)

U^Niz)f   *W,<0    d<
;Jo   N+(h(i)A-(0 f-z

We have to distinguish the two cases of (2.6); for (i) and (ii), respectively, we have

(i) Niz) = £(z),

(4.17)

(Ü) Niz) = 1

rhere E is given by (4.8) and (4.9)

Again referring to Chapter 14 of [8], we have the fact the linear equations

1.3) are equivalent to the Fredholm equations on 0 _ p = 1 given by

1-z

where £ is given by (4.8) and (4.9)

Again referring t(

(4.3) are equivalent

™ - "•»+*&#*■

The functions/ and g, occuring in tf>x and cb2, are to be replaced by their defining

relations (4.1) and (4.2). The constants A and B are arbitrary, and the function N0

is given in the previous theorem. We merely refer to Busbridge [3] for a detailed

display of these Fredholm equations which have rather complicated kernels.

We now use the fact that X and Y have analytic extensions to complex values

of p, both to evaluate the constants A and B and to obtain simpler Fredholm

equations for the functions / and g than the above for X and Y. The calculation

of the function / and g from the equations to be determined gives a unique determi-

nation of the functions X and Y by (4.18).

We now have

Lemma 2. Let X and Y be determined on 0 < p < 1 by (4.18) for real

constants A and B. Then these functions are extended analytically to

0<Re(z)<l by
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w,       /(z) + zjcpAz) + ANjzf]

(4.19) ( } = *>
Yiz) = g(z) + Z^2(z) + BiV(z)3

A(z)

For case (i) of (2.6), A = B = 0.

Proof. Clearly X and Y defined by (4.19) are analytic in the two domains

0 < Re(z) < 1, Im(z) > 0 and 0 < Re(z) < 1, Im(z) < 0. A simple application

of Plemelj's formula shows that X is continuous across the interval (0,1) and

equal on this interval to the real-valued function given by (4.18). A similar argument

applies to Y and completes the proof.

It will be convenient to consider the functions P and Q defined by

P(z) =/(z) + g(z),

(4-20) ß(z) -/(*) - giz).

Equations for P and Q, given in the following theorem, contain the linear

integral operator L defined by

We now have the following result.

Theorem 2. Let f and g be defined by (4.1) and (4.2) for any real-valued

solution X and Y to (3.11). Then for appropriate values of the constants C and D,

P and Q satisfy

Piz) = - LiP)iz) + 1 + e~xlz + Cze~xlzNi - z),

(4.22)
Ô(z) = LiQ)iz) + l-e-xl' + Dze~llzNi - z),

for all z not in the interval [ — 1,0]. For z in the interval [0,1] these are Fred-

holm equations in which the Fredholm operator L has a nonnegative continuous

kernel.

Proof. We have two expressions, (3.9) and (4.19), for the analytic continuation

of X and Y into the complex plane. Equating these two, we find, for appropriate

values of the constants A and B, that

(4.23)

C1 Xiv)Viv)

Jo
dv= -z[çbxiz) + ANiz)'],

■s:Y(v)»F(v)
V   ;}dv = - z\\cb2iz) + BNiz)l
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These expressions are analytic in the plane cut along the interval [0, l]. Therefore,

by the definitions (4.1) and (4.2) of f and g, we have for z out of the interval

[-1.0]
/(z) = 1 - ze-«l[<b2i - z) + BNi - z)l

(4.24)
g(z) = e "t/z - ze-t/z[<M - z) + ANi - z)].

Adding and subtracting these equations and using (4.16) and (4.21), we ob-

tain (4.22).

The functions P and Q are determined by evaluating (4.22) on the interval

[0,1] and solving the resulting Fredholm equations. The analytic extension of P

and Q is then given by the right-hand side of (4.22). On the interval [0,1] it is

easily shown for both (i) and (ii) of (2.6), that the kernel of L is a nonnegative and

continuous function. The proof is complete.

Equations (4.22) on the interval [0,1] are uncoupled Fredholm equations

containing the integral operator L. We propose to solve these equations by itera-

tion. This will converge uniformly on the interval [0,1] to a solution to (4.22),

provided the norm of L satisfies || L || < 1. We have

We can simplify the function in (4.25) and estimate || L ||.

Theorem 3. For N defined by (4.17) and X defined by (2.5), we have for (i) of
2.6) and z¿[- 1,0]

and for (ii) o/(2.6)

(4-27) zN(2> f N^m-3 - m - mz) - '•

Therefore, from (4.25) we obtain

(4-28) iLll^^l-expf-^^di]).

Proof. We consider two contours y and T. For z outside the interval [0,1],

let T be a circle with center at 0 and of radius R > \z\, and let y be a simple

closed curve interior to T and enclosing a region with the interval [0,1] in the

interior and with z outside. Since the function N of (4.17) is analytic and nonzero

in the annulus bounded by T and y, we integrate the reciprocal of A/(w)(w — z)w

around T and y in a clockwise direction to obtain by Cauchy's theorem
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(4 29) — f_-_-Í   _-_=-L-
' 2ni Jy A/(w)(w - z)w     2ni Jr JV(w)(w - z)w     zNiz)'

By (4.10) and (4.12) we conclude that for 0 < p < 1

(4 30) _i_1      -       2ni^^

^■™} A7+(P)      JV-(p) A/+(p)A-(p) •

We now let y shrink to the cut along [0,1] to conclude from (4.30) that

(4 3D '    f dw _     I_f1 VJP)dp
K *    } 2niJr  Niw)iw-z)w      zJV(O)    J0 A7 + (p)A"(p)(p - z)'

For | z | < R, the radius of the circle T, we have then

{)Jo    N+ip)X-in)ip-z)
(4.32)

- S. _ zJV(z)  I" dw

" iV(0) 27ti   Jr A/(w)(w-z)w"

For (i) of (2.6) and (4.17), JV(w) tends to 1 as | w | tends to co, thereby establishing

(4.26). For (ii) of (2.6) and (4.17), JV(vv) vanishes like w_1 as \w\ tends to co, so

that the integral around T tends to 1 as R tends to co. This establishes (4.27).

Since 0(i)/i is bounded and nonnegative for 0 ^ t ^ 1, we obtain (4.28) for

both (i) and (ii) of (2.6). The proof is complete.

We have now shown that unique functions h¡, i = 1,2,3,4, can be computed

by iteration from the following four equations:

(i) ft1(p)=  -Lihx)ip)+l + e-xl",

(ii) fc2(p)=   -Lih2)ip) + pe-xhiNi-p),

(4.33)
(iii) fc3(p)= Lih3)ip)+l-e-xl",

(iv) h¿¡i) = LihA) (p) + pe- «"Ni - p).

If we denote the functions P and g on the interval [0,1] by P0 and Q0, then by

(4.22)

Poip) = hxip) + Ch2ip),

(4-34) ßo00 = h3iji) + DhAp).

Again by (4.22), the functions P and Q for complex z are given by

(4.35) P(Z) = " L(P°)(z) + l + e_t/Z + Cze_t/ZiV( - z)'

ß(z) = LiQ0)iz) + 1 - e~tlz + Dze~zlzNi - z).
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Our one remaining task is to relate the constraints A, B, C, and D to the X0

and Y0 functions given by (2.4). We do this by expressing the constraints (3.21)

and (3.22) in terms of the constants.

For (i) of (2.6) we have by Lemma 2

(4.36) A = B = C = D = 0.

For nonconservative ¥ (0 < k < 1), we state (3.21) in terms of P and Q as

(4.37)

l + e--p(l)-e-p(--l)=0.

i-.-*-ß(i) + --ö(4)-a

If P(± l/k) and Q( + 1/k) are inserted from (4.35), with P0 and Q0 as given by

(4.34), then algebraic manipulations give

1
C =

+ .-*-UK)(j) -e-L(Al)(-4)

(4.38)

D =

Kr)-fK4)+W2)(,)+,„L(ti)(4)

i-.-uo,)(1)-,-i.m(-1)

If in (4.38) we let k tend to 0, we have for conservative *P

C-1,

(4 39) x+2c1mhw
D = Jo iV+(0A-(0

I       Jo /        Jo N+(i)x-(0

In all cases

(4.40, ^,^alldB._£±£.

We have given a method for computing the functions/ and g and the constants

A and B, all of which appear in (4.18). Since/and g are analytic in z for z satisfying

|z|>0 and outside [—1,0], we can write <b1 in (4.16) as
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a m km f1     y(o   r/(o -/(z). /(z> L,

for jz| > 0 and outside the interval [ — 1,1]. By Theorem 3 we have for (i) of

(2.6)

(4.41)     cbAz) = M u^j;^^-^,,
MO)

-1
h(íM"(0    '-z

and for (ii) of (2.6),

(4.42)

a. vr^ I    —
^(í)A-(í)      i-zWJo    #+0v

Similar expressions hold for cb2, in (4.16) with /replaced by g.

By an application of Plemelj's formula to cb¡ we can compute <j>f and cbj,

i = 1,2. When used in (4.18) we obtain formulae for the values of the X and Y

functions on the interval [0,1] determined by the solution to (4.3) which is

analytic in the domain | z | > 0. The computations of these functions has then

been reduced to the solution of Fredholm equations by iteration and to the

computation of certain quadratures.

5. The H functions. We obtain from the results of the previous section an

interesting new formula for computing H functions. This amounts to a reduction

of the formula given by Fox [5], who used singular integral equation theory to

study the H functions, but who made an incorrect correspondence between the

mathematical and physical problems.

We consider Re(p) > 0 and let z tend to + co in (4.42) to find

hAfi) = /i3(p) = l,

h2ip) = h4(ß) = 0 for 0 ^ P ^ 1.

Then in (4.38) and (4.39), we let z tend to + oo and use (4.26) and (4.27) to com-

pute that for (ii) of (2.6)

á = í-ñW)  and   B = 0'

covering both the conservative and nonconservative cases. For (i) of (2.6) we

haVC A = B = 0.

In (4.19) we use the fact that g = 0 to conclude that

Yiz) = 0 for Re(z) > 0.
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It is customary to denote the X functions for z - oo and Re(z) > 0 by

Hiz) = Xiz).

From (4.41) and the fact that/(z) = 1, we obtain

and

*i«-f[^)"1]lbr(0af<?"^

0l(z) = 7 [w) ~z N(z) ~*]for (ii) of (2,6)'

Putting these in (4.19), we find

and

<5-2) ^ = ^zTfor(ii)of^6)-

It is well known [1, p. 16] that H can be continued to Re(z) < 0, and that

forz£ [-l,l]andfcz^ ±1

A(z)H(z)H(-z) = l.

This, together with (5.1) and (5.2) gives the following analytic expressions for

the H function, analytic in Re(z) > 0,

(5.3) Hiz) = exp[z JJ-^Ld/j for (i) of (2.6)

and

^ »U = TTTz^ [z jlwihf]for <® of &*>•

These formulae are useful in giving by (5.1) and (5.2) meromorphic expressions

for Niz)/Xiz). For example, this can be used with (5.3), (4.41) and (4.19) to

give an analytic expression for X for (i) of (2.6) as

(5.5) 2»=m{m + *n(0)ÜmmH^m<f-i *

Similar expressions hold for (ii) of (2.6) as well as for the Y function. We can also

use (4.12), (5.1) and (5.2) to determine the function N+X~.
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