
TOPOLOGICAL DIVISORS OF ZERO
AND TAUBERIAN THEOREMS

BY

ALBERT WILANSKY

1. Introduction. The connection between the two topics mentioned in the

title has been shown by I. D. Berg [2]. (See Theorem 6, below.) The author

thanks Dr. Berg for assistance with the material of this article.

The topological divisors of 0 in the algebra £[X] of all bounded endomor-

phisms of a Banach space X are fairly well understood [15; 22]. In this article

we shall extend this knowledge to a subalgebra of B[X], and deduce consequences

in the form of Tauberian theorems.

Algebraists will find no very deep algebraic results in the extension, but they

may be interested to see how algebraic properties correspond to analytic concepts.

The very oldest such correspondence is undoubtedly the remark that if a

transformation is invertible in the algebraic sense, it is trivial in the summability

sense in that it carries no divergent sequences into convergent ones.

2. Notation. All the notation given, except for \¡/ and %„, is standard, and

may be found, for example, in [14; 15; 18; 19].

By c0, c, m are meant, respectively, the spaces of null, convergent and bounded

sequences x = {x„}, n =1,2,--. For xec0, c, m, ¡x|| = sup|x„|. The space of

sequences x with Z | x„ | < co is written /. The constant sequence of ones is

written 1, and ô", n = 1,2,---, is the sequence whose nth term is 1, all other

terms 0.

If A = ia„k), n, fc= 1,2,-", is a matrix, Ax is defined to be {(Ax)„} where

(-4x)„ = Z*"L i ankxk, and x is called summable by A ifx e cA where cA = {x:Axec},

and lim/lx is also written lim^x.

If cA Z3C, A is called conservative. If lim^x = limx for all xec, A is called

permanent. (We avoid the more usual term "regular" which has a quite dif-

ferent significance in algebra. For the same reason we deplore the use of the

word "normal" to describe the shape of certain matrices.)

If limAx = t limx for all xec, A is called multiplicative-t.

B[X] stands for the Banach algebra of endomorphisms (always assumed

bounded) of any Banach space X, with || T|| = sup{| Tx || : || x || ^ 1}, and X'

is the space of continuous linear functionals on X.

An endomorphism which is one-to-one and onto is called an automorphism.
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If Te B\X], and T[X] is closed, Tis said to be range-closed.

T will denote the subset of B[c\ consisting of those endomorphisms which

are given by matrices.

For any matrix ,4, whether conservative or not, we define \A || = supBZj("i|aBt|.

In case A e T, this is equal to its norm as a member of B\c~\.

If Y is a Banach algebra and y e Y, we call y a left divisor of 0 if there exists

zeY with yz = 0 ^ z. Similarly right divisor of 0 and (two-sided) divisor of 0

are defined, y is called a left topological divisor ofO if for each e >0, there exists

z with || z || = 1, || yz || < e; again, similar definitions are given with "left" re-

placed by "right" and "two-sided."

Writers in summability have been accustomed to use the phrase "of type M"

to designate matrices which are not right divisors of 0 in T.

Because of this nonuniformity of terminology, some connections between the

subjects have been overlooked. For example, Theorem II of [13] is the special

case of Theorem 3.3 of [22] in which X = Y= c0.

For uec,fec' we define u®feB[c\ by [u®/](x) =/(x)u.

For fee', let Y(/)=/(l)- I/(¿*), so that /(x) = ¥(/)limx + I/(á*)xt
for xec.

For TeB[c], let x(T) = ¥(limoT).

In case Tis a matrix this is a familiar definition.

Tis called conull if x(T) = 0, otherwise coregular.

For a sequence x, let P„x = x„, thus defining the functionals P„ for n = 1,2,—.

Let XniT) = *(£„ oT) for n = 1,2,- .

3. Algebraic preliminaries. The results of this section are mostly known,

or adaptations of known ideas. They are being presented in a form suitable for

their later application.

It can now be seen that Tis a matrix if and only if XniT) = 0 for all n (since

PBoTx = xB(T)iimx + £(P„oT<5*)xt). Thus T is the intersection of a family

of closed hyperplanes, hence is closed in B[c].

If Tis a matrix we have T= (rBfc) with tttk = P„oTök and || T|| = sup„ £*|tnk\,

as is fairly straightforward to check.

The results collected in Lemma 1 are all obvious.

Lemma 1.   Let TeB[c],fec', uec. Then

(a) If T2 = 0, I + T is invertible, indeed il + T)~1 = I-T.

(b) 7//(u) = 0, [u®/]2 = 0.

(c) xiu®f) = xVif)lirau.

(d) X*("®/) = ¥(/)«*•
(e) 1®/ is a matrix if and only if it is conull.

We now conduct some computations involving x ■

Lemma 2.   For fee', TeB[c] we have Vif o T) = «F(/)x(T) + lfiôr)xAT).
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For xec, /[Tx] = ¥(/)limTx + I/(¿r)ProTx.

Now

limTx = ¥(limoT)limx + E<xtxfc

and
ProTx = ¥(ProT)limx + I,ßkxk,

where the ak and ßk are immaterial.

Thus /[Tx] = [¥(/);((T) + I/(¿r)xr(T)]limx + lykxk, and the result fol-

lows.

Observe the consistent result obtained by taking/= lim or f=Pk.

Lemma 3.   For U, VeB[c\, we have

XiUV)   = xiU)xiV)+ IilimoUôr)XriV),

XkiUV) = XkiU)xiV)+ ZiPkoUÔ')x,iV), for k = 1,2,-.

These formulas follow from Lemma 2 by taking T=V, and, respectively,

/=lim, PX,P2,-.

Lemma 4.   Let U, VeB[c]. Then if Vis a matrix, or i/U~[c0] cz c0, we have

XiUV) = xiU)xiV).

This follows from Lemma 3 since, if Fis a matrix, XÁ.V) — 0 f°r a^ r» ar>d if

rj[c0] cz c0, limo 1/(5r = 0 for all r.

Lemma 5.   Let U, VeBlc"]. Then if Vis a matrix,we have xkiUV) = XkiU)xiV)-

This follows from Lemma 3 since x/K) = 0 for all r .

Lemma 6.   Let U, Ve B[c\. Suppose that Vis a matrix, and VV is a coregular

matrix. Then U is a matrix.

It follows from Lemma 4 that %(F) ̂  0. By hypothesis XkiW) = 0 for all k,

and so, by Lemma 5, xÁf) = 0 for all k. Thus U is a matrix.

Lemma 7.   Let U, VeB[c\. Suppose that V is a   coregular  matrix and

that UV is a matrix. Then U is a matrix.

This follows immediately from Lemma 5.

Lemma 8.   Let X be a Banach space and TeJB[X]. TAen T is a left topo-

logical divisor of 0 if and only if to each e>0 corresponds xeX with

\\x\\ = l,\\Tx\\<e.

See, for example, [22, Theorem 3.5].

4. Algebraic results.

Theorem 1.   T contains its inverses in B[c], i.e., if TeT and T_1eJB[c],

iAen T-1eT. Indeed, if TeT, any left inverse of Talso belongs to T.
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This follows from Lemma 6, taking U = T  \  V=T.

The first half of the next result is known [19].

Theorem 2. The set of conull matrices is an ideal in F, and a left ideal

in B\_c].

By Lemma 4, x is a scalar homomorphism on T. Thus #x O T is an ideal

of codimension one in T.

Next, let l/eB[c] and let F be a conull matrix. By Lemmas 4, 5 zt(I/F)

= XÍUV) = 0 for all k, hence UV is a conull matrix.

We remark in passing that c can be embedded in B^c~\ as a minimal left ideal.

Thus, by Theorem 2, each such embedding is either disjoint from, or included

in the set of conull matrices. Lemma 1(e) is a special case of this remark.

The arguments used in proving the following result were observed in early

articles by R. S. Phillips and A. Sobczyk.

Lemma 9. Let S be a closed linear subspace of c such that c, S are linearly

homeomorphic. Then there exists a bounded projection from c onto S.

Let [/: S -► c be the linear homeomorphism. Thinking of U as a map from S

into m, we may extend it to a bounded linear map V:c-+m. (Merely use the

ordinary Hahn-Banach theorem to extend each PkoU.) Since F is bounded,

V[c~\ is separable. Thus there exists a projection n of V[c] onto c. (See [10].)

Then C/_107coFis the required projection.

According to [10], the projection just produced has norm g 3 || C/_1|| || t/||,

providing, as is always possible, || F|| = || U ||.

Lemma 9 also gives the usual extension theorems of Hahn-Banach type. The

second part of the following result is due to J. Copping [6].

Lemma 10. Let TeB\c~\, Suppose that Tis one-to-one and T\c~\ is closed.

Then T has a left inverse in B[c], and conversely. If in addition TeT, then

T has a left inverse in T.

Let 17 = T_1:T[c]->c. Let p be a bounded projection of c onto T\c]

(Lemma 9). Then U op is a left inverse for T. (This is the argument of [22,

Theorem 3.15].)

Theorem 3. A conull matrix cannot map c one-to-one and onto a closed

subspace of c. However, there exists a conull automorphism of c.

The first part follows from Lemma 10 and Theorem 2. It also follows from

Theorem 5 and Corollary 3, below.

To prove the second part, let T= I + U where U2 = 0 and x(l/) = -1. (See

Lemma 1(a).) Such a U is, for example, 1®(PX -lim). (See Lemma l(b)(c).)

In Theorem 3, "one-to-one" cannot be dropped; for example 0 and l®Pt

are range-closed conull matrices. See also §9, Part I.
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Corollary 1. TAe isomorphism between c and c0 cannot be realized by a

matrix map from c onto c0.

The standard example is given in [1, p. 181]. It is amusing that the isomor-

phism from c0 onto c is given by a matrix.

Theorem 3 shows how the existence of an inverse (Lemma 10) can be applied

to obtain a mapping result. This is J. Copping's technique for obtaining Tauberan

theorems. (See [6, Theorem 4]. The results are Tauberian rather than Mercerian

because of the side condition, boundedness.)

We now turn to what appears to be a more efficient technique, namely the

discussion of topological divisors of zero, as suggested by I. D. Berg [2].

We begin with left and left topological divisors of 0.

Lemma 11. Let TeT. Then if T is a left divisor of 0 in B[c], it is a left

divisor ofO in T. The same is true with "left" replaced by "left topological.'"

(In the following proof, we do not use the fact that T is a matrix.)

If Tis a left divisor of 0, say, TV= 0, F# 0. Then Tu = 0 for some « ¥= 0,

uec, namely u = Vx for some x, and so Tu®Px = 0.

If Fis a left topological divisor of 0 in B[c\, either Tis a left divisor of 0 in

B[c],hence in T, as before,or Tis not range-closed [14, pp. 278-279]. Thus, given

e > 0, there exists uec with || u || > 1, || Tu || < e. For some n, | u„ \ > 1. Let

V = u®Pn. Then || F|| > 1, || TF|| < e, and VeT by Lemma 1(d).

The study of right divisors of 0 is a very important topic in summability; see

for example [1, pp. 90-95] where the nonexistence of a left annihilator is a key

assumption. J. D. Hill [8] dubbed a matrix "of type AÍ" if it is not a right di-

visor of 0 in T.

The following theorem contains, as a special case, the characterization due

to M. S. Ramanujan [13, Theorem II], as well as Lemma 2, p. 93 of [1], and

the results of Hanai [7], and Hill [8, Theorem 3].

Theorem 4.   Let TeT.

(a) Suppose that Tis coregular. Then Tis of type M (i.e. not a right divisor

of 0 in T) if and only if the range of T is dense in c.

(b) Suppose that T is multiplicative-0. Then T is of type M if and only if

the range of T is dense in c0.

(c) In all cases, if the range of T is dense in c, T is of type M, and if T is

of type M the range of T is dense, either in c or in a maximal subspace of c.

If T[c^\ is dense in c, T cannot be a right divisor of 0. Suppose that T[c] is

not dense in c. Then there exists fee' with /oT= 0, /^0. By Lemma 2,

W)x(T) = 0. (Recall that xr(T) - 0 since Tis a matrix.) Thus if Tis coregular,

Vif) = 0. Then «51®/ is a matrix by Lemma 1(d), and (¿' ®/)T = 0.

Next, let us assume that the codimension of T[c~] is at least 2. There exists a
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nonzero fee' with ¥(/) = 0 and /(x) = 0 for x e T\c\. (For the subspace of c'

which vanishes on T[c\ is at least two-dimensional.) Thus again T is a right

divisor of 0.

Now Tis multiplicative-0 precisely if T\c~\ cz c0. If the range of Tis not dense

in c0, its closure has codimension in c at least 2, and so Tis a right divisor of 0.

Conversely, suppose that T[c~] = c0 and ST= 0 ^ S. For some k, f=PkoS # 0.

Since/= 0 on c0, but/# 0, it follows that ¥(/) ï 0, i.e., xAS) * 0 and S is not

a matrix. Thus Tis not a right divisor of 0 in T.

The ambiguity allowed in Theorem 4may be realized,i.e.,there exist members

of T such that the closure of their range is a maximal subspace, some of which

are divisors of zero and some not.

For example T= itnk) with rBB = 1, t„ „_ x = -1, t„k = 0 otherwise, is of type

M and its range is included in c0. On the other hand, J — ö1 ® Px is a projection

onto P^ and has 01®P1 as annihilator, so is not of type M.

We can say, however, that whether or not Tis a right divisor of 0 in T depends

entirely on the closure of its range. Let T[c] be a maximal subspace of c. Then

it may be checked, we omit the proof, that T is of type M if and only if

S cz m (= /') is total over I, where S is the set of all convergent sequences

x = {x1,x2,x3,-"} such that the sequence {x2,X3,x4,—} belongs to T[c]. Note

that S is a maximal subspace of c.

Corollary 2. If T is coregular, the first result of Lemma 11 is correct with

"left" replaced by "right."

This follows from Theorem 4(a), and [22, Theorem 3.3].

As the discussion of Theorem 4 shows, the assumption "coregular" cannot

be omitted in Corollary 2.

Finally we consider right topological divisors of 0. The result of Lemma 11

is false for these. For example, let Te T have range not dense, and a right in-

verse matrix U of finite norm. We might, for instance, take

1-10 0 0 0••

0 0 1-10 0••

0       0     0       0     1    -1 • •

17 =

so that T[c] cz c0 and TU = /.
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Then T is not a right topological divisor of 0 in T since for any matrix

S e T, || S || = || STU || ^ || ST|| • || U ||. But T is even a right divisor of 0 in B[c~\,

since ST = 0 if S = 1 ® lim.

However, if we call a right topological divisor of zero proper whenever it

is not a right divisor of zero, then the result corresponding to Lemma 11 is correct.

Lemma 12. The first result of Lemma 11 is correct with "left" replaced

by "proper right topological."

The fact that Tis a matrix will not be used.

We begin the proof with a technical lemma which is essentially Lemma 1

of [2].

Lemma 13. Let X be a Banach space, and E, F complementary closed

subspaces such that F is finite dimensional. If TeB\_X] is one-to-one, and if

T:E^X is a linear homeomorphism into, then T:X->X is a linear homeo-

morphism into.

We have T[X] = T[£] + T[£]; T[£] is closed by hypothesis, and T[£] is

finite dimensional. Hence T[Y] is closed. (See, for example, [18, Chapter 10, §6

Corollary 5].) Since Tis also one-to-one, the result follows by the closed graph

theorem.

To prove Lemma 12, we observe that Thas dense range, but is not onto, by

[22, Theorems 3.3 and 3.6]. Hence, by [1, Theorem 1, p. 146], T*:c'^c' is

not a linear homeomorphism into; however, it is one-to-one since Thas dense

range. It follows from Lemma 13 that T*:XV± -*c' is not a linear homeomor-

phism into; hence, for any e > 0, there exists /e^1 with ||/|| = 1, || T*/|| < £•

Let [7=1®/. Then || U1| = 1, VTx =/(Tx) 1 = T*/(x)l so that || UT\\ < e,
and U is a matrix by Lemma 1(d) since/e*?4".

We now have completed the adaptation of Ycod's results [22] to the smaller

algebra T.

Recall that, in the present context, "onto" and "one-to-one" mean "onto c"

and "one-to-one on c."

Theorem 5.   Let Te T. Then

T is a left divisor ofO in T if and only if it is not one-to-one.

Tis a left topological divisor ofO in T if and only if it is not a linear homeo-

morphism into, i.e., either T is not one-to-one or T is not range-closed.

Tis a proper right topological divisor of 0 in T if and only if it has dense

range and is not onto.

Let T be coregular. Then Tis a right divisor of 0 in F (i.e., is not of type

M) if and only if the range of T is not dense.

This follows from Lemmas 11, 12 and Corollary 2, with [22], Theorems 3.2,

3.5, Corollary 3.4 and Theorem 3.6, Theorem 3.3, respectively.
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In an unpublished thesis (Lehigh University, 1959) E. K. Dorff has obtained

some other properties of T, for example, that it is a dense algebra of transform-

ations of c. Some discussion of it is also given in [19].

5. Summability.

Theorem 6 (I. D. Berg [2]). Suppose that AeT and that A is not a left di-

visor ofO. Then A sums bounded divergent sequences if and only if A is a left

topological divisor of 0 in T.

Equivalently,

Theorem 6'. Suppose that a conservative matrix A is one-to-one on c.

Then A sums bounded divergent sequences if and only if to each e > 0 cor-

responds a conservative matrix B with \\B\\ = 1, \\AB\\ <£.

Necessity follows from the fact [20, Theorem 1] that c is not a closed subset

of the FK space cA. Thus, given £ > 0, we may find xec with || x || = 1, || Ax || < e,

since || ̂ lx || is one of the seminorms defining the FK topology of cA. Then

B = x® Px satisfies the condition stated. For a reversible matrix, this argument

also yields the converse result. We refer to Berg's article for a complete proof.

It may also be deduced from [6, Theorem 4].

Corollary 3.   Every conull matrix is a left topological divisor of 0 in T.

S. Mazur and W. Orlicz [12, p. 155, line 20] gave the first half (necessity)

of the following result under the more restrictive hypothesis that A is one to-one

on m. For reversible matrices it is equivalent to [20, Theorem 1].

Theorem 7. Let A be a conservative matrix which is one-to-one on c. Then

A sums no bounded divergent sequence if and only if A[c] is closed in c.

This follows from Theorems 5 and 6.

The following result is suggested by a theorem of Tropper and Martin. See

the discussion of Theorem 10, below, for details.

Theorem 8. Let A be a conservative matrix which is one-to-one on c. Then

A sums bounded divergent sequences if and only if there exists a matrix B

with convergent columns such that \\B\\ = co, but \\AB\\ < oo.

If B exists, for n = 1,2,---, let B„ be the matrix gotten from B by replacing

all terms not in the first n columns by 0. Then B„ eT, || B„|| -» co, and || AB„ ||

^ || AB || < oo, so that A is a left topological divisor of 0. By Theorem 6, A sums

bounded divergent sequences.

Conversely, assume that A sums a bounded divergent sequence. By Theorem

6 and Lemma 8, it follows that given £ > 0, we may find xec with

||x|| = l, ||/lx||<£. For r = l,2,--, let xrec satisfy ||xp|| = r, ||^xr||<2_r.

Let B be the matrix whose rth column is xr. Then || B || = co, || AB \\ < £2~r = 1.
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The first part of the following result is due to J. Copping [4]. See also [21,

Theorem 1]. The second part was given by J. Copping [6, Theorem 4] under the

more restrictive hypothesis that A is one-to-one on m.

Theorem 9. // a conservative matrix A has a left inverse matrix B with

|| B || < oo, then A sums no bounded divergent sequences and A has a conser-

vative left inverse.

If a conservative matrix A is one-to-one on c, then A sums no bounded di-

vergent sequences if and only if A has a conservative left inverse.

If || B|| < oo and BA = I, it is clear that A is not a left topological divisor

of 0. Hence, by Theorem 6, A sums no bounded divergent sequences. By Theorem

5 and Lemma 10, A has a conservative left inverse. The last sentence of the state-

ment follows in the same way from Theorem 6, Theorem 5 and Lemma 10.

It is worth remarking that if, in Theorem 9, A is permanent, the left inverse

may be made permanent, and if A is of type M in addition, the left inverse must

be permanent. This is proved in [6, p. 185]. (It would be trivial if A were known

to be onto.)

The next theorem is a considerable generalization of the result of A. M. Tropper

[17], and C. F. Martin [11]. Their result referred to permanent triangular mat-

rices with no zeros on the main diagonal, and is equivalent to the theorem given

here in that special case.

Theorem 10.   Let A be a conservative matrix which is one-to-one on c.

Then A sums bounded divergent sequences if and only if there exists a matrix

B with bounded columns such that ||B|| = oo, but ||^4B|| < oo.

Suppose first that the matrix B exists.

If A sums no bounded divergent sequences, it has, by Theorem 9, a conserv-

ative left inverse C. Then || B || = || iCA)B || = || CiAB) || ^ || C || • || AB || < oo, a

contradiction. The associative law invoked in the second step applies because

if x is a column of B, CiAx) = iCA)x by absolute convergence of a double series,

since x is bounded.

The converse follows from Theorem 8.

Because of the depth of Theorem 9, it is worthwhile to sketch a more ele-

mentary proof of the first half (sufficiency) of Theorem 10.

We may assume that A is one-to-one on m, for our hypothesis is that A is one-

to-one on c, and if Ax = 0 for some xem\c there is nothing to prove.

Just as in the proof of Theorem 8, the existence of B implies that A is a left

topological divisor of 0 in the algebra of endomorphisms of m.

Let 8 > 0 be given. By Lemma 8, there exists xem with ||x|| = 1, || Ax\ < e.

We can then find {!„} with X„ JO such that if y„ = l„x„,wehave ||y || = 1, \\Ay ||<e.

(See for example [20, p. 503].) With Lemma 8 and Theorem 6, this completes

the proof.
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6. Invariance of coregularity. J. Copping [5, Theorem 3] has deduced from

a consistency theorem of Mazur-Orlicz-Brudno, the fact that "coregular" is an

invariant of the bounded part of the convergence domain. Specifically,if cAnm

c c,nm and A is conull, so is B.

We should like to point out a different proof of this result.

Suppose that A is conull and cA n m cz cB.

Let D = B — tl where t = x(B)-Then D is conull, hence there exists a bounded

divergent sequence x which is summable by both A and D [23, Satz 3.4,11].

By hypothesis, it is summable by both B and D. Thus tx — Bx — Dx e c. Since

x$c it follows that t — 0, i.e., B is conull.

7. The boundary of the maximal group. In [6], and in improved form, in

[2], a question raised in [19] was answered, concerning the boundary of the

maximal group in T. Part of the question concerned the existence of a matrix

summing bounded divergent sequences which is not on the boundary of the

maximal group. An example is given in [6]. The following example involves

less computation.

Let A = iank) where, for all n, a„x = a„ 2n = 1, ank = 0 otherwise. Then A sums

the sequence {(—1)"}. Now A[c\ = c for, given yec with limy = t, if we set

x = it,yx — t, 0,y2 — (,0, y3 — t, 0, •••) we shall have y = ^4x. Thus, by Theorem

5, A is not a right topological divisor of 0. (This could also be seen easily

by noting that A has a right inverse matrix of finite norm.) It follows that A

is not on the boundary of the maximal group. (A conull example is given in §9,

below.)

8. Steinhaus' theorem. The ideas of this article provide a setting for

the classical result of Steinhaus that a permanent matrix cannot sum all

bounded sequences, easily extended to coregular matrices by replacing a„k by

<*nk - lim„ -co a„k-

A matrix A which maps m into c is called coercive ;|such a matrix is conserv-

ative and indeed the coercive matrices are precisely the members of T which

are compact. (See, for example, [19, p. 381].) Each compact matrix is obviously

the limit of a sequence of finite dimensional matrices. Any finite dimensional

matrix is obviously conull, thus, since x is continuous, every compact matrix

is conull.This last statement is equivalent to Steinhaus' theorem. (It was pointed

out in [3, p. 692], that no compact matrix can be permanent.)

9. Questions.

Note. A dittoed copy of this article was circulated pior to its publication

with the result that questions I and IV have been answered by J. Lindenstrauss,

questions IV and V by J. Copping, and V by R. J. Whitley.

I.   Can A e T be conull and A[c\ = c?
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Answer. Let

A =

1 -1 0

0 0 1

0       0       0

0
-1

0

0       0       0

0 0       0

1 -1      o

This yields a conull A e T which is not a right topological divisor of 0, hence

is not on the boundary of the maximal group. Being conull, it sums bounded

divergent sequences.

Dr. Berg pointed out in a conversation that the matrix of [21, p. 403] carries

c onto c0, that no triangle may do this—by Theorem 3—and no triangular matrix

may do it either since a triangular matrix map onto c0 must be a triangle by easy

induction on finite dimensional subspaces of c0.

There is also no matrix projection of c onto c0 since [16, p. 547] shows that

the general projection of c onto c0 is J — w® lim, where limu = 1.

II. Which of the classical summability methods, Norlund, Euler, Hausdorff,

etc., are on the boundary of the maximal group? Mercer's theorem says that

(C,l) is. My guess is that they all are.

III. The function x is of no interest for nonmatrices. Possibly something

better might be suggested, for example if we set p(T) = x(T)-lim„_00xB(T),

we shall have piT) = xiT) if Tis a matrix. Moreover p(w®/) = 0 for all u,f,

a very reasonable situation. Unfortunately p is not defined for all TeB[c\. For

example, if tem\c, define TeB\c~\ by P„oTx = i„(limx - x„). Then x„(T) = tn,

so that piT) does not exist.

IV. I conjecture that if a conservative matrix A sums a bounded divergent

sequence, there cannot be a continuous projection from cAc\m onto c. In view of

[10], this would imply the well-known result of Agnew, Zeller, and Mazur-Orlicz

that cA n m cannot be separable in m. (Answer. Yes! This result, by J. Linden-

strauss appeared in the American Mathematical Monthly in 70 (1963), 977-978.

J. Copping also has a proof.)

V. I conjecture that if a conservative matrix A sums bounded divergent

sequences, the same is true of the matrix gotten from A by multiplying various

columns of A by — 1. If A is one-to-one on c this follows from Theorem 9. For

example the transformation x-*{x„ + x„_!)} can be converted into the conull

transformation x->{(-l)"(xB-x,1_1)} by this operation, hence sums bounded

divergent sequences.

VI. Let X = c. Then X has the property that Te B{X] is not a left topo-

logical divisor of 0 if and only if it has a left inverse (by Lemma 10 and Theorem

5). Which Banach spaces X have this property?

A necessary and sufficient condition is, by [22, Theorem 3.15], that X allows

a bounded projection on each of its subspaces with which it is linearly homeo-
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morphic. The familiar condition X = C[H\ is sufficient, where H is an ex-

tremally disconnected compact Hausdorff space, but is not necessary since c is

not of this form. Lemma 9 shows a technique for discussing the problem in

the separable case, via projections from superspaces.

A sufficient, but not necessary, condition is that in the category of Banach

spaces and bounded linear maps, the space X is injective. For further informa-

tion, see [9].
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