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A ring S with identity element is a classical right quotient ring of a ring R

in case: (i) S3 R; (ii) R contains nondivisors of zero, called regular elements,

and each regular d G R has a two-sided inverse d-1 G S; and (iii)

S = ¡a6_1|a, regular b G R\-

Classical left quotient rings are defined symmetrically. R is right (resp. left)

quotient-simple in case R has a classical right (resp. left) quotient ring S

which is isomorphic to a complete ring Dn of n X n matrices over a (not ne-

cessarily commutative) field D. R is quotient-simple if R is both left and right

quotient-simple.

Goldie [2] has determined that a ring R is right quotient-simple if and only

if R is a prime ring satisfying the maximum conditions on complement and

annihilator right ideals. In particular, any right noetherian prime ring is

right quotient-simple. (See also Lesieur-Croisot [l].)

A (not necessarily commutative) integral domain K is a right Ore domain

in case K possesses a classical right quotient field K. Observe that if K is a

right Ore domain, then, for each natural number n, the ring Kn of all n X n

matrices over K is right quotient-simple, and (K)n is its classical right quo-

tient ring.

A consequence of our main result (Theorem 2.3) is that the right quotient-

simple rings can be determined as the class of intermediate rings of the exten-

sions (K)n over Kn, n ranging over all natural numbers, and K ranging over

all right Ore domains. Theorem 2.3 is much more precise. As a corollary we

rederive a theorem of Goldie [3] on principal right ideal prime rings.

1. General quotient rings. If R is any ring, MR (resp. RM) will denote that

M is a right (resp. left) P-module. If AT is a submodule of MR such that any

nonzero submodule P of M has nonzero intersection with N, then M is an

essential extension of N, or N is an essential submodule of M. Notation:

MVNor(MVN)R.A right ideal I of R satisfying (RV I)R is an essential

right ideal.
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If A is a ring containing R, then A is a right quotient ring of R in case

(A V R)R, where the module AR is defined in the natural way. Any classical

right quotient ring S of a ring R is a right quotient ring in this sense, so the

results of this section are applicable to classical quotient rings.

1. Theorem. Let R be a semiprime ring, and let A be a right quotient ring

of R. Let e be an idempotent of A such that D = eAe is a field (3). //

K = eAe O R ^ 0,

then K is a right Ore domain, and D is its right quotient field,

D= \kq~1\k, 0^qEK\.

Proof. First note that eA is a left vector space over D = eAe. Thus if

0 ¿¿ d E D, then dx = 0 => x = 0 Vx E eA. Let [d] denote the P-submodule

of A generated by d E D. If we set dir, re) = dr + nd V (r, re) E R X Z (carte-

sian product), rER, n E Z, then [d] = ¡d(r, re) | (r, re) E R X Z(. Since

(A V R)R, we have [d] Pi R * 0 V 0 ^ d E #• Hence let

0 * c = d(r, re) E [d] O R.

Since  d = de,   clearly   e(r,re) ^ 0,   so   choose   (r',re')EPXZ   such   that

0^eir,n)(r',n')ER.

Then setting U = eA OR, and setting a = e(r,re)(r' ,re'), we see that aE U

and b = da = c{r', n') E U. Since a^O, necessarily 6 ?¿ 0. Since V = Ae Pi R

is a left ideal of R, K = eAe H P = V Pi t/ is a left ideal of U. Furthermore,

since K ¿¿ 0 by hypothesis, since K ÇLD, and since t/ Ç eA, U is a torsion-

free left /i-module. Since R is semiprime, the left annihilator ideal of R

is zero, so aR 9e 0. Since aR ç (J, it follows that KaR j± 0. Since KaR is

a right ideal of R, semiprimeness of R implies that iKaR)2 ¿¿ 0, hence

aRK ^ 0. Now choose tER.qEK such that x = atq ?¿ 0. Since xEeA, nec-

essarily y = cíx j¿ 0. Since at, bt EU iU is a right ideal of P and a, b E U),

necessarily x = atq, y = btqEK iK is a left ideal of C/ and çG^). If x"1

denotes the inverse of x in D, we see that d = yx~', and x.yGii. Thus, Z) is

the right quotient field of K, completing the proof.

Remark. Any quotient ring A of a semiprime ring R is semiprime. Thus

(see Jacobson [l, p. 65, Proposition l]) eAe is a field if and only if eA is a

minimal right ideal.

If R is any ring, and if xr is the right annihilator in R of x ER, then

ZXR) = {x E R | *r is an essential right ideal of R \

is a two-sided ideal of R (R. E. Johnson [l]), called the right singular ideal

( ) In our terminology, a field is not necessarily commutative.
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of R. It is easy to check that Zr(R) contains no nonzero idempotents, so that

Zr(R) = 0 whenever R is a (von Neumann) regular ring, in particular when R

is semisimple artinian.

Below we show that the vanishing of Zr(Q) is enough to insure transitivity

of the relation "quotient ring of. In the proof, if x is an element in the ring

Q, and if P is a subring of Q, then

(P:x) = \pEP\xpEP\

is a right ideal of P. Furthermore, if (Q V P)P, then (P: x) is an essential

right ideal of P, a fact which we use without proof.

2. Lemma. Let Q be a right quotient ring of R, and let R be a right quotient

ring of T. (1) // / is any right ideal of Q such that I C\R is an essential right

ideal of R, then I is an essential right ideal of Q; (2) Zr(Q) 2 Zr(R) 3 Zr(T);
(3) // Zr(Q) = 0, then Q is a right quotient ring of T.

Proof. (1) is trivial. (2) Let xr denote the right annihilator in Q of x G Q-

HxEZr(R), then xr(~\R is an essential right ideal of R. Then (1) implies

that xEZXQ), proving (2).

(3) If xEQ, xR = 0 implies by (1) that xEZr(Q). Since Zr(Q) = 0, if
O^xEQ, then xR ?¿ 0, so xR D R ^ 0. Let s, r E R be such that s = xr^O.

Now (T: r) (resp. (T: s)) is an essential right ideal of T, and so is

(T:r)n(T:s).

Hencesr2 (T: r) C\ (T:s) would imply by (1) that s G Zr(R). But Zr(R) = 0

by (2) and s ¿¿ 0, so we conclude that sr$ (T: r) D (T: s). Accordingly we

can choose t G (T: r) n (T: s) such that st ^ 0. Then st = x(rt) ExTf]T, so

xTf)T^0. This proves (3).

For convenience, we recall the definition of a prime ring. R is said to be

prime in case any of the following three equivalent conditions are satisfied:

(a) T= 0 V right ideals /;

(b) /'=0V left ideals /;

(c) xPy=0=>x = 0 or y =0 Vx, y G P.

Here F=\aE R\la = 0\, and /'= \a G P|a/ = 0[.
If A (resp. P) is a left (resp. right) ideal of R, then T=BA is defined to

be the set of all finite sums of the products 6a, a G A, b G B. It is to be ob-

served that T is a subring of R.

3. Proposition. Let R ¿¿ 0 be a prime ring, let A be a left ideal of R whose

right annihilator Ar in R is zero, and let B be a right ideal of R whose left anni-

hilator Bl in R is zero. Then: (1) T = PA is a prime ring; (2) If, in addition,

B is an essential right ideal of R, then R is a right quotient ring of T.

Proof. (1) Let x,yETbe such that xTy = 0. Then AyRxB is an ideal of R
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having square zero, so primeness of R yields AyRxB = 0. Then again by

primeness of R, Ay = 0, or xP = 0. Since Ar = B' = 0, we obtain y = 0 or

x = 0, and T is therefore prime.

(2) If 0 jí x E R, then xB ^ 0. Then (P V B)R implies xP H B ^ 0. Let

b E B be such that 0 ^ xb E B. Primeness of R implies A1 = 0, so xbA ¿¿ 0.

But bA Q T, and xbA ÇT, so xT C\ T * 0, proving (2).

2. Quotient-simple rings. Before proving the main result (Theorem 2.3) we

list some known properties of classical quotient rings.

1. Lemma. Let Q be a classical right quotient ring of a ring R. Then: (1) If

by," -,bnare regular elements of R, there exists a regular element c E R and ele-

ments g,E R such that bf1 — g¡c~l, ¿ = 1, •••,«; (2) If xx, ■••,x„GQ, there

exists a regular element c E R such that x¡c ER, i = 1, • • -, n; (3) If I is a right

ideal of R, then the right ideal of Q generated by I is IQ, and IQ = jxc_1|x G I,

regulare ER\; (4) Ifd ER is regular, then dR is an essential right ideal of R;

(5) // R has a classical left quotient ring, then Q is a classical left quotient ring

ofR.

These results occur various places in Goldie's paper [l], but none require

any of the deeper results found there. For example (1) is an easy induction

[1, p.605, Lemma4.2], (2) is an immediate consequence of (1), and (3) fol-

lows from (2) [1, p. 605, Lemma4.3]. (4) is [l, p. 603, Theorem 10] but a

shorter argument is as follows: Let I = dR. Since l = dd~1ElQ, then

IQ = Q. Hence if 0 ¿¿ k E Q, then (3) implies that k = xc"1 with x G I, c E R.

Then 0^kc = xEkRC\I, proving (4). (5) is obvious.

We also require the following:

2. Lemma. // R is right quotient-simple, then R is prime.

Although this is not explicitly stated in Goldie's paper [2], it follows from

[2, p. 213, Theorem 4.4] that R is semiprime. Let J be a right ideal of R such

that I = Jr ?± 0. Then, if Q is the classical right quotient ring of P, IQJ f] R

is a right ideal of R having square equal 0. Thus IQJ H R = 0 by semiprime-

ness of P. Since (Q V R)R, we obtain IQJ = 0. By simplicity (that is, prime-

ness) of Q, we conclude that J = 0, and R is therefore prime.

If Q = Dn is the complete ring of n X n matrices over a field D, then there

exists a set M = j e,j\ i, j = 1, ■ ■ -,n\ of matrix units of Q, and the set of ele-

ments of Q which commute with each element of M is a field isomorphic to D.

Without loss of generality we can assume that this field is D; we call it the

centralizer of M in Q. If x is any invertible element of Q, then x~lMx is a set

of matrix units in Q whose centralizer is x_1Z)x. We call any such set a com-

plete set of matrix units of Q.

3. Theorem. Let Rbea right quotient-simple ring with quotient ring Q = Dn,

D a field. (1) Then Q contains a complete set M — j e,/\ i, j = 1, • • -, n \ of matrix
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units with the following property: if D is the centralizer of M in Q, then R con-

tains a subring

Fn= ¿Pey,
ij'-l

where F is a right Ore domain contained in ROD and D is the right quotient

field of F. Furthermore:

Q= [ak-1] aEFm0^kEF\.

(2) If R is also left quotient-simple, then every complete set M of matrix units

has the property described in (1), and each corresponding D is also the left quo-

tient field of F. Finally,

Q=[q~ïb\ bEFn,0*qEF\.

Proof. We give a proof of (1) and (2) simultaneously by showing if

M = {e¡j\ i, j = 1, • • -, re j is any complete set of matrix units of Q such that

(*) there exists a regular element yER such that y M c P

then M has the property in statement (1).

Now if R is also left quotient-simple, then Q is a classical left quotient ring

of R, and the right-left symmetry of (2) of 2.1 asserts that each full set M has

property (*).

Next assume only that R is right quotient-simple, and let JVbea complete

set of matrix units of Q. Then, by 2.1, there exists a regular yER such that

NyCZR. Hence, M = y_1Ny is a complete set of matrix units of Q satis-

fying (*).

Accordingly let M = \e¡j\ i, j = 1, ■ • -, re} be any complete set of matrix

units of Q satisfying (*). Then, by 2.1 there exists regular x E R such that

Mx Ç R. Hence the left ideal A = {r E R\ rM C R j contains the regular ele-

ment yER, and the right ideal P = j r E R \ Mr Ç R j contains the regular

element xER- Furthermore, P is an essential right ideal of R by (4) of 2.1.

Since R is a prime ring by 2.2, we apply 1.3 to conclude that T = PA is a

prime ring and that R is a right quotient ring of T. Since Zr(Q) = 0, we de-

duce from (3) of 1.2 that Q is a right quotient ring of T.

Next we show that en Qen O T ^ 0. Now 0 ?¿ yen E R and

yfeuMCyMçP

which shows that yexl E A. Since x E B and since x is regular it follows that

0 ,£ xyeyy ET = PA, so that T O Qeu ^ 0. Since Q is a right quotient ring

of T,enQOT^ 0. Then primeness of T implies that (en Q O T)c ¿¿ 0, where

c = xyeyy. UdEeyyQOT is such that de ̂  0, then de E T O en Qeu, proving

our assertion.
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Since Fx = enQen n T t¿ 0, and since enQen is a field ( a* D), Theorem 1.1

implies that euQeu is the right quotient field of Fx = euQenn T. SinceD

is isomorphic to Den = enQen under the map 4>: d~^den, dE D, this shows

that D is the right quotient field of F= <t>~lFx. Furthermore,

Fey = eixFxeXj ç ea TetJ = (eixB) (Aeu) QRRQR,

i, j = 1, • • •, n. Thus, R contains the subring

Fn = ¿ Fe¡j,

and PC PHP.

If a = ^lj=ieijdijE Q, dy G P, i,y =«= 1, * • •,», then by 2.1, there exists

O^kEF such that dv& = o,; G P, ¿,7 = 1, • • -, n. Then a = fk\ where

/ = £"j=i<?,;,c,yGFn. This proves  (1).

If R is also left quotient-simple, then Q is the classical left quotient ring

of R, and Theorem 1.1 implies that enQen (resp. D) is the left quotient field

of Pi (resp. F). The computation above establishes that if a G Q, then

a = q~lb, with b E Fn, and 0 ^ q E F. This completes the proof of (2).

4. Corollary (A. W. Goldie [3]). // R is a principal right ideal ring, and

if R is prime, then R = Kn, where K is a right Ore domain.

Proof. Using the notation of the theorem, we can write B = cR for some

c G P. If b E Q is such that be = 0, then bB = 0. But x G B is regular in P,

so x ' G Q- Thus bx = 0 and b = 0, so c is not a right zero divisor in Q. Then,

as is well known in artinian rings, c~l EQ-

Trivially e¡jB ç P, that is, etJcR çz cR and c~letjc = fy G P, i,j = 1, •■•,n.

If G is the centralizer of N = c~lMc in Q, it follows that

Ä = t Kfij,
i.j-i

where K = GPiR- Since Q is the classical right quotient ring of R, an easy

computation shows that G is the right quotient field of K. (This fact also

follows from the theorem since the theorem states that G is the right quotient

field of some integral domain contained in K.)

At present (see Goldie [3]) it is unknown whether or not K has to be a

principal right ideal domain. R. Bumby has shown us that the answer is

"yes" if K is commutative.

3. Supplementary remarks. (A) Let R be right quotient-simple with right

quotient ring Q = Dn, n > 1. If / is any idempotent of Q such that fQ is a

minimal right ideal, then / = ac'\ with a, regular cER- Thus e = c_1/c is

idempotent and 0 ^ ce G Qe C\ R- Thus, Qe Pi P ^ 0, and since eQ H P ^ 0,
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it follows from primeness of R that (eQ O R)iQe O R) ^ 0, so that

eQeOR^ 0.

Then, Theorem 1.1 implies that K = eQeOR is a right Ore domain, and

K = eQe is its right quotient field. Since K at D, we obtain that Q a¿ Kn,

where K is a right Ore domain contained in P. This illustrates the precise

nature of Theorem 2.3, which states much more.

(B) Next we show that (2) of Theorem 2.3 fails without the hypothesis

that R is also left quotient-simple. The example below was suggested by

S. U. Chase.

Let K be a right Ore domain which is not a left Ore domain (e.g., Goldie

[2, p. 219]), let x, y be nonzero elements of K such that Kx O Ky = 0, and let

(Kx  Ky\
Kx  Ky)

(P is the ring of all 2 X 2 matrices

la &\

\c di

with a, c E Kx, and b, d E Ky.) Since K is right Ore, if A = ("¿) is an arbi-

trary element of K2, there exists 0 ¿¿ q E K such that aq, bq, cq, dq E K, and

then

B=(ab)(qx0)eR.
\c d/  \ 0  qy,

Thus, A = PC"1, with

B,C=(qX  °)eR.
\0   qy)

Hence, K2 is the classical right quotient ring of P, that is, P is right quotient-

simple.

As in Theorem 2.3, we identify K with the subring of K2 consisting of all

scalar matrices (§*) with kEK. Now assume for the moment that R con-

tains a subring F2 where F is an integral domain Ç K. The contradiction is

immediately evident (even without assuming that F=K), since the form

ofP,

R=(Kx   Ky

\Kx   Ky,

where KxOKy=0, precludes the possibility of its containing a nonzero

scalar matrix O with O^dEK.
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(C) Theorem 2.3 implies that a right quotient-simple ring R which is not

an integral domain contains nonzero nilpotent elements. However such a

ring P need not contain nontrivial idempotents even if R contains an iden-

tity. Perhaps the simplest example is as follows: Let S = Q2 be the ring of all

2X2 matrices over the rational number field Q, and let R be the subring con-

sisting of all matrices

where b, c are even integers, and a, d are integers which are either both even

or both odd. Then R = (2Z)2 + Z is not an integral domain. However P is

quotient-simple with quotient ring S, with an identity 1, and R does not con-

tain idempotents ^0,1.

(D) Now let R be a ring having a classical right quotient ring S which is

semisimple artinian. If T is a simple component of S, then T=eS, where e is a

central idempotent of S, and it can be shown that T is the classical right

quotient-ring of eR C\ R. Thus, by the theorem, P contains a direct sum of

finitely many full rings of matrices Kt over various right Ore domains K,

and S is the direct sum of the corresponding simple components (K)t.
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