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1. Introduction. The purpose of this paper is two-fold. We define a class

of spaces called solenoidal spaces, which generalize the solenoids of van Dant-

zig [13], and study their structure (§§4,5). Then we use part of the struc-

ture developed to prove a theorem on the homogeneity of certain solenoidal

spaces (§6). A solenoidal space is the limit of an inverse limit sequence of

"nice" spaces (the precise definition is below) where the bonding maps are

regular covering maps (2). We will see that these spaces still have many of

the properties of the classical solenoids.

A space X is called homogeneous if for each pair x, y of points of X there

is a homeomorphism of (X, x) onto (X, y). M. K. Fort, Jr. [8] asked the

general question, "When is an inverse limit space homogeneous?" The

pseudo-arc, which is known to be homogeneous (see Bing [l]), can be de-

scribed roughly as an inverse limit of arcs where the bonding maps become

sufficiently "crooked." Perhaps one can obtain some result on homogeneity

in which "crookedness" of the bonding maps is one of the assumptions. (See

Brown [4] for a precise definition of t-crooked map.) Probably one should re-

strict himself to the case where the factor spaces are 1-dimensional, for the

following reason. Brown [4] has shown that an inverse limit of locally con-

nected continua with sufficiently crooked bonding maps is hereditarily inde-

composable; and Bing [2] has shown that if X is an ra-dimensional, hereditari-

ly indecomposable continuum and n > 1, then X is not homogeneous. The

word "probably" was used two sentences ago because of the fact that dimen-

sion may be lowered by taking an inverse limit of continua with "onto"

bonding maps (although it can never be raised).

The theorem in § 6 goes in the opposite direction from the preceding sug-

gestion, by assuming that the bonding maps are "smooth." The assumption

of local smoothness in the sense of differentiability will of course do no good.

A kind of global smoothness is needed; this is why covering maps are appro-

priate. Case [5] has taken an inverse limit of universal curves where the

bonding maps are regular covering maps to get a new example of a 1-dimen-

sional homogeneous continuum containing arcs. Two of our theorems almost

generalize two of his, but, as they stand, do not imply his.

For notation and terminology on inverse limit sequences refer to [7]. We
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( ) In [14] van Heemert dealt with inverse limits of manifolds where the bonding maps are

covering maps.
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consider only the case where the directed set of indices is the positive

integers. If (X,/) is an inverse limit sequence, the maps /„: X„—> Xm (reí ̂  re)

are called bonding maps. If x E X„, then xn will often be used to denote the

reth coordinate /„(x) of x. The symbol | will be used to indicate the ends of

proofs.

2. Motivation: The P-adic solenoid. If P= ipx,p2, ■ ■ •) is a sequence of prime

numbers (1 not being included as a prime), the P-adic solenoid 2P is de-

fined as the limit of the inverse limit sequence (X, /), where for each

re, X„ = \z: \z\ = 1 j (unit circle in the complex plane), and where each bond-

ing map f¡¡+1: Xn+x^X„ is given by fn+1iz)=zp". Call prime sequences P

and Q equivalent (written P ~ Q) if a finite number of terms can be deleted

from each sequence so that every prime number occurs the same number of

times in the deleted sequences. Bing [3] remarked that if P~ Q then 2p is

homeomorphic to 2Q and suggested, "Perhaps the converse of this is true."

One can see that P ~ Q if and only if 2 P is homeomorphic to 2q (written

2p= 2q) as follows(3): From the continuity theorem for Cech cohomology

[7, p. 261] one sees that P'(2p) is isomorphic to the group FP of P-adic ra-

cionáis (all rationals of the form k/ipyp2- • • p„) where k is an integer and re

is a positive integer). Also it can be seen that 2P, as a topological group, is

topologically isomorphic to the character group of FP (written 2p«toPPp).

By number-theoretic considerations one can see that FP is isomorphic to Fq

(written FP m F0) if and only if P ~ Q. Thus

2p = 2Q => P'(2p) « P1(2q) => FP~F0=>P^ Q.

Conversely,

P ~ Q ==> FP = Fq ==> FP = top^Q => 2p = toP2Q.

3. Solenoidal spaces. For basic notions of covering space theory refer to [9]

or [11].

Definition 3.1. A solenoidal sequence is an inverse limit sequence (X,/)

such that (1) each space X„ is nice in the sense that it is connected, locally

pathwise connected, and semi-locally simply connected, and (2) each bond-

ing map /": X„—>Xy is a regular covering map. The limit X„ will be called

a solenoidal space.

Remark 3.2. The spaces Xn are assumed to be nice in order to guarantee

the constructions of covering space theory. In particular, they could be

polyhedra.

Remark 3.3. Condition (2) implies that each bonding map /„: X„—»Xm

im zi re) is a regular covering map.

Remark 3.4. If each X„ is a continuum then X„ is a continuum.

( ) Essentially the same result was stated by van Dantzig.
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Example 1. For each re, let Xn be the r-dimensional torus Tr = Sl X •■•

XS1 (r times). Take each /£+1: Xn+1^X„tobe of the form ft+1(zx, • • -,zr) =

(zi1, • • •,zPr), where the p/s are positive integers.

Example 2. For each re, Xn is obtained as follows. Take two disjoint copies

of S1 and identify them at the 2"_1 points exp(27riA/2n-1), A = 0, • • -, 2"-1 - 1.

(Xi is a figure eight.) Then the map s: S1—*Si given by s(z) = z2 induces

a covering map f„+1: Xn+1—>X„. The regularity of /" follows from the fact

that its covering transformations act transitively on the fibers.

Example 3. If Yi is any nice space, Pi is the fundamental group 7r(Yi, ¿>i),

and (P2, Fj, • • •) is a decreasing sequence of normal subgroups of Fx, then we

can construct a solenoidal sequence (Y,g) with base points bn in Y„ such that

(g?)*(*(Yn,bn)) = Fn.

Example 4. As a special case of the method of Example 3, we obtain a

solenoidal sequence of closed 3-manifolds as follows. Let (X,f) be as in

Example 2. Let Yi be the connected sum of the 3-manifold S1 X S2 with it-

self. Then Pi = it(Yubx) is a free group on two generators, hence isomorphic

to t(Xx, 1). The decreasing sequence ((/f)* ir(X„, 1)), re = 2, • • -, of normal

subgroups of ir(Xi, 1)  then defines a decreasing sequence  (P2,P3, •••)  of

normal subgroups of Pi. Hence we may obtain (Y,g). One might say that

the solenoidal sequence (X,f) of 1-polyhedra serves as a model for con-

structing the solenoidal sequence (Y,g) of 3-manifolds.

4. A lemma on covering transformations. The result of this section will be

used twice in § 5. Suppose we are given a commutative diagram

(4.1)

(X\,bx)^—(XM,

where the three maps are regular covering maps and the base points bk are

fixed throughout the discussion. Let Pi be the fundamental group ir(Xx,bx)

and for A = 2,3 let F„ = (/f),(x(Xto bk)). Thus Fx D F2 ~) P3 and P2,P3 are

normal in Fu Let Gk be the covering transformation group of fx. There is a

canonical isomorphism <pk of Qk= Fx/Fk onto Gk. Since F3EF2 there is a

natural homomorphism v. Q3^Q2 (given by v(aF3) = aF2). Now define

u: G3—>G2 by commutativity in

G2^—G3

(4.2) 4>
V

<t>Z

Q2<-Q

Lemma 4.1. (a) If g3EG3and g2 = u(g3) then the diagram
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(4.3)

Xf1—x*

ë2fl
X2< X3

#3

is commutative, (b) If g2 E G2, g3 £ G3, and the diagram (4.3) is commutative

at some point x3 £ X3, then g2 = p(g3).

Proof, (a) Let A3 = [ax]F3 be the element of Q3 such that <b3(h3) — g3 (where

ax is a loop on bx), and let A2 = v(h3) — [ai]P2. By commutativity of (4.2) we

have <b2(h2) = g2. Now lift ax by f\ to the path a2 starting at b2. Then from

the definition of <b2, g2 is the unique element of G2 such that g2ib2) = a2(l).

Lift a2 by f2 to the path a3 starting at b3. But f\a3 = f\f\a3 = f\a2 = ax,

so that^3 = <b3(h3) satisfies^3(63) = a3(l). We conclude that f¡g3(b3) = f!a3(l)

= a2(l) =g2(b2).

Now take an arbitrary point x3 in X3 and let x2 = /2(x3). We can determine

g2(x2) and g3(x3) as follows. Take a path ß3 from 2>3 to x3, and let ß2 = f2ß3

and ßx = f\ß2 = ffß3. Since ß2 is a path from b2 to x2 we see (e.g. from [11,

p. 196]) that if we lift ßx by fx to the path ß'2 starting at g2(b2), then g2ix2)

= ß'2il). Since flg3(b3) = g2(b2) (by the preceding paragraph) we may lift

ß'2 by fi to the path ß'3 starting at g3(b3). Then, since ffß'3 = ßx = fxß3, we
have g3(x3) = 183(1)• Thus f¡g3(x3) = ßß'3(l) = ß'2(l) = g2(x2), which shows

the commutativity of (4.3).

(b) We are supposing that at some point x3, g2f2(x3) = fig3(x3). By part

(a), then, g2fi(x3) = p(g3)f2(x3). But an element in G2 is determined by its

value on a single point, so that g2 = p(g3).

Remark 4.2. This lemma shows that the definition of p is independent of

the choice of the base points bk.

5. The structure of solenoidal spaces. We assume in this section that we are

given an arbitrary solenoidal sequence (X, /). To avoid triviality we assume

that for each n the covering /"+1: Xn+1—>X„ is A„-to-l where kn is a cardinal

greater than 1.

Let us choose once and for all a base point b = (bx,b2, ••■) in X„. For

each n, let Pn = (fx)*(ir(Xn,bn)) so that we have a descending sequence

of groups Pi D P2 3 •••, each P„ being normal in Pi = ir(Xi, 61). Let Qn =

Pi/P„ and let </>„ be the canonical isomorphism of Qn onto the covering trans-

formation group Gnoffx: X„—>Xj. Defining homomorphisms p"+1: Qn+i—>Qn

and ul+x: Gn+x—>Gn according to the prescription of the preceding section, we

get inverse limit sequences of groups (Q, v) and (G,p) with limit groups Q„

and G„. Since from the definition of pl+\ <bnvnn+l = unn+l<bn+x, the sequence

(#„) induces an isomorphism $„: Qa^G„. Consider each G„ as a discrete

topological group, and give Gœ the inverse limit topology.

Lemma 5.1. G„ is totally disconnected and perfect. If the coverings f"+l are



1965] INVERSE LIMIT SEQUENCES WITH COVERING MAPS 201

finite-to-one then G„ is homeomorphic to the Cantor set.

Proof. It is easy to see that an inverse limit of totally disconnected spaces

is totally disconnected. From the fact that for each gn in Gn, (p2+1) ~1(gn)

contains kn > 1 elements, one can see that G. is perfect. If each k„ is finite,

then each G„ is finite, so that Gœ is compact metric and is therefore homeo-

morphic to the Cantor set. |

Lemma5.2. G„ acts on Xœ as an effective topological transformation group.

Proof. Suppose g = (gx,g2, ■■•) E G„. By Lemma 4.1 we have for each re the

commutativity relation gnfn+1 = fH+1gn+u so that g induces a homeomor-

phism of X„„ onto itself, which we still denote by g, i.e., for

x = (xi, x2, • • •) E X„,

g(x) = (gxixx), g2ix2), •••). Obviously we have (1) (g-g')(x) =gig'ix)) and

(2) the identity element of Gœ is the unique element of G„ which acts as the

identity transformation on X„. Now we want to show that the map

G„ X X„^X„ given by ig, x) ^g(x) is continuous. Suppose (g°,x°) is given

and U is a neighborhood of g°ix°). By [7, p. 218] we may assume that

(7=/n_1(l/„) where Un is a neighborhood of g°(x°). Since G„ is discrete,

y = Mn-1(gn) is a neighborhood of g°. Since glfn is continuous, there is a

neighborhood W of x° such that g°Jn(W) E Un. Then if (g,x) E VX W,

fng(x)  = gnfn(x) = glfn(x) E Un,   SO   that  g(x) E U.   I

Lemma 5.3. If x and x' are in Xœ and fx(x) = fx(x'), then there is one and

only one g in Gœ such that g(x) = x'.

Proof. Let x = (x1(x2, •••) and x' = (x'x,x2, ■ ■ ■ ) where X! = xi. Since

fï(xn) = fx(x'„) and /" is regular, there is a unique gn E Gn such that g„ixn)

= x'n. Since

gnfn      (Xn+l)  = gn(Xn) = X'n = /„      (x^+i)  = fn     gn+l(xn+l) í

Lemma 4.1(b)  gives that gn = Pn+1ign+/)- Thus g= igx,g2, ■ • •) E G„, and

from the definition of the action of G„, gix) = x'.

Now we wish to introduce the (common) universal covering space of the

spaces Xi, X2, • • •. This step is essential to carrying out our program. Recall

that we have fixed a base point b = (61,62» ■••) inX„.Letp!: (X,6) —» iXx,bx)

be the universal covering space of X! (which exists since Xx is nice). As-

suming the covering map p„: (X, 6) —> (X„, b„) has been defined, let p„+i:

(X, 6) —> (Xn+1,6„+1) be the unique covering map which satisfies the relation

fn+1Pn+i = Pn- Because of this relation, the sequence ipx,p2, ■ ■ ■), so defined,

induces a map p„: (X,6) = (X„,6); explicitly, p„(x) = (p,(x),p2(x), • ■ ■).

In the case of the solenoids, X is a line that p„ maps continuously and 1-1

onto a path component of X„, which is dense in X„. (This follows from

general results proved below.)
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Now let Y^= G„XX and define Pœ: Yœ^Xœ by P„(g,x) = £p„(x).

Call a subset V of X simple if px maps V homeomorphically ontopi(V). The

following lemma is used in the next two theorems.

Lemma 5.4. P„ is a local homeomorphism of Yœ onto Xœ. In fact, if V is

any simple open subset of X, then P„ maps G„ X V homeomorphically onto

/fWVU

Proof. To save a duplication, we first prove the following

Sublemma. For any ra let g°E Gn, let W = pñl(g°), and let V be an open

subset of X. Then Pm(W X V) = fñl[gnPn(V)\, which is an open set.

Proof. The latter set is open since p„ is open. To show the equality suppose

that xEfñl[gnPÁV)]. Then xn = g°pn(v) where vE V. Since then xx =

fígnPÁv) = fîPn(v) = P\(v), there is by Lemma 5.3 a unique g in G„ such

that x = gpAv) = P~(g,v). But then gnpn(v) = xn = glpn(v), so that g„ =

gn, which means that g£W. Therefore xEPAWx V). The reverse in-

clusion is obvious.

From the Sublemma it follows that P„ is an open map, since sets of the

form WX V form a basis for the open sets of Y„.

Now let V be a simple open subset of X. In the Sublemma take re = 1.

(Gi consists of the identity element alone.) Then we have P„(G„ X V)

= fi~1[Pi(V)]. Furthermore, P„ is 1-1 on G„ X V. For suppose PAg.v)

= Pm(g',v'). ThenpjiiJ) =pi(S'), and since px is 1-1 on V, v = v'. From the

uniqueness part of LemmaJ>.3, g = g'- Finally, since P. is open, P„ is a

homeomorphism on G „ X V. I

Theorem 5.5. Y„ is a generalized covering space of Xœ with respect to the

map P„.

Note. We use the definition in Hu [9, p. 104] . Thus we must show that

there is an open covering of X„ by sets V such that Pz1(V) can be repre-

sented as a disjoint union of open subsets of Y«,, each of which is mapped

homeomorphically onto V by P„.

Proof. Let Vx be an open set in Xi such that p^l( Vx) is the disjoint union

U V" of open sets in X such that for each i, px maps V1 homeomorphically

onto Vx. Let V=/f1(Vi). Now by Lemma 5.4, P„ maps each G„ X V'

homeomorphically onto V. Furthermore, U (G„ X V') is a disjoint union of

open sets in Y„, which we claim is all of P~l(V). For if (g,x) EPZl(V),

thenpifï) G Vx, so that ï G V" for some i. It is obvious that the collection

of such sets V covers X„. |

Theorem 5.6. (X„, fu Xu G„) is a principal fibre bundle.

Proof. The three properties (a), (b), (c) established below can be seen to

be equivalent to those in Steenrod's  [12] definition of a principal fibre
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bundle; except that, since we have the group G„ acting on the left of X„,

G„ will have to act on the right of the fibre (G» itself) in Steenrod's defini-

tion, (a) G„ acts on X„ as a topological transformation group, as has been

shown in Lemma 5.2. (b) (X., /b Xx) is a locally trivial fibre space with

fibre G„. Let V be a simple open subset of X and let px( V) = Vx. Such sets

Vx can be taken as coordinate neighborhoods in Xi. Let q: Vy—» V be the

inverse of px\V. The map (g, v) —> (g, q(v)) is then a homeomorphism of

G„ X Vy onto G„ X V. Thus by Lemma 5.4, the map <t>: G„ X Vi-»/fl(Vi)

given by (p(g,v) = Pa(g,q(v)) is a homeomorphism. And for every (g,v) in

Go. X Vy we have fy<t>(g,v) = fxgp„q(v) = pxq(v) = v. (c) Finally, the action

of Gœ is compatible with the fibre space structure, for we have for any g and

g' in G„ and any v in Vx that 4>(gg'» = P*(gg'\q(v)) = (gg')p^q(v)

= g[g'P~Qiv)] = gPAg',q(v)) = g<f>(g',v). |

Corollary 5.7. X„ is not locally connected at any point.

Proof. By Theorem 5.6 and Lemma 5.1, Xœ is locally like a product of a

totally disconnected, perfect space with another space. |

In order to understand the structure of X„ more, we now study its path

components. For this the maps p„ and P„ will be useful.

Theorem 5.8. Let K denote the subsetp„(X) o/X„. A subset of X„ is a path

component ofX . if and only if it is a "translate" of K by some element g of G„,

i.e., it is of the form g(K). Each path component of X„ is dense in X„.

Proof. Let us take a translate g(K) and prove it is a path component. First

of all, g(K) is pathwise connected since it is a continuous image of the path-

wise connected space X. Suppose a is a path from a point x in g(K) to a point

y in X... We must show that y also is in g(K). Now x = gp„(x) for some

x in X; that is, (g, x) lies over x with respect to the generalized covering map

P„ (Theorem 5.5). Thus we may lift a by P„ to a path S in Y„ starting at

(g,x). But jgjXXisa component of Y„, and since à begins in this com-

ponent, it must end in it. Thus 5(1) is of the form (g,y), and we have

gpAy) = P.ig.y) = P.äil) =a(l) =y, so thatyEg(P).

Thus the setsg(P) are path components. They exhaust all of X„, for by

Theorem 5.5, P„ maps Y„ onto X„.

To show that the setsg(P) are dense in Xm, it is sufficient to show that

K is dense. Open sets of the form V = /n_1(K) where Vn is open in X„ form

a basis for the open sets in X„. Take any such Vn. Since pn: X^Xn is onto,

there is a point i; in X for which pn(v) E Vn. Then p„(v) E P O V. |

The path components g(K) are of course disjoint if they are different,

but there can be g 9e g' such that g(P) = g'(K). We will determine when

this can happen. Since G„ is a group, g(K)=g'(K) is equivalent to

g~1g'(K) = P. So we will determine which g are such that #(P) = K. In this
'"V

direction we let H denote the covering transformation group of px: X—>Xi,
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and we define a certain homomorphism a: 77—>G„. It will turn out that

g(K) = K if and only if g is in the image of a. Also the kernel of o has signifi-

cance (Theorems 5.12 and 5.13).

Let X: Pi—»77 be the canonical isomorphism (with respect to the base

point b EX). For each n let rn: Fx—>Q„ = Fx/Fn be the natural homomor-

phism. Since i>n+1 Tn+X = rn, the t„'s induce a homomorphism t: Pi —» Qœ given

by r(a) = (rx(a), r2(a), • • •)• Now define o by commutativity in the diagram

H->G0

(5.1) <t>.

Pi->Q„

Lemma 5.9. For each h in H the following diagram is commutative:

X-»X

o(h)
*X0

Proof. Let g = o(h). Proving that gp„ = p„h is equivalent to proving that

for each n, gnpn = pnh (where gn = pn(g))- To show the latter we use Lem-

ma 4.1. In the preliminary discussion of that section replace diagram (4.1)

by the commutative diagram

(Xi,Ai) ix:,bn).

Then diagram (4.2) gets replaced by the diagram

where, according to § 4, on is defined by commutativity in this diagram. Then

by Lemma 4.1, onih)pn = p„A. Thus we need only show that gn = <r„(A). But

gn= ßnig) = ßn°ih) = ßn <f> » rX_1(A) = </>„ Vn tX_1(A) = 0nTnX_1(A) = on(h). |

Theorem 5.10. For gE G„, g(K) = K if and only if g = o(h) for some

h EH.
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Proof. Suppose first g= o(h). Then for each x in X, by the preceding

lemma, gpœ(x) = p„A(x) £ K so that g(K) EK, whence g(K) = K. Con-

versely, suppose g(K) = K. Then for some x and y in X we have gp„(x)

= P»(y)- Then since Pi(x) = Pi(y), there is an A in H such that A(x) = y.

But then gp„(x) = p„(y) = p„ A(x) = <r(A)p„(x). Thus § and <r(A) are ele-

ments of Gœ which agree on a point, so they are equal. |

Corollary 5.11. If the fundamental group Fx of Xx is countable (in particu-

lar if Xx is a polyhedron) then Xœ Aas uncountably many path components.

Proof. Let S be the set of path components of Xœ. Define a map w from

the space G„/<r(77) of left cosets of <7(77) to S by w(go(H)) = g(K). By the

preceding theorem, w is well defined and 1-1; by Theorem 5.8, w is onto. Now

Gœ is uncountable since each bonding map ß„+1: Gn+x—>Gn has everywhere

nondegenerate point inverses. And since a(H) = <r\(Fx) is countable,

Gœ/o(H) is uncountable. |

In the cases of solenoids the map p„ of X onto K is 1-1. What is the gen-

eral situation? This question is answered by the following theorem.

Theorem 5.12. (a) The map p^: X—>X„ is 1-1 if and only if the homomor-

phism <j:H^G^ is 1-1. (b) The kernel of r. Fx—>Qœ is N = C)ñ-iFn.

(c) Hence pœ is 1-1 if and only if N = 1.

Proof, (a) Suppose p„ is 1-1. Then a must be 1-1, for if a(h) = 1, we have

by Lemma 5.9 that for all x in X, pœA(x) = u(/i)p„(ï) =p„(x). Hence

h(x) = x, and A = 1. Conversely, suppose a is 1-1 and suppose p„(x)

= p„(y). Then sincepx(x) = px(y) there is an A in H such that A(x) = y;

therefore p„(x) =pœ(y) =p„A(x) = o-(A)ptD(x). Since <r(A) is in G„ and

has a fixed point, it must be the identity. Thus A = 1, and x = A(x) = y.

(b) Suppose a E ker r. This means that r(a) = (aFx,aF2, ■■■) = (Fx, F2, ■ ■ •)

so that aEFn for each n, and a EN. The converse is then obvious.

(c) In diagram (5.1) X and 0œ are isomorphisms. Hence ker a = X(7Y). The

statement follows from (a) and (b). |

Theorem 5.13. The fundamental group of each path component of X„ is

isomorphic to N = il^=iPn.

Proof. By Theorem 5.8 all path components are homeomorphic. We will

show that for the map fx: (X„,2>) —* (Xi, Ai), r¡ = (fx) ̂  takes

*(K,b) = ir(X„,¿))

isomorphically onto N. Since fx = fxfn, the range of n is in N.

To prove that the range of?) is all of N, suppose [ax] E N. Since [ay] E Fn,

the lifting of «i by /" to the path an starting at bn is a loop on bn. And since

then fn+lan+x = an, we may define a loop a on b by a(t) = (ay(t), a2(t), ■ ■ ■),

for which obviously t/([ a]) = [ a x]. To show that i\ is 1-1, suppose v([ a]) = 1.
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This means that there is a homotopy ft,1 of loops on bx such that ftó = ai

and h\ = b2. Applying successively the covering homotopy theorem to the

maps fn+1 we may construct a sequence (re") such that for each re, (1) ft"

is a homotopy of loops on 6„ in X„, (2) ftg = «„, (3) hi = 6„, and (4) /n"+1ftr+1

= ft?. This sequence then induces a homotopy ht of loops on 6 in X„ such

that h0= a and fti = 6. |

Remark 5.14. If (X,f) is an inverse limit sequence where each map /" is a

covering map, but is not necessarily regular, the proof above shows that

for every x in Xœ, if Kx denotes the path component of x, then w(Kx,x)

-n^i(/f)*wx„,xn)).

6. Homogeneity of certain solenoidal spaces. Let us call a space X path-

homogeneous if for every pair of points x, y in X there is a path a from x to y

and a homeomorphism ft of (X, x) onto (X, y) such that ft induces the same

isomorphism of ir(X, x) onto 7r(X, y) as the path a does.

Theorem 6.1. If (X,/) is a solenoidal sequence for which Xy is path-homo-

geneous, then the solenoidal space X„ is homogeneous.

Proof. Let us use the notation of the preceding section. Suppose x and y

are points in X„, We wish to show that there is a^homeomorphism of (X„, x)

onto (X„,y). Since Xi is path-homogeneous there is a path ay from xx to yx

and a homeomorphism hy. (Xi.Xi) —» iXy,yy) such that (fti)* = (ai)* :

7r(Xi,Xi)-*7r(Xi,3/i);thatis, (AiUM) = IM* [«f'-7-«i]= («0* (M)
for all [t]E w(Xy,Xy). Now lift ay by Pi to some path a in X". Let u

= p„(S(0)) and ü = p„(5(l)). Since Uy = Xy there is, by Lemma 5.3, a

(unique) element g of G„ such that ^(u) = x. (In particular g is a homeomor-

phism of (X„,u) onto (X„,x).) Similarly there is ag' in G„ such that g'(t>)

= y. If we can find a homeomorphism 6 of (X„,ií) onto (X„,t>) we will be

through, since theng'ftg-1 takes x onto y.

We will construct such an h from ft y by a lifting process which makes use

of the path 5. Let an = pna; this path goes from un to vn. Observe that

ft+1an+i = fn+1Pn+ià = p„à = an. Let \pn: w(Xn, uj -» ir(X„, ün) denote the

isomorphism induced by «,. We claim that the following diagram is commu-

tative.

w(Xy,Uy)<     ifl)*        *(X2,U2)U^hL-w(X3,U3)J^-

(6.1) +
if!)* in),

<i>
(/34)*

(Xi, l>i) «- îr(X2, V2)<- tt(X3, V3)<
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For suppose [y]E ir(Xn+i,un+x). Then

(n+x*„+i(M) = (/r1)* [ocñU ■ 7 • «.+1]

Xñn+1.
l)

ñ
n+1.

«n]=^n(/nn+%([T]).

Looking at the first rectangle in (6.1), using what Hu [9, p. 90] calls the fibre

map theorem, and recalling that (h^ = \pu we have a unique map

h2: (X2,u2)-^ (X2,v2)

which makes the first rectangle in (6.2) below commutative. Furthermore,

h2 is a homeomorphism. For, using i^r1 and ^¡T1, there is a (unique) map

h'2: (X2,v2) -» (X2,u2) such that f\h'2 = kx~lfh But then f\h'2h2 = hxlf¡h2

= hx'lhifl = fl, and from the uniqueness of liftings, h'2h2 = identity. Simi-

larly h2h2 = identity. Now since (/{% is a monomorphism, (ra2)* = \¡/2. Thus

we can use the second rectangle of (6.1) to get a homeomorphism h3 making

the second rectangle of (6.2) commutative. We continue this process, obtain-

ing (huh2,h3, ■■■).

(Xi,Ul)<

fl fi ft

(6.2) hi
f\

(Xi,Oi)<

(X2,u2)*

h2

-(X2,V2)<r

ñ

(X3,u3)«

ra3

(X¡,t;3)«-

ñ

-(Xœ,u)

h

-(X\,,v).

Clearly the induced map h is the desired homeomorphism. |

Let us use n-manifold in the very general sense of a connected Hausdorff

space, each of whose points is contained in an open set homeomorphic to

euclidean re-space E".

Lemma 6.2. Every n-manifold is path-homogeneous.

Corollary 6.3. // (X, /) is a solenoidal sequence where Xi is an n-manifold,

then Xœ is homogeneous.

Proof of Lemma 6.2. By an isotopic deformation h, of a space S let us mean

an isotopy ht: S—>S such that h0 = identity.

Let M be an ra-manifold. First suppose U is an open subset of M for which

there is a homeomorphism g: U^En, and let z,icG U. Let \g(z), g(w) j

C \x E En: ||x|| < r j. It is easy to see that there is an isotopic deformation

h't of P" such that h-(g(z)) = g(w) and for each t, h[ is the identity on

\xEE": \\x\\ er}.
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Define h¡:M-^M by h,(m) = g1 h^g(m) for m EU and ht(m) = m for

m(£U. Using the fact that M is Hausdorff one can see that ft, is an isotopic

deformation of M; and hy(z) = w.

Now let x and y be arbitrary points of M. Since M is connected, there is

a chain of open sets (Uy, U2, •••, i/r), each homeomorphic to P", such that

xEUy and y E U,. For each ¿ = 2,3, • • •, r choose x, E l/¿-i Pi t/i> and let

Xi = x, xr+1 = y. By the preceding paragraph there is for each ¿ = 1,2, • • -,

r an isotopic deformation ft,' of M such that fti(x¡) = xi+x. Then the com-

position ft, = ft,r • • • ft2 ft,1 is an isotopic deformation of M such that fti(x) = y.

Now it follows from [6, p. 57] that the path a from x to y defined by

ait) = ft,(x)  (0 z% t z% 1)   induces  the  same  isomorphism  of  wiM, x)   onto

wiM,y) as fti does. |

The author suspects that Corollary 6.3 is no longer valid when the bonding

maps are nonregular covering maps, even when the X„'s are compact dif-

ferentiable manifolds. (J. Segal [ 10] announced in an abstract that if (X,/)

is an inverse limit sequence where each X„ is a homogeneous, connected,

and locally pathwise connected space and where the bonding maps are cov-

ering maps, then X„ is homogeneous. However he informed the author of an

error in the proof.) The author has shown that such a counterexample can

be constructed if a certain group theoretic construction can be made; and,

in turn, this can be done provided a certain sequence of graphs and covering

maps can be produced. The idea includes using Theorem 5.13 (see Remark

5.14) to show that the continuum has two nonhomeomorphic path compo-

nents.

Added in proof: Richard M. Schori (Dissertation, State University of

Iowa, 1964) has constructed an inverse limit sequence of compact, orientable

2-manifolds such that the bonding maps are (nonregular) covering maps and

such that the limit is not homogeneous.
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