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The object of the present paper is to study the zeros of functions of the

form

(1) fW-tz^-t-^z,       ak>0,   bk>0,
k„iZ — ak     k=iZ — ßk

where the ak and ßk have various geometric configurations as their loci.

We investigate also functions of this form where the ak and bk are nonreal.

The appropriateness of this study arises from the facts that (i) Lagrange's

interpolation formula for a polynomial with prescribed real values in real

points ak and ßk has a factor of precisely form (1), and a similar remark

holds for nonreal values and nonreal points; (ii) Riemann sums for a Cauchy

integral are of these same forms, in the respective real and nonreal cases;

(iii) the logarithmic derivative of a rational function is of form (1), which

enables us to study the location of the critical points. Our main theorems

(Theorems 1 and 2) refer respectively to the real and nonreal cases just

mentioned, where the locus of the ak and ßk is a line segment with the ak

and bk real, or a circular disk with the ak and bh not necessarily real.

Theorem 2 is a special case of a much more general theorem due to Marden

[3], but is proved in detail here particularly because of the applications

(i) and (ii), not mentioned by Marden. Namely, the present methods apply

also to the case (Theorems 3 and 4) where the locus of the a*,/?*, etc., is a

circumference rather than a disk, a case not included in Marden's treatment

yet important precisely for the study of a Cauchy or Cauchy-Stieltjes

integral.

As is frequently done [2] in the study of zeros of such functions as (1),

we interpret the conjugate of f(z) as the force at z due to repelling particles

at the ak and attracting particles at the ßk, where each particle repels with

a force equal to its mass ak or — bk times the inverse distance; the original

problem of finding the zeros of f(z) is equivalent to the problem of finding

the positions of equilibrium in this field of force.

Theorem 1. Let the conditions of (1) be satisfied, with A = Xa* > B = J^bk,

and let all a* and ßk lie on the interval — 1 :g z ^ -f-1. Then all nonreal zeros
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of fiz) lie in the closed interior of the ellipse

AR
(2) Bx2+Ay2 =

A-B'

All real zeros of f(z) lie in the interval

A+B
(3) |*| ^ A-B

Indeed the sets mentioned constitute the locus of the zeros of fiz) for all fiz) sat-

isfying the hypothesis.

In the field of force already introduced, if a point z0 is considered, it is

frequently convenient (cf. [2]) to replace re positive (or negative) particles

ak (or ßk) by a single equivalent particle whose mass is the sum of the masses

of the original particles and which exerts the same force at z0. If the particle

a* is inverted in the unit circle whose center is z0, the corresponding force

at 20 is represented by the vector from the inverse of ak to the point z0 multi-

plied by the mass of the particle; the total force at z0 due to all the particles

a* is represented by the vector (weighted by the total mass) from the center

of gravity of the weighted inverses to z0; the equivalent particle of the ak

is located at the inverse of this center of gravity. We often have occasion

to use the fact that if a number of initial points of vectors with common

terminal point and various weights are given, their center of gravity lies

in their convex hull; this center of gravity is the inital point of the vector

resultant, weighted by the sum of weights of the given vectors.

With the hypothesis of Theorem 1 we first choose Im(z0) > 0. For fixed

z0the particle a0 equivalent to the given ak lies in the circular segment S(z0)

bounded by the interval — 1 = x ^ 1 and by an arc of the circle through

— 1,4-1, and z0 whose endpoints are z = + 1 and — 1; the arc lies in the

closed half-plane Im(z) z% 0. This remark follows from the fact that the in-

verse in the unit circle whose center is z0 of the interval — 1 á * á + 1 is

an arc of a circle through z0; the convex hull of this arc is a certain segment

of a circle whose inverse is <S(z0). Moreover, Siz0) is the actual locus of the

equivalent particle when all possible choices of the ak are considered, not

restricted in total number or in respective (positive) masses.

The locus of the particle ß0 equivalent to the ßk is also S(z0), and z0 is a

position of equilibrium if and only if a0 and ß0 (in their respective loci) are

collinear, with |z0 — a0|/|zo— ßo\ = A/B. If a0 and ß'0 are any two positions

of a0 and ß0 collinear with z0 and in their proper loci, say with ß'0 on the

interval — 1 ^ x ^ 1 and a ó on the circular arc partially bounding <S(z0), then

the ratio |z0 — «ol/l^o — ßo\ can be increased by rotating the line z0a0ß0

about z0, and by sliding ß0 from ß'0 along the interval and sliding a0 from

a ó along the circular arc in the sense so as algebraically to decrease the
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ordinate of a0; this increase of the ratio is always possible as long as the

abscissa of a 0 is not zero. The maximum of the ratio occurs when ß0 is on the

interval, say ß0 = ß'o, and when the abscissa of a0 is zero, say a0 = a'ó. How-

ever, the ratio can take on all values and only values between unity and

this maximum inclusive, for suitable choices of a0 and ß0 in their proper loci

and collineär with z0, \z0 — a0\ ^ | z0 — ß0\. Thus z0 can be a position of

equilibrium if and only if we have

(4) I2"" "»I       A
\z0-ßoi   ~ B'

If we set 20= x04- iyo, and note that the center of the circle an arc of

which bounds S(z0) in part has the ordinate ¿> = (xo4-yo— l)/(2;Vo), in-

equality (4) can be rewritten as

y0+(l + bY2-b>A

which is equivalent to

yo - B'

Bxl+Aylè ■'
A-B'

this inequality is valid for both y0> 0 and y0 < 0, so the proof of the first

part of Theorem 1 is complete. It may be noted that the foci of the ellipse

(2) are 2=4-1 and — 1, and its eccentricity is [(A — B)/A]1/2; thus the

ellipse corresponding to an arbitrary interval as assigned locus of the ak and

ßk is found at once.

If 20= x0-f iyo is real and given, say z0 > 1, the maximum of the first

member of (4) is (z0-\-l)/(z0 — 1), and z0 can be a zero of/(x) if and only

if we have

zo+l >A

20-l = B'

so 20 is a zero of some f(z) if and only if we have

A+B

A similar discussion applies if we have z0 < — 1.

On the other hand, an arbitrary point of — 1 ^ x g 1 belongs to the

locus; for instance z = 0 is a zero of the particular function

A B
fiz)

Z — ota

provided we have merely Aß0 = Ba0, so a0 and ßQ can be chosen positive

and as small as desired. Theorem 1 is established.
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Under the hypothesis of Theorem 1 except that now we take A = B, the

locus of zeros of the totality of the functions f(z) consists nontrivially of

the entire plane. Indeed, let z0 be a given nonreal point of the plane and

letZi be an interior point of the circular segment S(z0) already defined. We set

^ M =-7-TTa +-?-S - ■    ,    ,   i 'z-(zx+b)     z-(zx-b)     z-(zx+t)

where| b| and | < J (> 0) are chosen so small that zx±b and zx + t lie within

a circle interior to S(z0). The function f(z) vanishes when z = zx + b2/t, and

e and b can be so chosen that this number is z0. This discussion does not apply

if z0 is real, but in that case a slight modification of the discussion of (5) does

apply, and shows that z0 belongs to the locus of zeros of all f(z).

As an application of Theorem 1 we formulate

Corollary 1. Let r(z) be a rational function of z whose finite zeros and

poles lie on the segment — 1 £ z é ■+• 1, of respective total orders A and B or B

and A, A > B. Then all finite nonreal critical points of r(z) lie in the closed

interior of the ellipse (2), and all finite real critical points lie in the closed

interval (3).

The logarithmic derivative of r(z) is of form (1), where the ak are the

zeros of r(z) and the ßk are the poles, each enumerated a number of times

according to its multiplicity, and where all ak and bk are unity. The corollary

follows from Theorem 1.

As a second application we have

Corollary 2. Let f(z) be defined by the Stielt jes integral

J1 do(t)

-1

where the total positive variation of o(t) on —l^t^lisA and the total nega-

tive variation is —B, A > B. Then all finite nonreal zeros of f(z) lie in the closed

interior of the ellipse (2), and all real zeros lie in the closed interval (3).

The proof of Corollary 2 follows by considering the partial sums approxi-

mating the Stieltjes integral, and by Theorem 1. If the total negative vari-

ation of o(t) is greater than the total positive variation it suffices to consider

the zeros of —f(z).

In the proof of theorems such as Theorem 1 on the geometry of zeros of

functions, two methods of proof are frequently used: (i) study of the loci

of particles equivalent to various categories of particles; (ii) study of the

total forces due to various categories of particles. We have just employed

method (i), and now proceed to use method (ii) in a different problem.

Theorem 2  (Marden). Let the function f(z) be of the form
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fiz) - £
ak

k=i Oik

-Z bk + Z ick

»iZ —7*

wrtere a// ifte ak,bk,ck, and dk are non-negative. We set A = ^ak,B = ^bk,

C=Y<Ck,D = Y.dk, and suppose (A - P)2+ (C - D)2 * 0. // T: |z| £1

is i/ie simultaneous locus of the points ak,ßk,yk,and ok, for all ak,bk,ck,dk sat-

isfying the conditions given, then the locus of the zeros of fiz) is the disk

(6) z   è
A+B+C+D

\iA-B)2+iC-D)2]
1/2

We continue to interpret the conjugate of fiz) as defining a field of force

in the z-plane. If z0 is a zero of fiz), then u>z0 with |w| = 1 is a zero of fiz)

with the original ak,ßk>~rk,i>k replaced by t»ak,oißk,u~,k,aök, so it is sufficient

for us to study z0 = a, real; we take a > 1, and then we make a translation

of the plane so that r becomes IV |z+a| ^1 and z0 becomes zx = 0. The

inverse of r i in the unit circle whose center is zx is

z +
a2-l

1

a2-l

and the force exerted at zx due to all the particles ak is represented by a

vector with initial point zt and terminal point in the disk

Cy:
aA

a2-l

in fact Cy is the locus of the terminal points of such vectors for all possible

choices of the ak and ak, with A fixed; compare [2, p. 13]. The "disk" Cy

is represented by the formula given even if A = 0.

Likewise, the locus of the terminal points of the vectors with initial points

in Zy and representing the force at zx for all possible choices of the 6* and

ßk with B fixed is the disk

C2: z +
aB

1

The locus of the terminal points of the vectors with initial points in Zy re-

presenting the total force at zx due to the particles at the ak and ßk is the

disk which is the "sum" of Cy and C2:

(7)
ajA-B) A+B

1'= a2-

in the sense that if Cy and C2 are the loci of Zy and z2 then (7) is the locus

Of Zy + Z2.

By a similar method, and with the note that the conjugate of fiz) defines
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the forces, it follows that the locus of the terminal points of the vectors with

initial points in zx representing the total force at zx due to the particles at

the yk and 5k is the disk

(8) z +
ia(C-D)

a2-l

C+D

a2-l

For the two sets of forces we have vectors with initial points in zx ( = 0)

and terminal points whose loci are the respective disks (7) and (8). The total

resultant force is represented by a vector whose initial point is Zi and the

locus of whose terminal points lies in the disk

(9) 2 —
a(A-B)-ia(C-D)

a2-l
<

A+B+C+D

a2-l        ■

A necessary and sufficient condition that Zj be a possible position of equili-

brium is that the total force may be zero, or that zx ( = 0) should lie in the

disk (9), namely

a(A-B)-ia(C-D)

a2-l

A+B+C+D
a = \z0\ > 1,

which is essentially (6). The second member of (6) is greater than unity

unless three of the four numbers A,B,C,D are zero.

If z0 is a zero of f(z) for a particular choice of the ak etc., and if 0 < p < 1,

the point pz0 is a zero of f(z) with the ak, bk, ck, dk unchanged and the ak,

ßk,yk,&k multiplied by p. Moreover z0 = 0 is a zero of f(z) with suitably

chosen ak, ßk, yk, 5k small in modulus, and this completes the proof of The-

orem 2.

Corollary 1. If f(z) in Theorem 2 is of the form

,, ,       ^    ak           "     ick
fiz) = ¿,-h L,- >

k = \Z — Ctk k = lZ — Jk

the locus of its zeros is the disk

A + C

A + C^O,

2     Í
(Á2+cyr¿-

Corollary 2. If f(z) in Theorem 2 is of the form

(10) fiz) = £
a*

k=i Z — cik k=l 2-

A >B,

the locus of its zeros is the disk



36 J. L. WALSH [January

If riz) is a rational function not identically constant, and if the exact

degrees of its numerator and denominator are A and B, its logarithmic

derivative is of form (10); the conclusion of Corollary 2 is essentially that all

zeros of the derivative lie in the disk (11), a result [ 1 ] proved by the present

author in 1918.

If fiz) is multiplied by w with |a>| = 1, the zeros of the new function /j(z)

i = (j>fiz)) are unchanged, yet the second member of (6) is not unchanged

by such an arbitrary transformation; indeed the denominator in the second

member of (6) is precisely \A — B + iC—iD\, which is invariant, but the

numerator is not invariant. This seeming paradox is resolved if we consider

for instance the special case B = C = D = 0. The original theorem refers to

the zeros of ^ak(z — ak)~1,ak > 0 whereas if we set o> = cosö + ¿sinô,

0 < e < w/2; the new function /x(z) is to be written £aA(cos0 + ¿sinö)

• (z — a/) ~1, Za* = ^> which is quite different from the function

Za'kiz - ak)-1 + Zic'kiz - ßk)~l

for all a'k,c'k having prescribed sums J^ai = A cos6,^c'k = A sine.

As a consequence of the facts just discussed, we formulate the following

Remark. In the application of Theorem 2 we may replace f(z) by wfiz),

where u is a constant of modulus unity; this change may modify the second

member of (6). In particular if fiz) can be written so as to contain one or more

terms of the form

*k

z-h

where arg \k is independent of k, then as far as those terms are concerned it is

favorable to choose argu = — argAt.

Corollary 2 to Theorem 1 has an analogue here, concerning the integral

<t>(z) =-  .
Jy   t-Z

If 7 lies in the closed interior of the unit circle, if a(0 = «i(0 + ¿«2(0 where

otyit) and a2(0 are real, and if A and — B, and C and —D, are the respec-

tive total positive and negative variations of <*i(0 and a2(0 on y, and if

iA — B)2+ (C — D)2 ¿¿ 0, then all zeros of the approximating sums of <t>iz)

(which approach 0(z)) lie in the closed interior of a variable disk that ap-

proaches (6), so by Hurwitz's theorem all zeros of </>(z) lie in the closed

interior of (6).

The remarks just made concerning 0(z) suggest the study of the hy-

pothesis of Theorem 2 except that now the a* and ßk are required to lie ore

the unit circumference 7. If the locus of positive particles ak is 7, and if z0

lies exterior to 7, the locus of the equivalent particle is the closed interior

of 7, as becomes obvious at once by inversion in the unit circle whose center
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is z0. If the locus of these ak is y and z0 lies interior to 7, the locus of the

equivalent particle is the closed exterior of y including the point at infinity.

If z0 lies interior to 7, we may consider the equivalent particles for each

category of particles to lie at infinity, whence f(z0) = 0. We have

Theorem 3. Let the hypothesis of Theorem 2 be modified so that all particles

(*k,ßk,yk,bk lie on y. \z\ = 1. As far as concerns points z not on y, the locus

of the zeros z of f(z) is the disk (6).

This proof of Theorem 3 involves essentially applying the method of proof

of Theorem 2, but not applying Theorem 2 itself.

To study the points z on y, we consider (as in the proof of Theorem 2)

the actual forces at z0 due to the various categories of particles, and the

locus of the terminal points of the vectors representing these forces, when

the initial points lie in z0. We omit the assumption (A — ß)2 + (C — D)2 ^ 0.

As before, let us choose z0 positive and then translate the plane, so that 7

becomes |z+ 1| = 1 and z0 becomes zt = 0. The inverse of 7 in the unit

circle whose center is zx is the line (better, the finite points of the line)

x = — 1/2, and the locus of the terminal points of all vectors each cor-

responding to a set of particles ak is the line x = A/2 unless A = 0. The locus

of the terminal points of all vectors each corresponding to a set of particles

ßk is the line x = —B/2 unless B = 0, and for the composition of a pair of

these vectors we have as locus the line x = (A — B)/2; however, it is to be

noted that all vectors are null vectors if we have A = B = 0. The loci for

the vectors corresponding to the 7* and bk are respectively the lines y

= — C/2 and y = D/2 unless C = 0 or D = 0; for the composition of a

pair of these vectors we have as locus of the terminal points the line y

= — (C — D)/2, except if C = D = 0. The locus for the negatives of these

last mentioned vectors having their inital points in zx is y = (C — D)/2,

which always intersects the line x = (A — B)/2; the total sum of all vectors

is null for a suitable configuration depending on given A, B, C, D, with the

exceptions noted.

Theorem 4. With the hypothesis of Theorem 3, the locus of the zeros of

f(z) contains the entire circumference y provided we have A + B ¿¿0 and C + D

;¿ 0. The locus contains the entire circumference also if A = B,C + D = 0,

or if A + B = 0, C = D. The locus contains no point of y if A ¿¿B,C + D

= 0or if A + B = 0,C ¿¿D.

The case A = ß=C=D = 0isof course trivial.

It is of interest to indicate how Theorems 1 and 2 apply to the study of

zeros of restricted infrapolynomials; for these methods, compare [4], [5].

The category of restricted infrapolynomials on a set E as used here includes

the category of similarly restricted polynomials of least norm on E, where
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norm is in the sense of least weighted pth powers ip > 0) or in the sense

of (weighted) Tchebycheff.

Theorem 5. Let the two disjoint point sets ax,a2, •••,am and ßx,ß2, • •-,ßa

consist of the distinct points indicated and lie on — 1 = z ^ 1. Let the real poly-

nomial P(z) = Nzm+n~1 + ••• have the coefficient N prescribed, and also the

(real) values P(a>), and be a thus restricted infrapolynomial (i.e., have no re-

stricted underpolynomial) on E: {ßj\. Set ^x [P(o,)/ü/(o,) }= N0, where w(z)

— Ylîiz — aj) ■ ITî(z — ßj). Let A and —B be the sum of the positive and

negative numbers respectively among P(aj)/w'(aj),N — N0; we suppose A > B.

Then all nonreal zeros of P(z) lie in the closed interior of the ellipse (2), and

all real zeros lie in the interval (3).

The polynomial P(z) can be expressed by the Lagrange formula

(13) P(z) = «iz) t  ',.*?*    , + •« t   ,(fH? äV
i   u (aj)(Z-otj) j   ü) (ßj)(z — ßj)

here the coefficients P(a;) are prescribed, and the coefficients Piß/) are not

prescribed, but are subject to the condition

(14) £,PW/<o'Üj)=N-No.
i

It is then clear that for P(z) thus restricted to be an infrapolynomial on E

the condition

(15) sg[P(/?y)/a/0?,)]=sg(Ar-;Vo),       ;-l,2,...,n,

is necessary and sufficient. Indeed, if (15) is satisfied, there exists no re-

stricted underpolynomial Q(z) of P(z) on E, for there exists no set of values

Q(ß/) with

(16) £,Q(ßj)/u'(ßp-=N-N0
i

such that

(17) \Q(ßJ)\<\P(ß])\    if   P(ß) *0

and

(18) Qiß) = 0    if   P(^;) = 0.

Conversely, ifPiz) is a restricted infrapolynomial and if we have both (14)

and Xï| P(ßj)/u'ißj) I > | N - N0\, then we can set

Qiß,) _ \Pißj)/u'ißj)\ -\N-N0\

«'W ±\P(ßj)/u'(ßj)\
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whence (16), (17), and (18) are valid and Qiz) is an underpolynomial of

P(z) on E.

By virtue of (13) with (14) and (15), Theorem 5 now follows from The-

orem 1. If a given polynomial Piz) satisfies all the requirements of The-

orem 5 except that now A < B, we need merely reverse the signs of the

Pia/) and of N to apply Theorem 5 as stated. But we draw no conclusion

if A = B, namely if N = 0.

A similar application of Theorem 2, still by use of equations (13), (14),

and (15), yields

Theorem 6. Let the two disjoint point sets ay,a2, ■ ■ -,am and ßy,ß2, ■ ■ -,ßn

consist of the distinct points indicated, and lie in the disk T: |z| i 1. Let the

polynomial Piz) = Nzm+"-1-\- ■■■ have the coefficient N prescribed, and also

the values Pia), and be a thus restricted infrapolynomial on E: \ßj\. Let N0

and o)(z) be as defined in Theorem 5. Let A,B,C,D be respectively the sum of

the positive numbers among Re[S],Re[ — S],Re[ — iS],Re[iS], where S is

the set \Piaj)/w'iaj),N - N0\, and where we suppose (A - B)2+ (C- D)2

j¿ 0. Then all zeros of Piz) lie in the disk (6).

In connection with Theorem 6, the remark following the proof of The-

orem 2 is significant.
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