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Introduction. We analyze Frobenius groups by means of the cohomology

theory of permutation representations, developed in [l] (square brackets

refer to the references). The part of [l] which is needed for the present

paper is exposed in Chapter 1 which makes the present paper, except for

some proofs needed for this chapter, self-contained. Readers who know

[l] can begin the present paper with Chapter 2.

Chapter 1. Cohomology of permutation representations

1. Permutation representations. A permutation representation (G,X)

of a group G consists of a nonempty set X on which the group acts on the

left. That is, oxEX for all o EG and x£v, and (1) (po)x = p(ox) for

p,oEG and x G X; (2) lx = x for x G X. The unit element of G is denoted

by 1. Throughout this paper the symbol (G,X) stands for a fixed permutation

representation where G and X are finite.

Let Ti,...,Tu be the domains of transitivity of (G,X). (See [3,

Chapter Xj, for domains of transitivity.) If x,GPt for i — 1, •••,«, we

refer to the set xu---,xu as a set of representatives of the permutation

representation (G,X). For each xEX, the subgroup of G whose elements

leave x fixed is denoted by H(x); i.e., H(x) = \a\ o EG, ox = x\. The

greatest common divisor of the indices [G: H(x)] is called the index of the

permutation representation (G,X). If xx, •••,xu is a set of representatives

of (G,X), the study of (G,X) is equivalent to the simultaneous study of

the classes of conjugate subgroups of G to which H(xl), ...,H(xu) belong.

2. The standard complex of a permutation representation. Z stands for

the ring of the rational integers. The elements of X are denoted by

xx, •••,xm and the direct sum Zxx®--- ® Zxm of the additive group of

Z with itself m times by Z [X ]. We regard Z [X ] as a G-module which

we may do since G acts on the Z-base X of Z [X].

G also acts on the Cartesian product Xr of X with itself r times

(r S; 1) by the rule <r(xx, ■ ■-,xr) = (oxu ■ ■-,oxr). The permutation repre-

sentation (G,Xr) and the associated G-module Z[Xr] are of course well

defined.

The standard complex of the permutation representation (G, X) is defined

as the augmented, acyclic G-complex  (C„ dr; rEZ)
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Here, Z is regarded as a G-module with trivial action and furthermore:

(1) Cr=Z[Xr+1] for r^O.

(2) C_r=Z[Xr] for rèl.

(3) óV(xi, ...,xr+i) =2£i1(-l)y+1(*i, •••,x;,...,xr+1) forrèl; */ indi-

cates that Xj has to be omitted.

(4) d0(x) - Xy + •.- + *m for all ï£X.

(5) a-,(*!, ••-,*,) - Zr-i(*¿>*i. ••-,*,) -£îli(*i»*i»** •••,*,) H-
i-l)rZT=Áxx,---,xr,Xi)   for  ril.

(6) tW = l for all xEX.

(7) pil) =Xy+-h x».

We refer to §1 of [l] for the proof that iCr,dr;rEZ) is indeed an

augmented, acyclic G-complex. We denote this complex by C.iX;G),

where the lower dot reminds us that we are dealing with a chain complex.

3. The cohomology groups of a  permutation  representation.  If A   is  a

G-module, we denote the Z-complex HomG(C(X; G), A) by C'iX;G,A),

where the upper dot reminds us that we are dealing with a cochain complex.

The rth cohomology group Hr(X;G,A) of A relative to the permutation

representation (G,X) is defined as the rth cohomology group of the complex

CiX;G,A), for all  rEZ.   (See  Definition  2.1  of   [l].)

We refer to §2 of [l] for the fact that the groups Pr(X; G,A) generalize,

in an obvious manner, the Adamson relative cohomology groups. We see

from the same section that, if (G, X) is free of fixed points (that is, if

ox 5¿ x for all j^I and all xEX), Pr(X;G, A) may be identified with

the customary cohomology group Hr(G,A). (We do not tamper with the

symbol Hr(G,A); it retains its usual  meaning.)

All the groups Pr(X;G, A) are annihilated by the index d of (G,X)

(see §1 for the index of a permutation representation); i.e., dc = 0 for

cEHriX;G,A). This  is the  content  of Corollary   10.2  of   [l].

4. The restriction mapping and corestriction mapping. Let P be a subgroup

of G and A a G-module. Since the group K also acts on the set X and A

can be regarded as a P-module, the permutation representation (P, X)

and the cohomology groups Hr(X;K,A) are well defined. For all rEZ,

the restriction mapping is a homomorphism res: Pr(X; G,A)-~*Pr(X; P, A),

and the corestriction mapping is a homomorphism cor: Hr(X;K,A)

-^Hr(X;G,A),   and   cor   res   consists   of   multiplying   the   elements   of
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Hr(X;G,A) by the index [G: K}. (See §§8, 9, 10 of [l].) We need these

facts only in the case where G, and hence K, acts without fixed points on

X, in which- case all of this is well known from the customary cohomology

theory of groups. (For reasons explained in §9 of [l] we use the term

"corestriction" instead of "transfer"  or  "Verlagerung.")

5. Morphisms of permutation representations and the lift  mapping.  We

denote the positive half of the complex C.(X;G), that is the G-complex

• •• —>Ç2—>Ci—* C0—>0, by C+. If A is a G-module, the Z-complex

HomG(C+,A) has Hr(X;G,A) as its rth cohomology group for r^l,

while its zeroth cohomology group is the module AG. (See Proposition

4.1 of [l].) We refer to AG as the unreduced zeroth cohomology group of A.

Let now (L, Y) be a second permutation representation, where L is

some finite group and Y is some finite set. The following definition

occurs in the introduction of [l].

Definition 5.1. A morphism 0: (G,X) ^(L,Y) from the permutation

representation (G, X) to the permutation representation (L, Y) is a pair

(<£,/), where <f>: G^L is a group homomorphism and f: X—>Y is a func-

tion; and where <b and f are interrelated by the condition that f(ox) = <b(a)f(x)

for all a EG and xEX.

We denote the L-module Z[Yr+1] by Dr for r è 0, and denote the posi-

tive half • • • —>7)2—>Dx—>D0^0 of the standard complex of (L,Y) by

D+. It is immediate that the morphism 6 = (<b,f) induces a chain mapping

a: C+^D+, where ar: Z[Xr+1]-*Z[Yr+1] is defined by ar(xx, ■ ■ ■,xr+x)

= ifixy), •••,f{xr+i)) for rT^O. The mapping a is compatible, not only

with the differentiations of C+ and D+, but also with the augmentation

mappings C0—>'Z and D0—>'Z; that is, t'a0=t. Furthermore, if we

consider D+ as a G-complex by means of the homomorphism <f>: G^L,

a is a mapping of G-complexes.

Suppose that we are furthermore given a G-module A and an L-module

P, together with a group homomorphism h: B—>A which has the prop-

erty that h(<b(o)b) = oh(b) for all a EG and 6 G P. There results a

mapping of complexes ß: Homi,(P+,P) ^HomG(C+, A), where ßr:

HomL(Z[Yr+1], P) -♦ HomG(Z[Xr+1], A) is given by: If c E HomL(Z[Yr+1], P)

then (ßrc) (Xy, ■ ■ -,xr+x) = h(c(f(xx), ■ ■ -,f(xr+x))). The mapping ß induces

homomorphisms 6r: Hr(Y; L,B) ^Hr(X; G, A) for r ^ 0, where zerot1

cohomology groups are to be  considered  as unreduced.

If <b is a monomorphism and / is (1,1) and onto and h: A—>A is the

identity mapping, 6r may be interpreted as the restriction mapping dis-

cussed in §4. In order to obtain the lift mapping, we assume that <b is an

epimorphism and denote ker(^) = N. We observe that then the G-module

A  gives rise to the L-module P = AN and that the inclusion  mapping
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AN—>A may be used as the h: B^A. The following definition is Defini-

tion 13.1 of [1].

Definition 5.2. Let 8 =(</>,/): iG,X)^iL,Y) be a morphism of

permutation representations, where both 0 and f are epimorphisms. Let A

be a G-module and h the inclusion mapping of AN into A, where N = ker(0).

The induced homomorphism 8r: Pr(Y; L, AN) —>HriX; G, A) is called the

inflation mapping or lift mapping, for r ^ 0. Zeroth cohomology groups

are to be considered as unreduced.

See §13 of [l] for the homomorphisms induced by 8 in the cohomology

groups of negative  dimensions.

6. The spectral sequence interrelating Hr(G,A) and Pr(X; G, A). The

positive half C+ of the standard complex of the permutation representa-

tion (G, X) is a G-complex. Consequently, for every G-module A, the

Z-complex ExtMC+, A) = 0 — Ext&(C0, A) -» Ext&(C1( A) -» ••■ is well de-

fined for 9^0. Its cohomology groups Pp[Ext&(C+,A)], for p,q^0,

determine the initial term of the following spectral sequence which

interrelates the groups HriG,A) and Pr(X;G,A) for r £ 0. See §12 of

[lj for the derivation of this spectral sequence.

Theorem 6.1. To each G-module A is associated a spectral sequence

which has the following components:

(1) The final term PP(A) = HpiG,A) for p ^ 0. Here, H°iG,A) is un-

reduced, i.e., P°(A) = AG.

(2) The   initial   term   Ep2q(A) = Hp[ExtG(C+,A)]   for   p,q^0.

(3) Pf°(A) = HP(X;G,A) for p à 0. Here, H°(X;G,A) is unreduced,

i.e., E°2°(A) = AG.

In order to analyze the groups Ext&(Cp, A), we select p,q ä 0 and denote

the domains of transitivity of the permutation representation (G, Xp+1)

by Ty,---,TU. Then, Cp = Z[XP+1] = Z[Ty] ©••• ®Z[TU], where ©

denotes the direct sum of G-modules. Consequently, Ext&(Cp,A) is the

direct sum of the groups Ext&(Z[T,-],A), i=l,---,u. Each group

Ext£(Z[Ty],A) is of the type discussed in the following proposition.

(For the proof, see Proposition 12.1 of [l].)

Proposition 6.1. Let iG,T) be a transitive permutation representation.

Select tET. Then, for every G-module A, Ext£(Z[T], A) s Hq(Hit), A),

q^0. Here, P°(P(f),A) has to be considered as unreduced.

We now select e¿ET¿ for i = \,---,u, i.e., ey,---,eu is a set of repre-

sentatives of (G, Xp+1). (See §1 for the notion of a set of representatives

of a permutation representation.) Each e¡ is a sequence (xx, ■ ■ ■, xp+l) of

p + 1 elements of X and the subgroup P(e,) = j<r|o EG, o-e,■ = e,[°f ^ ^s
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equal to P(*i) (~) •■■ O H(xp+X). (See §1 for the definition of H(x) where

i£X.) The following corollary of Proposition 6.1 describes the groups

Exth(Cp,A).

Corollary 6.1. Let p,q}zO and let ex, ■•■,eu be a set of representatives

of (G,XP+1). Then, for each G-module A, Extcj(Cp, A) is equal to the direct

sum of the groups W(H(e^,A), i—\, ••-,u. The groups H°(H(e/),A)

must be considered as  unreduced.

If we apply Corollary 6.1 in the case that p = 0 and use that P¡¡'?(A)

CExtcMC0,A),  we  find:

Corollary 6.2. Let xu---,xu be a set of representatives of the permuta-

tion representation (G,X). For each G-module A and q^O, E2,q(A) is a

subgroup of the direct sum of the groups H9(H(xj,A), i = 1, ...,u.

7. The mappings built into the spectral sequence of Theorem 6.1. Every

spectral sequence \EP,q, Ep;p,q ^ 0,r ^ 2} has homomorphisms EP,°

-^EP^E2P, for p è 0, built into it. Hence, associated with the spectral

sequence of Theorem 6.1, there are homomorphisms

HP(X; G,A)^H»(G,A)^E°2"

for p ^ 0. In order to get rid of the term E2P, we select a set of representa-

tives JCi, ■• -,xu of (G,X) and conclude from Corollary 6.2 that we have

mappings

P"(X;G,A)^Pí,(G,A)^¿Pf,(P(x,),A)
¡=i

for päO; here £ denotes the direct sum of abelian groups and pp is equal

to pg followed by the inclusion mapping. The theory of spectral sequences

tells us that pp\p = 0 for p £ 1.
Interpretation of pp. Consider the restriction mapping res¿: HP(G,A)

-Pp(P(x,),A) for i-l,...,u. If cGPp(GA), Pp(c) = ¿Lires,(c).

(See §14 of [l].) Observe that, if (G, X) is transitive, pp is simply the re-

striction   mapping   res: HP(G, A) ^Hp(H(x), A)    where   x G X.

Interpretation of \p. As above, xu---,xu is a set of representatives of

(G, X). Consider the permutation representation (G,W), where G acts

on W without fixed points and where (G, W) has u domains of transitivity

Tu ..^Tu. We view each T¡ as G and the action of G on T¿ as the left

multiplication of G. There then exists an obvious morphism of permuta-

tion representations 8=(4>,f): (G,W)^(G,X) which is defined by:

0 is the identity mapping of G; if f£T¡, f(t) = tx¡ for i— 1, •••,«.

Clearly, <f> and / are epimorphisms, and ker(</>) = 1 and HP(W;G,A)

s HP(G,A). We conclude from Definition 5.2 that the  lift  mapping 8P
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maps H"(X;G,A) into H"(G,A), for p ^ 0. The homomorphism Xp may

be identified with this lift mapping 0P. (See §14 of [l].)

In applications (see for instance §10), it will usually be necessary to

investigate also the mappings E%!¡.x—*E$+\fi which are built into every

spectral sequence. Since E°p%x is a subgroup of P2P, and Ppíí'0 is a quotient

group of P2+1,°, these mappings, when interpreted in terms of the compo-

nents of the spectral sequence of Theorem 6.1, become the "transgressions."

We refer the reader to [l] for the exact sequences with five terms

which are built into the spectral sequence of Theorem 6.1, and also for

the comparison of this spectral sequence with the one of Serre-Hochschild.

Neither of these two items is needed for the present paper.

Chapter 2. Frobenius Groups

8. Frobenius representations. For the remainder of this paper we assume

that the permutation representation (G, X) is transitive and has the property

that, if o EG and o has at least two fixed points in X, then a — 1. We call

such a permutation representation (as in §7 of [l ]) a Frobenius representa-

tion, and we shall analyze our fixed, Frobenius representation (G, X) by

studying its spectral sequence. (See §10.)

For the sake of proof arrangement, we found it convenient not to exclude

the two trivial cases: (1) (G, X) is the regular representation of G; (2) X

consists of only one element. Every group admits of course these two trivial

Frobenius representations. If a group admits a nontrivial Frobenius repre-

sentation, it is commonly called a Frobenius group. (See for instance [2].)

9. Well-known facts about Frobenius representations. We fix, once and for

all, an element x0EX and denote the subgroup H(x0) of G by 77, i.e.,

77= j«r| o EG, ax0= x0\. We denote the order of 77 by h, the order of G

by n and the index \G: 77] by m; consequently, m is the number of elements

of X and n = hm. (See [3, Chapter X], for the classical theory of permuta-

tion representations.) It is clear that the group 77 acts on the set X — jx0j,

and that the permutation representation (H,X— \x0\) is free of fixed

points. Hence, if w is the number of domains of transitivity of (77, X — j jc0}) ,

then wh = m — 1.

10. The spectral sequence interrelating Hr(G,A) and Hr(X;G,A). Let

A be a G-module. The spectral sequence which interrelates the cohomology

groups Hr(G,A) and Hr(X;G,A) for r^O (zeroth cohomology groups

are unreduced all through this chapter), has as initial term Efyq(A)

= 77p[ExtG(C+,A)] where p,q ^ 0; see Theorem 6.1. In order to compute

the groups ExtG(Cp, A) for some fixed p,q ^ 0, we have to choose a set of

representatives ex, ■■■,eu of the permutation representation (G,Xp+1) and

to determine the groups Hq(H(e¡),A), where t — 1, •••,«.  (See Corollary
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6.1.)   We   remember   that   e¡ = (xj, • ..,xp+1)   and   that   Hie,) = Hixy) f)

• • • Pi P(*p+i) for appropriate xh ■ ■ -, xp+1 E X.

The subset of Xp+1 which consists of those (p + l)-tuples (x, • • -,x) all

of whose coordinates are equal to the same element x E X, is called the

diagonal of Xp+1 and will be denoted by Ap+1. We observe that Ap+1 is a

domain of transitivity of the permutation representation (G, Xp+1) and

we  shall   always   choose  ex = (x0, • • -, x0) E Ap+1.

Proposition 10.1. Hiex) = H and Hied = 1 for i = 2,---,u. Conse-

quently,   ExthiCp,A) = Ext&(Z[Ap+i],A) = H"iH,A)  for q^l  and p ^ 0.

Proof. It is trivial that Hiex) = H. If 1 < i £ u, at least two of the co-

ordinates of e¿ = (x1; • • -,xp+1) are distinct from one another. Consequently,

since (G, X) is a Frobenius representation, Hie/) = 1 and hence H'(P(e¿), A )

= 0 for q ^ 1 and i = 2,---,u. We enumerate the domains of transitivity

Ty = Ap+i, T2,---,TU of the permutation representation (G,Xp+1) in

such a way that e{ETi for i = 1, ■•■,u. Then, Extfe(Cp,A)

= Extfe(Z[Ap+1],A) ©X?=2Ext?;(Z[T,],A) for q^O where © and £ de-

note the direct sum of abelian groups. (See §6.) We conclude from Proposi-

tion 6.1 that ExthiZ[Ap+x],A) =HqiH,A) and that Ext&(Z[T,], A)
= H"iHie/),A) for q ^ 0 and i = 2, •■•,u. Proposition 10.1 now follows

from our previous remarks about P'(P(e¡),A) for <? ̂  1 and i = 2,---,u.

Done.

We conclude from Proposition 10.1 that, for p ^ 0 and q ^ 1, the initial

term PP,'(A) is the pth cohomology group of the complex

0^ExtMZ^], A) hExtfc(Z[A2], A) h . . ..

Observe that all cochain groups of this complex are equal to HqiH,A).

We must now determine the differential operator 5P: Ext&(Z[Ap+i],A)

—>Ext^(Z[Ap+2], A) of this complex.

Proposition 10.2. 5P is the zero mapping if p is even, and 5P is an

isomorphism if p is odd; p ^ 0.

Proof. We know from §§2 and 6 that, in the notation of homological

algebra, <5P = Ext?;(dp+1,1A), where d'p+1 is the restriction of the chain

mapping dp+1: Cp+1—► Cp to Z[ap+2]. (See §2 for the definition of dp+1.)

Select some (x, ...,x) E Ap+2, i.e., xEX and (x, ...,x) has p + 2 co-

ordinates. If p is even, obviously dp+i(x, ...,x) = 0, whence d'p+1 = 0.

If p is odd, obviously d'p+1ix, ■ ■ -,x) = (x, • • -,x)' E Ap+1 where (x, ..-.x)'

has one coordinate less than (x, ...,x). It follows that dp+1: Z[ap+2]

^Z[ap+i] is an isomorphism when p is odd. Wonderful homological algebra

now tells us that Exth(d'p+l, 1A) = 0 (an isomorphism) when p is even (odd).

Done.



140 ERNST SNAPPER [January

Theorem 10.1. The spectral sequence which interrelates Hr(G,A) and

Hr(X;G,A) has the following components:

(1) The final term EP(A) = HP(G,A) for p ^ 0.

(2) The initial term Ep2q(A) = 0 if both p,q>0.

(3) EpAA) = H"(X; G,A)forp^ 0.
(4) P2°«(A) = Hq(H,A) for qZL

The  transgression   mapping   tp: E2P(A) ^ÉP+l,0(A)   is   the  zero   mapping

for p ^ 1.

Proof. The spectral sequence in question is the one of Theorem 6.1.

Hence (1) and (3) above state the same as (1) and (3) of the quoted

theorem. If q > 0, PP,,(A) is the pth cohomology group of the complex

discussed in Proposition 10.2. It follows trivially from Proposition 10.2

that the zeroth cohomology group of this complex is equal to its zeroth

cochain group Hq(H,A); and that all other cohomology groups of this

complex vanish. This proves (4) and (2) above, and we now turn to the

transgression  mappings.

It follows from the general theory of spectral sequences that, since

PP'"=0 when both p,q>0 (we are leaving the "A" out), E%p = E°p$x

for p ^ 1 and PP'° = Ef for p à 2. The differentiation operator of the

complex \E"pb+1\ maps E°Pix into Eftl'0, i.e-> maPs E2P into EP+1-° foi

pel. The resulting mapping f: HP(H,A) — HP+1(X; G, A) is the transgres-

sion mapping mentioned in §7. We know from §3 that hHp(H,A) = 0 for

p = 1 (zeroth cohomology groups are unreduced) and that mHp+l(X; G,A)

= 0 for p ^ 0. Since (m,h) = 1 by the last equation of §9, tp = 0 for p è 1.

Done.

11. The lift-restriction sequence. For each p ^ 1, the sequence of maps

HP(X;G,A)^^HP(G,A)-^"PHP(H,A) is well defined (see §7). Here,

Xp is the lift mapping and p" is the restriction mapping resp.

Theorem 11.1. The sequence 0^Hp(X;G,A)~^xPHp(G,A)^"xPHp(H,A)

—» 0 is exact for p ^ 1.

Proof. Every spectral sequence \EP,q,Ep;p,q ^ 0, r ^ 21 which has

the property that EP,q = 0 when both p and q are positive, has built into

it exact sequences 0 -> Pp'° — E" -^ E°f -> 0 for p ^ 1. If furthermore

the transgression mappings tp: E2P-+EP+1,° are zero for p ^ 1, we may

identify E°f with P20p, and Pp0 with P§°. All these conditions are

satisfied in the case of the spectral sequence of Theorem 10.1, and (1),

(3) and (4) ofthat theorem show that the exact sequences 0—>E^°—>Ep

—»Pjp—>0   are   those   mentioned   in   Theorem   11.1.   Done.

If S is an abelian group and kE Z (Z stands for the ring of the rational

integers), we denote by S(k) the subgroup of S whose elements c have the
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property that kc = 0. We use notations such as Hp(G,A,k) instead of

(H"(G,A))(k). The corestriction mapping cor": 77p(77, A) -77P(G, A) (see

§4) obviously maps HP(H,A) into H"(G,A,h), and we shall denote this

mapping HP(H,A)^H"(G, A,h) also by corp. (Such abuse!)

Theorem 11.2. For all p^l:

(1) 77P(G,A) = H"(G,A,m) ®H"(G,A,h), where © denotes the direct

sum of abelian groups.

(2) H"(G,A,m)^Hp(X;G,A); Xp maps HP(X;G,A) isomorphically

onto Hp(G,A,m).

(3), Hp(G,A,h)^Hp(H,A); res" maps H"(G,A,h) isomorphically onto

HP(H,A).

(4) The inverse of Tesp\H"(G,A,h): Hp(G,A,h)^Hp(H,A) is corp:

Hp(H,A)^Hp(G,A,h). Consequently, corp is an isomorphism and respcorp

is the identity of HP(H,A).

Proof. The lift-restriction sequence is an exact sequence of the form

0—»fi—»'S—>JT—>0 where R,S,T are abelian groups and i,j are homo-

morphisms; furthermore, mR = 0 and hT = 0 and (m,h) = 1. One shows

immediately that then S = S(m) ® S(h); and that i maps R isomorphically

onto S(m) and that; maps S(h) isomorphically onto T. This proves (1),

(2) and (3), and we now turn to (4). The endomorphism corpresp of HP(G,A)

consists of multiplying the elements of HP(G,A) by m, and we recall from

§9 that wh = m—l. Consequently, if c G HP(G, A,h), then (corp resp) (c)

= mc = (wh + l)c = c, which shows that corp is the inverse of resp|77p(G, A,h).

Done.

One can, of course, investigate the cohomology theory of the Frobenius

representation (G, X) also for negative dimensions. The lift-restriction se-

quence then becomes the corestriction-deflation sequence. (See Remark 13.1

of [l|; all arrows are inverted.)  Instead, we turn to the applications of

Theorems 11.1 and 11.2 to Frobenius groups.

Remark 11.1. Theorems 11.1 and 11.2 are not new. D. K. Faddeev

studies in [ll] the lift-restriction sequence, assuming only that the order

of the subgroup 77 of G is relatively prime to the index [G:77]. Under this

assumption, his result is that the lift Hq(X;G,A)—*Hq(G,A) sends

Hq(X;G,A) isomorphically onto the [G:77]-annihilated part of Hq(G,A)

and that the restriction map sends the [TLl]-annihilated part of Hq(G,A)

isomorphically onto the stable subgroup of Hq(H,A). (For "stable," see

[8, p. 257].) Faddeev's methods can be used to obtain Theorems 11.1 and 11.2.

Conversely, Faddeev's results can be obtained by the spectral sequence

technique of the present paper. Faddeev's paper is in Russian but has been

reviewed in Math. Reviews 17, p. 11. The author is indebted to the referee

for having pointed out Faddeev's paper.
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12. The Frobenius theorem. We shall denote by N the subset of G which

consists of 1 together with those elements of G which have no fixed point

in X. It is clear that, if w EN, then w'1 E N and awa'1 E N for all a EG.

A famous theorem by Frobenius states that A7 is a group (see §247 of

[3]), and we shall refer to this theorem as the Frobenius theorem. It is ob-

vious that this group must be a normal subgroup of G.

It is the purpose of §§13 and 14 to prove the Frobenius theorem in the

case that H is solvable and to identify N with the appropriate "higher

commutator subgroup" of G. (See Theorem 14.1. §§15 and 18 contain a

discussion of the nonsolvable case.) Hence we consider N as a set and must

show that this set is closed under multiplication. We shall make use of the

following proposition which is proved in §134 of [3].

Proposition 12.1. N contains m elements. These are precisely the elements

o of G which have the property that om = 1. If an element a of G does not belong

to N, oh= 1.

13. The commutator subgroups of G and H. We shall denote the commu-

tator subgroup of G (of H) by G1 (by P1).

Lemma 13.1. H1 = Hf)G1.

Proof. Consider the G-module Z with G acting trivially on Z. According to

Theorem 11.2 (4), cor2: H\H,Z)-*H\G,Z) is a monomorphism. As is well

known from the fixed point free theory, this means that the natural mapping

a: P/P1—»G/G1 is a monomorphism. This mapping is given by aipH1)

= pG1 where pEH, whence ker (a) = iH C\ G1) / H1. Since ker(a) = 1, we

are done.

If H= 1, our Frobenius representation (G, X) is free of fixed points,

whence then N = G. In that case it is of course not true that, necessarily,

N C G1 or that G/G1 s H/H1.

Lemma 13.2. If H* I, N EG1 and G/G1 a H/H1.

Proof. Case X.H^H1. (Then, obviously, P 5¿ 1.) We return to the G-

module Z with G acting trivially on it. We know from the fixed point free

theory that H2iG,Z) ^G/G1, whence we conclude from Proposition 12.1

that for all aEH2(G,Z), either ma = 0 or ha = 0. Consequently, since

im,h) = l, either P2(G,Z,m) = 0 or H\G,Z,h) = 0. Theorem 11.2 (3)

tells us that H\G,Z,h) ^H\H,Z) which implies, since H\H,Z)^H/H1

and H * H\ that H\G, Z, h) * 0. We conclude that H\G, Z,m) = 0

which, using the identification of H2iG,Z) and G/G1, means the following:

If a EG and omEG\ then o EG1. Since, for all o EN, </" = 1, N EG1.
Finally, Theorem 11.2 tells us that H\G,Z) = H\G,Z,h) ^H2(H,Z),

whence G/G1 a H/H1.
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Case 2. H ¿¿ 1, but otherwise H is arbitrary. We delay the proof of this

case until §17, because we are not able to handle Case 2 without the use

of the Frobenius theorem. The proof of Case 2 is dependent on Case 1, and

it would be of interest to have a proof of Case 2 which does not make use

of the Frobenius theorem. We have to use Case 1 already in the next section.

14. The Frobenius theorem for solvable H. We assume for this section that

H is solvable and that H ¿¿ 1. We denote the commutator subgroup of P1

by H2; of H2 by H3, etc. We consequently have the properly descending

sequence H = H° D P1 E) H2 D • • O He = 1, where e ^ 1. We use the same

notation G = G°~Z) G1Z)G2E) • • • for the higher commutator subgroups of G.

Theorem 14.1. G'/G+1 ^ P'/Pi+1 for i = 0,---,e-l. Furthermore,
Ge=N.

Proof. We know from Case 1 of Lemma 13.2 that G/G1 at H/H\ and we

now study the permutation representation (G1, X). The subgroup [N] of G

which is generated by the elements of N (we want to prove that [N] = N)

acts transitively on X; see Theorem XI, p. 86, of [4]. Since [iVjGG1 by

Case 1 of Lemma 13.2, the permutation representation (G\X) is transi-

tive. It is trivial that, if a G G1 and o has at least two fixed points in X,

then a = 1. We conclude that (G\X) is a Frobenius representation. The

elements of G1 which have no fixed point in X, together with 1, consti-

tute again the set N. Returning to the element x0GX, chosen in §1,

we see that the group ja| a G G1, ox0 = x0} is equal to G'PlP and hence,

by Lemma 13.1, to P1. The upshot is that we changed from the original

"Frobenius triple" (N,G,H) to the new Frobenius triple (N,G\Hl). If

Hx = 1, we stop. If P1 ;¿ 1, we conclude again from Case 1 of Lemma 13.2

that Gl/G2 at H1/H2, and then go over to the new Frobenius triple (JV, G2, H2).

In this way we show that G/Gi+1 c* H'/Hi+1 for i = 0, ■ • •, e - 1 and reach the

Frobenius triple (N, G,P<). Since He = 1, N = G. Done.

Remark 14.1. The investigation of the solvable case is not complete. We

know from Theorem 1 of [5] that N is solvable, whence G and hence G is

solvable. In particular, G ^ G+1, unless we are in the trivial case that N = 1

(and hence H = G). This situation is in marked contrast with the statement

that G = G+1 if P is not solvable; see Theorem 18.1. Furthermore, it follows

from §248 of [3] (we avoid the well-known error in that section) together

with Theorem 11.6 on p. 262 of [8], that the cohomology of H is periodic,

even if H is not solvable. It would be of great interest to obtain proofs of

the solvability of G and the periodicity of H by means of the cohomological

methods of this paper.

Other proofs that JV is a group (under the assumption that H is solvable)

have been given by Shaw in [6] and Grün in [7]. The theorems concerning

the higher commutator subgroups of G and P seem to have been missed.
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15. The Frobenius theorem for nonsoivable 77. We assume for this section

that 77 is nonsoivable. The most tempting proof that TV is a group is now

obtained by invoking the theorem of Feit and Thompson "groups of odd

order are solvable." We conclude from it that H has even order and can

then fall back on the completely elementary proof, given in §134 of [3], that

N is an abelian group. As things stand at the moment, this proof arrange-

ment is perhaps not quite fair because of the heavy use Feit and Thompson

make of Frobenius groups in the proof of their theorem.

One can avoid the theorem of Feit and Thompson, if one proves first that

the cohomology of 77 is periodic, as suggested in Remark 14.1. Namely,

the periodicity of 77 tells us that all Sylow subgroups of 77 of odd order are

cyclic. (See Theorem 11.6, p. 262 of [8].) Since 77 is nonsoivable, not all

Sylow subgroups of 77 can be cyclic. (See Theorem 10, p. 145 of [9].) Con-

sequently, 77 possesses a Sylow subgroup of even order (by necessity a

generalized quaternion group), and we have again obtained that the order

of 77 is even.

In the remainder of this paper we shall consider the Frobenius theorem as

proved and use it to show that H2(X; G,Z) =0 (also if 77 is solvable). This

will then enable us to compare the higher commutator subgroups of G and

77 also if H is nonsoivable. (See Theorem 18.1.)

16. Identification of HP(X;G,A) and HP(N,A)G. We drop all solva-

bility conditions on 77, and use that N is a subgroup of G.

Lemma 16.1. Let A be a G-module and pel. Then, H"(H,A) s* HP(H,AN)

and HP(X;G,A) ^HP(N,A)G.

Proof. It is immediate that we have the exact sequence 1—>N-^G—>H

—» 1. Since (m,h) = 1, where m is the order of N and h is the order of 77,

the customary Serre-Hochschild spectral sequence gives rise to the exact

sequence

Xp resp
0^77P(77,AN)^77P(G,A) -. Hp(N,A)G^0,

where Xp is the inflation mapping and resp is the restriction mapping. (See

p. 127 of [10].) Since hHp(H,AN) = 0 and mHp(N,A)G=0 we conclude,

as in Theorem 11.2, that H"(G,A,h)^Hp(H,AN) and Hp(G,A,m)

&H"(N,A)G. Lemma 16.1 now follows from (2) and (3) of Theorem 11.2.

Done.

Corollary 16.1. HP(H,A/AN) = 0 for p > 0, and the unreduced group

H°(H,A/AN)^AH/AG.

Proof. The exact G-sequence 0^ AN —»'A —> A/A*—»0, where i is the in-

clusion  mapping,   can   be   regarded   as   an   77-sequence.   The   resulting
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exact cohomology sequence 0^P°(P, AN) ̂ H°(H, A) ^H°(H, A/AN)

—>H1(H,AN)—>--, together with the first isomorphism of Lemma 16.1,

gives Corollary 16.1. Done.

In the next section, we will use the second isomorphism of Lemma 16.1

in the case that p = 2 and A = Z with G acting trivially on Z. We see from

Lemma 16.1 that P2(X; G,Z) at (N/N1)0, where N1 is the commutator sub-

group of N. As follows from [10], the action of G on N/N1 is the natural one:

If o EG and wEN, «(wN1) = owo-lN\ Consequently, wN1 E (N/N1)0 if

and only if w~1owo~1 E N1 for all o EG.

17. The vanishing of P2(X; G, Z). We denote the center of G by C.

Lemma 17.1. Let H ^ 1 and H^G. Then, C = 1.

Proof.Since H ^ G, there exists w EN where w ^ 1. If o E G and aw = wo,

every fixed point x E X of o causes wx to be another fixed point of o. Hence,

either o = 1 or a has no fixed points, i.e., a EN. In particular, C EN. Suppose

now that C contained an element <7 =¿ 1. Since o EN, the above reasoning shows

that then G = N. This would imply that H = 1, which has been excluded.

Done.

It is obvious that neither of the two conditions H ¿¿ 1 or P ^ G can be re-

moved from Lemma 17.1.

Theorem 17.1. Let H*\. Then, H2(X;G,Z) = 0.

Proof. Case I. H ¿¿ H1. We proved under Case 1 of Lemma 13.2 that, if

H^H\ H\G,Z,m) = 0. According to (2) of Theorem 11.2 this means

precisely that P2(X; G, Z) = 0.

Case 2. H = H1. Since H^l, H is not solvable whence N is an abelian

group. (See §15.) We see from the last paragraph of §16 that now P2(X; G, Z)

St NG, and that an element w of N belongs to NG if and only if w^owo^1 = 1

for all a EG. This means of course that P2(X; G,Z)^NnC. If H = G,

N = 1 and hence N n C = 1; if H ^ G, C = 1 by Lemma 17.1 and again

AfflC=l. Done.
Proof of Case 2 of Lemma 13.2. Since H ¿¿ 1, Theorem 17.1, together with

(2) of Theorem 11.2, shows that H2(G,Z,m) = 0. The reasoning, used under

Case 1 of Lemma 13.2, now proves again that N EG1 and that G/G1 s H/H1.

Done.

Clearly, Lemma 13.2 and Theorem 17.1 are equivalent statements. It

would be highly interesting to have a proof of Theorem 17.1 which does

not make use of the Frobenius theorem.

Remark 17.1. One can easily conclude from the last paragraph of §16

that H2(X; G, Z) is isomorphic with the intersection of N/N1 and the center

of G/N1. We see from Theorem 17.1 that, if H ¿¿ 1, this intersection is the

unit element of G/N1.
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Remark 17.2. H\X;G,Z) = 0 by Proposition 6.4 of [l] and H2(X;G,Z)

= 0 (if H j¿ 1) by Theorem 17.1. The periodicity of H makes it unlikely,

but not impossible, that HP(X; G,Z) = 0 for all p > 0 if if j* 1.

18. The higher commutator subgroups of G and H. In the case that H is

solvable and ¿¿ 1, Theorem 14.1 compares the higher commutator sub-

groups of G and P. We assume for this section that H is not solvable. The

properly descending sequence H = H° D H1 D H2 D • • O He = He+1 ̂  1

of the higher commutator subgroups of H may now very well consist of

only one term, in which case e = 0. Theorem 18.1 states that the sequences

of the higher commutator subgroups of G and H have isomorphic factors.

Theorem 18.1. G'y'Gi+1 =* HjP'+1 for i §; 0. Furthermore, NEGT and

(N, G6, H") is a Frobenius triple.

Proof. The reasoning, used in the proof of Theorem 14.1, now gives that

G7G'+1 sé Hl/Hi+1 for ¿ = 0, ..-,e-l, that NEGe and that (A^P6)

is a Frobenius triple. Since He ¿¿ 1, we may apply Lemma 13.2 once more

(we are now in Case 2 of that lemma!) and conclude that He/He+1

Si G7Gf+1, i.e., that ff = G*+1. Done.

In connection with Theorem 14.1, it is interesting to observe that N is

now not equal to a higher commutator subgroup of G. Namely, since H is

not solvable, G cannot be solvable and hence G* is certainly not abelian.

N, however, is abelian.
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