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BY
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1. Introduction. The general study of algebras of operators on Hilbert
space has led to the investigation of rings of operators, also called W*-
algebras or von Neumann algebras. These are self-adjoint, weakly closed
algebras of operators which contain the identity. If the center of a ring
(center in the algebraic sense) consists only of scalar multiples of the
identity, then the ring is a factor. Factors have been studied extensively
and divided into types by Murray and von Neumann [5;6]. In his work
on reduction theory |9], von Neumann has considered the decomposition
of a ring with respect to various subalgebras contained in its center. When
the subalgebra actually is the center, then the rings making up the decom-
position are factors. The question of decomposition with respect to a sub-
algebra which is not the center of the ring, but is maximal abelian in its
commutant, is also of interest. Here, each of the rings in the decom-
position is isomorphic to the ring of all bounded operators on some Hilbert
space | 4]. This sort of decomposition is not unique, but rather depends
essentially upon the choice of the maximal abelian subalgebra. However,
not much is known about these subalgebras, even in the case of a con-
tinuous factor of finite type, or a type II, factor.

In this paper we restrict ourselves to the study of approximately finite
II, factors, that is, those which are generated by a sequence of factors
M, of type I,, with M, GM,,&---. (The factor M, is essentially an n
by n matrix algebra.) It is proved in [6,§4.7] that all approximately
finite factors are algebraically isomorphic, while [6,§1.6] shows that the
concept of a subring of a finite factor is purely algebraic. This permits
one to obtain general results through specific constructions.

Dixmier has defined three types of maximal abelian subalgebras R in a
factor ¥, as follows: Let R (R) = P be the ring generated by 2'= {V: VRV*
=R, V unitary, VE U}. Then R is regular if P = % R is semi-regular but
not regular if P is a factor not equal to ¥, and R is singular if P = R. Dixmier
has shown the existence of at least one subalgebra of each type in an approxi-
mately finite II, factor [2]. Later Pukéanszky proved the existence of a
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countable infinity of singular subalgebras which cannot be pairwise con-
nected by *-automorphisms of the factor [7].

Both Dixmier and Pukanszky used groups and group algebras to con-
struct factors. In this paper we use a more straightforward approach.
Let M, be the full 2° by 2° matrix algebra over the complex numbers, and
{?E;j: 1,j =0,1,-..,2°— 1} the matrix units which generate it. Imbed
M, in M,,, by letting "E;="""Eyy+ "*'Eny1s41. Then U7 M, =
M is a *-algebra. If A =|a;| is in M, then

1
Trace A = Tr(A) = (1/2°) _a,.
i=0

Make M into a pre-Hilbert space O as follows: For A, B in M, let (A, B) =
Tr(B*A), and v/(A,A) = [[A]], the Hilbert space norm of A. If A is in
M,B in O, then [[AB]]=<||A||[[B]], where ||A|| is a finite number
[8, p. 77]. So A is a bounded operator on  and can be extended to the
Hilbert space closure <Z Let A be the weak closure of M, or the ring
generated by M.

The trace can be extended to ¥ by continuity and has these properties:
(1) It is a linear functional. (2) Tr(AB) = Tr(BA). (3) If E is a pro-
jection, Tr(E) € [0,1]. It is well known, then, that ¥ is a continuous
factor of finite type, or a II, factor [ 1;6]. It also follows directly from the
definitions that ¥ is approximately finite.

In §2 of this paper a simple construction is shown to yield a great
variety of maximal abelian subalgebras R of 2. A regular subalgebra is
easily identified in §3. For the construction of singular and semi-regular
but not regular subalgebras, the matrix units are divided into two or-
thogonal sets. Those in one set generate P, those in the other are in P-.
After presenting an example of a singular subalgebra in §4, the paper
proceeds to the construction of an infinite sequence {R,} of semi-regular
but not regular subalgebras. These cannot be pairwise connected by
*_automorphisms of ¥, since each R, has a different length, an invariant
which is defined thus: For any subring D of A, N (D) is the ring generated
by the unitaries which leave D invariant, and RN’/(D) =N [N/"YD)].
Then R, ENR) =P, GNP SNRAP) S --- & NYP,) =¥, where L =
length of R, = n. However, this invariant does not lead to a complete
classification of semi-regular subalgebras, and a counter example is pre-
sented in §6.

The author would like to express her gratitude to Professor James G.
Glimm, her advisor, for the problems and methods he suggested and for
the painstaking care with which he surpervised the work of this doctoral
thesis.
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2. The construction of maximal abelian subalgebras. The following
general facts, which are easily verified by computation, will be useful
throughout the rest of the paper.

LEMMA 2.1. Suppose U, A, and B are in U, U unitary. Then [[UA]]
= [[AU]]=[[A]],(U*AU,B) = (A,UBU*),and [[A]] = [[A*]].

We now proceed to the construction of maximal abelian subalgebras of
A. Following [ 6], we call the topology of < the metric topology.

2.2. DEFINITIONS Let Y, be the abelian subalgebra generated by
{PEw: k=0,1,.. -1} Let E=U; »-1E,, also an abelian subalgebra.
Let {U,:t= 1,2, } be a set of self-adjoint unitaries such that: (1) U,
EM,; (2) U, is zero except for 2 by 2 blocks along the main diagonal.
(Note that PE,;, commutes with U,,; for A 2 1.) Define Y,= U,U,--- U,
For each choice of {U;: t=1,2,...}, we construct a subalgebra as follows:
Let S, be the subalgebra generated by {"Ek,, PEw is a generator of E, and
PEu=Y,?Ey Y] Let S= U :.:S,, also a subalgebra (see Lemma 2.3),
and R=S". For any A E?l define the notation AP = Y*AY, (i.e., A"
=UU,_y--- U AU, --- Up).

LemMMA 2.3. If p 2 g, then “Ey = Y, EuY?, so 8, CS,. Also, A*Pl= AlPV
for any A € .

Proof. Since Uy, ---, U, commute with E,,,

Eu=U,-- U, "EuU, - U,
=U,---U,---U,"EnU, --- U,
=Y,EunY;.

APl = YFA*Y, = (YFAY,)* = AP,
LEMMA 2.4. Suppose D, A € M,, with
Dl = Za,,”Ek,, and AP = > aj’Ej.

Jj=k

Then D is in SC R and A is in R*.

Proof. By §2.2, D= Y, D¥' Y =3 ,a,Y,’E Y}, so D is in SCR.

On the other hand, A“’I is orthogonal to ‘Ej; for all j,q (by definition
of the inner product). Now suppose E,, is a generator of S;. We can assume

g = p, because g < p implies S, C S,. Since >_ - “’EMA“’“’E,Z,, = 0, it follows
that

P -
> PE,AYPE,, = Z U,- pH”EkkA“’“’EMUpH -U,=0.

k=0
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So A% is also orthogonal to °E;. Hence
(AYE;) = (A, Y,°E; Y}) = (A,%E;) = 0
(using Lemma 2.1). Therefore A is orthogonal to S, for all r, implying that
A is orthogonal to S.
Now it is shown in [ 6, p. 728] that weak, strong, and metric closure of a

subalgebra of a finite factor coincide. So A is also orthogonal to R, the
metric or Hilbert space closure of S in U.

THEOREM 2.5. Let S, S, and R be defined as in §2.2. Then R is maximal
abelian as a subalgebra of U.

Proof. We show first that R is abelian. Let ?Ey, and quj be projections
which generate S, and S,. Assume p = ¢q. Then
"Eu,"E,, = (Y,’EuY)(Y,°E;Y;) (by Lemma 2.3)
= Y,’Eu’E;Y; = Y, °E;;’EnY;
= qujpEkk'
Since S is an ascending union of abelian algebras, it is abelian. By the
standard argument, so is its weak closure R.

Suppose A is in A, and A commutes with R. There is a sequence A, in
I which converges strongly to A. If x € & equals I, the identity of ¥,
then [[A,x — Ax]]=[[A,— A]]—0, so A, also converges metrically
to A. Since A, is in M, for some p, we can write APl= DPI 4 AP where
Dl = zkak”Ek,, and Al"'— ngkajkajh. Then by Lemma 2.10, D, is in
S C__R and A, is in R*. A unitary transformation of APl yields A, = D,
+ A,.

Assume lim,[[A,]] 0. Then |[A,]]?>> 3¢ for all n and some ¢ > 0.
Now A, is Cauchy in the metric topology, so there exists K(e) such that if
tm > K@, [[A = A]]= [[(D:~ D) + (A —4,) | <. But D, Dn
isin R, and A,— A, is in R*; and so [[A,— A,]]<e if t,m > K(d.
Choose t > K(¢) and fix A,, say in IM,. Consider this ¢ fixed from here on.

Now A commutes with "Eu. fork=0,1,...,27— 1, so that A "E,,,, — "E,,,.A
= 0. Since A, converges strongly to A and there are only 27 projections
in question, we can choose m such that [[A, B — "E,,,,A,,,]]2 < €%/29 for
all "E,,,,, and also m > K(¢). Suppose A, is in IM,, where we can assume
r 2 ¢q. By Lemmas 2.3 and 2.1,

[[AnEp — EnAn) 2= [[AnY,“EuY? — Y,'Eu YA, )2
= [[Y}A,Y,'Ey — ‘EuYARY,]|?
= [AL:I Ew — quler[;]] 1* < /2%

Now DY = 3",8,"E};, so D})'Ey;, — E,, D! = 0. Hence



1965) MAXIMAL ABELIAN SUBALGEBRAS 285

[[AY)Ey — EuAL)]]? < /28,
Let P(Al) = > 2 71E,, AU4E,,. Then
- — A -
[[AR = PARN])® = X0 [[AFFEw — “Eu Al ]?
k=0
< 29329 = 2
But by Lemma 2.1, [[AY)]]?=[[A.]]*> 3¢ and so we must have
[[PALH]]2> 2&
However, 4, is in M, and A=Y Z3! E, AE, = 0, by definition

of Al It follows that P(A)) = Zf o "E,,,,A[’] Ew = 0,as in the proof of
Lemma 2.4. Thus we have:

> [[Ar-Ag) )
P — - 2
> [[ > ‘Eu (Al — ALY EM]]
. k=0

[[P(ALY) — PALY]]? > 26
But this is a contradiction, and so lim,[[A,]]= 0. Since
we have lim,[[D,— A]]= 0, with D, in S.

By assumption, A is in ¥. Since it is in the metric closure of S, a sub-

algebra of a finite factor, it is also in the weak closure of S [6, p. 728].
Therefore A is in R, and so R is maximal abelian in U.

3. A regular subalgebra. In this section we exhibit a regular maximal
abelian subalgebra in the approximately finite factor U.

LeEmMMA 3.1. Let E be defined as in §2.2. Let R=E~. Then R is maximal
abelian.

Proof. Let U,=1 for t=1,2,3,---, so that Y, = I also. Then Theorem
2.5 applies.

THEOREM 3.2. R = E~ is a regular maximal abelian subalgebra.

Proof. Let PEj;, be any matrix unit in M. Define the unitaries

Vi="Ex4 7Byt X %E. and Vo= "Eg— "By ¥ E.

s#j,k s#jk

A routine computation shows that V, and V, leave E, hence R, invariant.
So V, and V, are among the generators of M(R) =

Since PEj, = (1/2)(V,+ V), any matrix unit in M is contained in P.
Hence M~ = U is contained in P, and so P = A and R is regular.
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4. Singular subalgebras. In this section we establish conditions for a
singular maximal abelian subalgebra, and then present an example which
satisfies the conditions.

4.1. DEFINITIONS. The notation is that of §2.2, with the following restric-
tions on the unitaries U,

Let
n=[5 1]
and let
Bl=[ 172 1/\/2]'
1V2 —1/2
Then U, = (‘C;), where ‘C;; is a 2 by 2 matrix,

e, -{0 iz
Y I,or B if i =j.
Let B,= (‘D;), where ‘D;; is a 2 by 2 matrix,
iy _ VO if i,
D= {Blif i=].

Let T be an infinite set of positive integers p, < p, < ---. Assume that
if p € T, then we can divide the matrix units ?Ej into two sets as follows:
(1) If Up+hpEjk UP+h = pEjk for all h = 1, then P jke Ko. (2) If pE,'kQE Ko,
then there exists d(j,k) (1 <d < p) such that U, s’Ej,) U, = "Ej Bpa,
while Up+hpEj;, Up+h= pEjk for 1 =< h =< d— 1.

Also assume that if & I',q¢ > p, then PE; &€ K, implies

U, - Ui PE Upyy - Ug =3 °E.
with E, € K; and PEj & K, implies
Uy U PEp Uy - - Up= Y an 'Eyy
with ‘E & K, (Note:
Uy Upir"EnUpr - Uy = Y2 Y,PEx Y3 Y,
will henceforth be abbreviated as U,--.?Ej--- U,.)
LEMMA 4.2. Suppose pET,’Eid Ko d(,k) =d. Let g=2%+a

(@=0,1,--, or 29 —1), so that P**E, < ’PEy. Then for every r = 0, there
exist exactly 2"+ projections ****'Ey, < "Ej; such that

P Eu(Uptarr- "B Upaar) "**Eal )= /20744741

Proof. Consider g =2% + a fixed throughout the proof.
(i) By using §4.1, we have:
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P*Em Upsa---PEjx - -+ Uppa"**Egg = "*Em"Ejx Bpra"“Eg
1/A/2°%E),, ifa=0 (mod2) andh =h(g) =2% +aor2y+a+1,
={ +1/4/2°"E,, ifa=1 (mod2) andh=h(g) =2%+a—1or2% +a,
0 otherwise.

Hence the lemma holds for r = 0.
(ii) Take r = 1 and assume that

([P Em(Upsasrr -+ PEje -+ Uppayr—s) *"Eg] ]?

+d+ if pHd+r—1 d
_ e if PRy < PYEvg s

I ) otherwise.
Let
2 or—1
p+d+r=s, ‘“'Ey= ZsEhihv p+dEy = Z S_IEM."
i=1 r=1

Then *'Ew(U,_;---PEj--- U,_) * 'E,, is a multiple (possibly zero) of
a matrix unit *"'E,,. Because of the form of U,,
[ [sEhlhl Us(Us—l M pEjh s Us—l) Uss—lEg,g,] ]2
= [ [sEhghg Us(Us—l P jk Us—l) Uss_lEg,g,] ]2'

So the sums over » of these two expressions are equal. Since the norms are
preserved by the unitaries U,, we have:

or—1
2 [[PEwp U+ -PEj--- U, 'Egg, ] ]?
y=1

or—1
= (1/2) Z [[S—IEM Us"'pEjh"' Uss-lEu..]]z

v=1

= (1/2) [ [s—lEhh Us—l e pEjh et Us—l p+dE88] J 2

_ { 1/2°+ if * By < P Ej 1)
o otherwise.

Hence [[P***Ep(U,---PEj--- U)P*Eg]]* equals 1/2P*++! if and only

if *Epg; = PY*Epy, < P Epg g, oF for 2(2) projections 7+ By,

LEMMA 4.3. Suppose R is constructed according to §2.2 and §4.1, and
% =|V: VRV* =R, Vunitary, VEU}. If VE V’, then there is a sequence
V, converging metrically to V, such that if V,EM, (p €T), then VI
= ZB“" pEab with pEub (- Ko.

Proof.Let V bein 27. Then there is a sequence W, E M which converges
strongly to V. Since W, € M, we must have W,E M, for some pET,
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the set referred to in §4.1. Then we can write WY'= VFl+ W»! where
V!'p] = Zﬁab pEab with pEabe Ko and WLPJ = Zajk pEjk with pEjk $ Ko. By
the last paragraph of §4.1, this decomposition is independent of p,i.e.,
if ¢> p,qET, then
vi=u,..-U,, V¥'U,,,--- U,

and

W= Uy Uy WEIU, - Uy
So Wn= Vn+ Wm_and (Vm Wn) = 0_

Suppose lim, [ [ W,] ] 0. Then [[ W,]]* > 16¢2 for all n and some ¢ > 0.
We can assume ¢ < 1/9. Since W, is Cauchy in the strong and metric
topologies and (V,, W,) = 0, there exists K(¢) such that if m,t > K(e), then
[_[W, — Wal] <e Choose t > K(e) and fix W,. If W, MM, (p €T), then

EPI=Z aji, pEjk (pEjk$Ko) lmplles that
(1) (1/27) D aje|® > 1662
Consider p fixed from here on. Next choose m > K(¢) and also such that
[[Wn— V]] <e/32(2%). _

For now, fix one pair (j, k) in the sum for W/*,, and let d = d(j, k), as in
§4.1. Consider the 2¢ projections E, such that EY*=r*E_<°*E, By
definition, E,E R, and so VE,V*= F,c R, with F, a projection. Since
VE,— F,V=0,[[W,E,— F,W,]] < ¢/16(2%). By [6, p. 761], there is a
sequence of projections F,; € S(see §2.2) such that [ [ Fy; — F,]]— 0. Choose
i (for each g) such that [[W,E,— F,W,]] <¢/8(2%). Let r=r(j,k) be
large enough so that W, and all F; are in M, 4sr, and so that p+d+r
€. Let s=s(,k) =p+d-+r. Then

[[Wi'Ey! — Fi Wil = [[(VRE = Fi Vi) + (WLIEY — FETW3) ]

< ¢/8(2%).
Since E, and F,; are in RN\ M, E!! and F_‘g}“ are sums of minimal projections
‘Es;. Hence by definition of V& and W), the two expressions in paren-
theses are orthogonal, and so

[[WEIEL — FLIWE]] < /8(2%).

Suppose F*' = 3" °Eyq) 4. Let Gy = {h: h = 8(g) for any 8(g) in the sum,
and ‘Eu < PE;|. Recall that Ef'= U,...”*E, ... U,= P™E,. Then

@ Z[['Ea WS P+E,] |2[= [ Wh! 7B, — Fi Wil]]? < &/64(2%).
(4

On the other hand, let us consider ”E,,-V_V,ls' PEw = apUs---PEj,--- U,
Now ’E; & Ko, s =p +d+r, and P+iE . < PE. So Lemma 4.2 asserts that
there are exactly 2"t! projections °E, < PE;; such that
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[ [SEM V—V,Is] p+dEgg] ]2
= [[ap EwUs---PEj - - UPTEg] ? = |au|?/2°%

Let H,={h: ‘Ey,<"E; and the preceding equality holds}. Clearly,
#(H,) = 2.

The set we are interested in is H,N G,. Since [[ W, — V]] < ¢/16(2%),
a routine calculation shows that [[VE,— F,V]]=[[VE,V*-F,]|
< e/4(2%) < ¢/4(2°%%. Now V is unitary, [[E,]]=+/(1/2P*%), and € < 1/9,
so it follows that [[F,]]*=[[2""""Esgse]]* < 17/16(2°*%). Hence

the sum has fewer than 17(2")/16 terms. But if "***"Ey, < E; and h = 8(g),
then h € G,. Therefore,

#H,NGY 2 #(Hy) — #iﬁ(g)r ‘Esgse < F[ ]}
> 2™ 17(20) /16 = 15(27) /16.

Let J=J@,k) ={(h,8): "*"Ex <"Ew and h € H,N G,}. Then #(J)
2 2 min, #(H,N Gp) ] = 15(2%*")/16. So

; [[*Ewm WP PHE,] 12 2 15|a;)%/32(27).

3)

(We use (3) since (h,g) € J implies h & H, for some g.) On the other hand,
(B W' #E,)* < 24 max 3 [[*Ew WEE,]]*
7

& HyNGg
< ¢?/64(2%) (using (2) andd = p).

From here on, we do not regard (j,k) as fixed, but let Z = {(j,k): PE; is
in the sum for W "I}, Note that d,r,s, and J are still functions of (1 k).
Let so = maxy[s]. Then

ez ([ W)
> 3 [[PE;(W*! — Wir) PEy] ]2
VA

= Z[[E;(W = WE) °Eu] ]

[ 3, muti= s | .2
[ |5 el
- N(ZZIUEs BB, 17) - \/(ZZ[[’E Wil E, ) 17)
l\/ §:15|ajk| /32(2p)> - \/(22:62/64(22”)>

> |V (15(166) /32) — v/ (2%2/64(2%)) | > ¢ (by (1)).

1\

v
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But this is a contradiction. Hence lim,[[W,]]=0 and lim,[[V,— V]]
= 0, where V, has the required form.

THEOREM 4.4. Let R be such that the conditions of §4.1 are satisfied, and
also PE; € K, if and only if j=k. Then R is a singular maximal abelian
subalgebra.

Proof. As usual, 2 ={V: VRV* =R, V unitary, V€ %}. Using Lemma
4.3 and the fact that the strong and metric closures of S in U coincide, we
have 2°C R, and so P, the ring generated by 7, is contained in R. On the
other hand, any ring is generated by its unitaries [ 1, p. 4], and any unitary
in R isin 72/, so R C P. Therefore R = P, and so R is singular.

4.5. DEFINITIONS. In order to construct a subalgebra satisfying the con-
ditions of Theorem 4.4, we define the set {U, n=1,2,...} as follows:
We shall say that U, is of type r (where r < n) if and only if

"E; wheni =0 (mod 2),
"E;B, wheni=1 (mod?2).
This completely specifies any U, if we assign to U, an integer r <n to
designate its type.

Ifn>1,let n=24r, where s=0,1,2,... and 1 =r < 2°. Then we
require that U, be of type r. We set U, = I, and let

r=1ip:p=2,t=0,1,...}.

rEii Un = Un rEii = {

TueoREM 4.6. If R is constructed according to §4.5, then R is a singular
maximal abelian subalgebra.

Proof. Let PEj, be any matrix unit with p € I',p = 2° for some fixed s.
If n>p, write n = 2+ r, where [ > s and 1 = r < 2. First consider the
case r < 2° = p. By definition, U, is of type r. If ’E;; < 'E,, and PE, < 'E,,
then
Ej, ifu=v (mod?2),

Ey B, ifusv (mod?2).

Next suppose 7 > p. Then?Ej;, = Y _; E,‘,,‘, where j;= 2%/ + i and k; = 2"""k
+1, so that J, = k; (mod 2) for all i. Hence U,”EyU,= U,) ;'Ejy U,
=" ki = Ej.. So if n > p,U, PE; U, is equal either to "Ej or to PEj B,.

Straightforward calculation shows that if n > p, then U,”E; U, equals
E,,, so that PE;; € K. It follows directly that if g & I',q > p, then U, - --"E;

.U, = X i’E;;, where °E;;; € K,.

Suppose PEj, is such that j = k. Then there exists ¢=0,1,..., or p—1
such that j#k (mod2*'), while j =% (mod2). Hence j=2j,+i and
k= 2%k,+ i for some jok, such that j,# k, (mod 2). If p=2°, take
m=2+(p—1. Clearly 1=p—t=<2°, so U, is of type p—¢t Then
U,,, pEjk U,,, = U,,, p_tEjoio P jk p_tEkoko U,,, = PEjk Bm, so P jk GE Ko.

Us?Bp U = Us B ExEu Uy = | ;
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Let d be the smallest positive integer d’ with the property that U,
XPEjpUpy e =PEjBy.4. Since p+1=<p+d=<m, it follows that 1=d
Sm—p=p—t=<p. Also,if 1<h=<d—1, UysPEj Uy, is not equal to
PEjx By 1, so must equal PEj.

The preceding shows that ’E;, & K, if and only if j = k. Also, we see that
if j # k, then the alternate condition (i.e., condition (2)) of §4.1 is satisfied.
If g€ T1,9> p, then j =k implies U,---"E;--- U;= D anE, with r = s,
so that E; & K,. Thus the final condition of §4.1 is verified.

Therefore Theorem 4.4 applies and R is singular.

5. An infinite sequence of semi-regular subalgebras. In this section we
construct an infinite sequence of semi-regular subalgebras which cannot
be pairwise connected by *-automorphisms of ¥.

5.1. DEFINITIONS. Throughout this section we regard n =1,2,3,.-. as
fixed. Let T = {p: p= (2c¢+ 1)n,c=0,1,2,---}, an infinite set of positive
integers. If PE is such that p € I, then PE; is in some set K., where y = 0,
1,---,0or 2" — 1. Let &, be the class containing all the sets K.

Let ®, be the set of all n-tuples (a;,as, - --,a,), where a,= 0 or 1. This
is a commutative group under the operation of coordinate-wise addition
(mod 2). Define a function ¢ from &, to @, as follows: If vy = > :_,a;2" 7%,
then ¢(K,) = (a),---,a ---,a,). If we define an operation ® on %, by
the rule that K, ® K; = K, if and only if ¢(K,) + ¢(K;) = ¢(K;), then ¢
is an isomorphism of &, onto ®, (with respect to these two operations).

We determine the set K, in which PE; is contained as follows: For any
index i (0=<i=<2%"_1), let i =Y %,i,2™, an expansion to the base
2". Then 0=<i,<2"—1, so that i,=_ ;112" and (ry, - -, g+, 1)
€ ©®,. Designate this element of ®, by y(i,). Let AG) =Y X even ¥(ir),
where the addition is coordinate-wise (mod 2), so that A(i) €®,. Define
K(CEy) = ¢7'[A() 4+ A(k)] to be the set K, containing "Ej.

Lemma 5.2. Suppose p € I,’E; € K, and PE, & K,. Then PE,c K,
® K;=K,® K,. Also, K(°E;) = K(PE}).

Proof. The proof is immediate from the definitions of §5.1 and the prop-
erties of the group ©,.

LeEmMA 5.3. Suppose p €T, PE4 € K,. Let 1 = i’2" + (2" + iy, k = k’2%
+ k2" + ko (with 0 < iy,10, k1, ko = 2" —1), and write

PEs = PE((V', 14, 1o) (B, k1, ko)) .
If " "E.w € K, and "E € K,, then K, = K, ® K,. Also,
PEi PEy P""Rypy = PEj.

Proof. If p & T, then p = (2c+1)n for some fixed ¢c. We show first that
A = A@) + Alp). If i/ =D *F2i/ 2™ then A(i') = D e ¥ (il). Since
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I =102" 4 1,2" + i, it follows that A(D) = D 2% wen v(i7) + ¥ (o) = A()
+ A(ig). A similar argument shows that A(k) = A(R’) + A(ky). Hence

o(K,) = AG) + A(R) = A(') + A(R') + AG) + A(ko)
=¢(K.) + ¢(Kp) = ¢(K.® Kp),

so K,=K,® K,

Since 0 < {,2"+ iy < 22 — 1, we have i = 2%’ +a, with 0 <a <2 — 1.
Thus PE; < P E;;. Similarly, PE,, < *E,, and therefore the second
statement holds.

DEFINITION 5.4. Define the following classes of sets: £, =4, = {K,}.
For j=1,2,---,n, £;=1{K,: y=0 (mod 2"7)} and A;=%,~

LEMMA 5.5. Suppose j21, pET and PE, € K,E A, with 0 <h<j.
Let »**E, € K, be of the form P**E((r,i,,i0)(s, ki, ko). If h <j—1, then
K, €4 if and only if iy=k, (mod2"7),is#k, (mod2"*). If h=],
then K, € A4 if and only if iy= ky (mod2"~*Y).

Proof. Let K, = K("E,Oko) By Lemma 53, K,=K, K, If 0shx
j—1, then ¢(K,) =(---,C;_;,1,0,---,0) = ¢(KW) + ¢(K,) if and only if
o(Ky) = ¥(io) + ¥(ko) = ( 58j-1,1,0,---,0), or iy=ky(mod2"7), iy k,
(mod 2"/Y).

If h=j, then ¢(K) = (---,¢;_;,1,0,---,0) if and only if ¢(K,) =
(-++,a;_1,0,---,0), or iy = ko (mod 2"~/*). ‘

DEFINITION 5.6. Let R, { U: t=1,2,3,---} be constructed as in §2.2, and
let K, be defined as in §5.1. If PE; & K, (p €T) implies U,s PEy Upis
= PE, for all h = 1, then R has property A.

LEMMA 5.7. Suppose that R has property A. Let V be a unitary in M,
(p €T) such that V“’]=Z:t PE.., where PE is in K, and the signs are
arbitrary. Then V leaves R invariant.

Proof. It is sufficient to show that V leaves S invariant. Because of the
structure of S, we need only consider one of its generators, say ""‘Ey
(see §2.2). Then

VPR, V* = (Y, VP Y} Y, " PEw Y| Y, VIPr Yy

= YP[Z =+ pErs]UpH cee Up+t +tEsz Up+t tee p+1[z + pEsr]Y:-
By Lemma 5.2, PE, € K, implies ’E, &€ K,. So U,4"Ey=PE, U, and
UpihPE, =PE, U,y for h=1,2,...,t, by property A. Hence
Vp+%kk V= Yp+:[Zi pEm]p+tEkk[Z + pEsr] :+t == Yp+t[ +tEror0] p+ts

where r, depends on k. But by definition, this is also in S. Therefore V
leaves R invariant.

Note. Since K (°E,) is independent of p (p € I'), we use K(a,b) as notation
for K(PE,;).
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THEOREM 5.8. Suppose that R has property A. Let P =N (R) be as in §1.
Then P is a factor.

Proof. Suppose E € P, E commutes with everything in P, E = 0 or al.
Since RC P and R is maximal abelian, we must have E € R. Since E
commutes with E* and hence is normal, it has a spectral resolution, and
its spectral projections also commute with P. So without loss of generality,
we can suppose E itself is a projection. If 0 < [[E]]*<1/2, let F=E.
If 1/2<[[E]]*<1,let F=1—E. Then 0< [[F]]*<1/2, and F also
commutes with P, F & R.

By [6, p. 761], there exists a sequence of projections F,, which converges
to F in the metric topology, with F,, & S. Since F > 0, from some point on
F,#0.Let [[F]]?= 5, and take ¢ = /2% Choose F,, such that [[ F,, — F]]
< ¢/2.If V is any unitary in P, then

(1) [[VF,— F,V]]|=[[VF,— VF4+ FV—-F,V]]<e.

Also, since 0 < [[F.]],[[F]]=1 and |[[F.]]—[[F]]| <e a straight-
forward calculation shows that |[[F,]]*— [[F]]? < 4e¢=5/2"Hence
6 —0/2 < [[Fu]]®<s+5/2%

Without loss of generality, we may assume & — 8/2* < [[F,]]|*< 1/2.
(An analogous proof holds in the other case.) If F,& MM, (p ET), then
FP'=>" ,PE, for some subset HC {0,1,---,2° — 1}. It follows from the
estimate of [[ F,]]* that 2°(56 — 8/2*) < # H) < 2°~'. For each r& H, we
can then choose s(r), s=0,1,.--, or 2° — 1, sé& H, such that if r=r/,
then s(r) =s(r’). Let J={(r,s): rEH,s=s(r)}, so that

(2) #J) = #H) > 2°(56 — §/2%).
Consider PE,, for (r,s) € J. Suppose K(r,s) = K,. If
p+2uEik = p+2nE((r: il, iO) (s) kl’ kO))’

then P*?E;, € K.® K(ip, ko), by Lemma 5.3. Hence P*?E;E K, if and
only if o[ K.]+ o[ K(io, ko) ] = ¢(Ko), or ¢(K.) = ¢(io) + ¢ (ko). This equality
clearly holds for exactly 2" pairs (iy, ko), where each index 0,1,...,2" — 1
appears only once as first component and once as second. Let
O(r,s) = { (io, ko): $(K.) = ¥(io) + ¥(ko) |
and let Z(r,s) ={(i,k):P""Ey=PT"E((r,i,,10) (s, k1, ko)), 1=k, =0,1,
--,2"—1, and (io,k) € O(r,s)}. Then Z(r,s) contains 2* pairs (i, k),
and for each of these, P**'E, is in K,. The sum )_ ¢ nezr """ "Ei contains
not more than one nonzero element per row or column, since i, = k;. It
fOllOWS, by definition of ¢ , that Z(V,S)GJ[Z(LMEZ(',S) P +2"E,'k+ P +2"E)u‘] also
contains at most one nonzero element per row or column.
Therefore we can define a unitary V such that

+2 2 2 +2n
e o B S R vias
(rs)ed LG,REZ(r,s)



294 SISTER RITA JEAN TAUER [February

where the final sum is over all ¢ # ¢ or k if (i,k) is in Z(r,s) for any (r,s)
in J. All terms of VP*%! are in K, so by Lemma 5.7, V leaves R invariant,
or VEev.

Then we have:

&> [[ VPIFP — Fiel VIPIT]2 (by (1))

[z - (el

_ [[ S (E., V¥ E, — *E, Vb pE”)]]2

reHs¢H

2 X [[PE,VPPE( )= 3 [[’E, VP+™PE,]|*

(r9)ed (rs)ed

- 2
=2 [[ 2 ”*”’Eu]] (using Lemma 5.3)
(r9ed GREZ(r.s)

=2 2%/2P** > 5 — /2 (by (2).
dJ

This yields: /2% =¢ > ¢*> 6 — §/2* > §/2, which is a contradiction. Hence
the initial assumption that 0 < [[F]]*< 1/2 is incorrect, and we have
either [[E]]2= O or [[ E]]*= 1. Therefore E = 0 or I, and so P is a factor.

DEFINITION 5.9. Let R(¥) (j=0,1,---,n) be the ring generated by
Z;={F: FEM, (pET) and FP =*E, with K(a,b) € &}

THEOREM 5.10. Suppose that R has property A, and P and 2" are as in §1.
Suppose also that if V& %, then there is a sequence V,E M converging
metrically to V such that if V,&€M,(p ET), vipl = > g PEy with PE,,
€ K,. Then P = R(¥).

Proof. The collection of all unitaries V which have the form required in
Lemma 5.7 is sufficient to generate Z ,, hence R(%). Therefore R(£,) C P.
On the other hand, if V& %/, then V is in the metric closure of the sub-
algebra generated by the set Z,, and hence V is in its weak closure R(%,).
Thus P C R(¥,), and so P = R(¥).

DeFINITION 5.11. Let R, {U;: t=1,2,...} be constructed as in §2.2.
Suppose p, g€T, ¢>p, and AEM,. If AP =>4, PE,, with K(a,b)
€_#; implies A9 =3>"8,9Ey with K(c,d) €4, then R has property Q.

LeEMMA 5.12. Suppose R has property Q. If FEM, (p € 1), FPI=*E,
with K(a,b) E_A,, where 0 < j <k, then F& R(¥%).

Proof. Suppose F & R(¥)). Then there is a sequence F, converging
strongly to F such that if F,EM, (ET), then F¥'=3 5, Ey with
K(c,d) E¥;. Choose F,, such that [[F, — F]] < 1/2”, and choose ¢ so that
gETr and F,, FE M,. By property @, F = 3" ay 'E,, with K(a,b) E ;.
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Since k> j, (F4,F4)=(F, F)=0. So we have: 1/2%¥ > [[F, — F]]?
=[[F.]]*+ [[F]]®*> 1/2°, which is a contradiction. Therefore F
& R(%).

CoroLLARY 5.13. If R has property Q, then R(¥) G R(%;.1) for any
j=01,-.,n— 1

Proof. Clearly Z;,C %,,,, so R(¥) C R(%5;,). But by Lemma 5.12,
R(gj) #= R(ffjﬂ).

DEFINITION 5.14. We construct R, as in §2.2, with {U;: t=1,2,...}
defined as follows (B, is as in §4.1):

U;= I for t < n. The rest of the unitaries are defined with reference to

= (2c+ 1)n, or p € T. If the matrix unit ’E,, is in K, then:

ifg=0 (mod 2),
B,,, ifp=1 (mod?2).

ifg=0,1,---,2"*1— 1 (mod 2"%,
pinok Af8 =21 .. 2" 1 (mod 2"7H).

"EnUs= g, B
PE..
PE.B
PE.. ifg=0,1,..-,2"' - 1 (mod 2",
PE.B
PE,.
PE.

(e
°E, Upﬂ {5
L

g2 Up*" B,in ifg=2"""...,2"~ 1 (mod 2.
vE, U { ifg=0,1,---,2"*' — 1 (mod 2"%),
p+n+k Bp+n+k ifﬂ = 2n_h_l, MY 2n_k - 1 (mOd 2n—k).
Up+2n = I.
Lemma 5.15. If {U: l=1,2,...} is constructed as in Definition 5.14,

then R, has property A.

Proof. Suppose pE T, PE € K, If PE,;€ K, and PE,, € K,, then
K;® K,= K, implies 8 = v.

(i) Suppose h=1,2,...,2n. Then it is evident from Definition 5.14
that Up+h pE,',, UP-HI = Up+}, PE,',' pE,'k pE),k Up+;, = pE,‘],.

(ii) Suppose h = 2tn + 1, 2tn 4 2,..., 2tn + 2n for any positive integer
t. Now PE; =" P*2"E,, . v+, Where i(t) = 2%, k() = 2%k, and the sum
is over a =0,1,...,2*" — 1. A straightforward calculation based on §5.1
and the properties of ®, shows that each term of this sum is in K,. If we
letep’=p+2nET, k' =1,2,...,2n, then we can apply part (i) to this
situation, and conclude that U, PEy U,,4 = PE; for all h = 1.

Note. For the rest of this section, we assume p & T.

LEMMA 5.16. Suppose PE € K, and ¢(K,) = (a1,a5,---,a,). If @y =1,
then Up+n:tk pErs Up+nd:k=pErsBp+ni:k If Aty = 0 then Up+nik E Up+ni:k
=PE,..

Proof. Let K, = K(0,r) and K; = K(0,s), so that K,® K, = K;. Suppose
ar+1 = 1. Then the (& + 1)st coordinateof ¢(K,) does not equal the (k + 1)st
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coordinate of ¢(Kj). So a = y€10,1,--.,2" %1 — 1} (mod 2"7% if and
only if g=z€&{2"*! ...,2"* — 1} (mod 2"°*). Then Definition 5.14
shows that Up,ynuk PEr Upinik = PEx Bpinak

Suppose a,,; = 0. Then the (k + 1)st coordinate of ¢(K,) equals the
(k + 1)st coordinate of ¢(Ky). So « =y€E {0,1, -- 21— 1} (mod 2%
if and only if 8 =2€ {0,1,---,2"* ' — 1} (mod 2"7*). Thus in this case,
Up+nd:k pErs Up+n:tk = pErs-

LemMAa 5.17. Suppose PE,&€ K, and ¢(K,) = (aj,ay, ---,a,). Let S
={k: apy1=1,k=0}. If a; =1, then

Up+&- to pErs to Up+2n = pEm[ H Bp+n+k] Bp+n[ H BP+n—k] .
keSs kES

If a, =0, then
Up+2n e pErs s Up+2n = pErx [ kIEISBp+n+h] [ H Bp+n—k ] .

kES
(Note. The operators B,.; commute.)

Proof. Using the fact that B,,, commutes with U, for [ =2 1, we can
apply Lemma 5.16 over and over again to perform the required calculation
and obtain the results stated in this lemma.

LEmMMA 5.18. Suppose PE.€ K, and ¢(K,) = (a,,a,, ---,a,). Define
w(y) = 2Q_"2a;) + a,. Then the nonzero entries of Upiz,+--PE; - Upyon
have numerical value =+ (1/4/2)*.

Proof. This follows by direct calculation with the results of Lemma 5.17,
because of the form of B,,..

LemMa 5.19. If KCE,) = K,€A4(jz 1), then Upyon---"Ep -+ Upyn
is in My nyj_1. When written in I, .2, it is made up of 2"~/** by 2"~/** blocks
which are either zero or else of the form of Figure 1, where g = (14/2)*.

FiGUure 1
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Proof. Since K, € ¥}, $(K,) = (a1, --+,@;_1,1,0, ---,0). First take j # 1,
sothat j— 10 and j — 1€ S. In fact, j — 1 is the largest integer in S.
So by Lemma 5.17, Upyon---PEs - Upyon="EsBypinyjv - Bpyn_ji1s
where the subscripts are in decreasing order. Hence the product is in
mp+n+j—1-

Now

P =
Em Bp+n+j—l to Bp+n—j+l = DPp+n+j-1 [pEn te Bp+n—i+1]
ptn+j—2
=Byinij-[ 2t a Ea)
j—2
= Z + o PP TEE,, Bp+n+j—l

(for certain pairs (a, b)). This is made up of 2 by 2 blocks which are either
zero or else of the form + «B,. Hence, when written in MM, ,, the product
is made up of 2"/*2 by 2°~/*2 blocks which are either zero or else have the
the form indicated in the lemma. Here 8 = a/v/2 = (1/4/2)°", by Lemma
5.18.

If j=1, then Upg---PEy-+- Upyon="E4B,.,, and the preceding
paragraph applies to this case also.

LEmMMA 5.20. Let {U,:t=1,2,---}| be constructed as in Definition 5.14.
Then R, has property Q (see Definition 5.11).

Proof. Let ACM,, ¢>p,pandginT. AW =U,... U,;, AP U,y --- U,
and because of linearity it is sufficient to consider U,---"E--- U, with
K(r,s) e,

Suppose j = 0. Since R, has property A (Lemma 5.15), U,---?E,--- U,
=?E,. But PE,=) ;'E,,, where ri=2"Pr+i, s;=2"Ps4i,andi
=0,1,...,29? — 1. Again, a calculation based on §5.1 shows that each
term of this sum is in K.

Suppose j = 1. Then Lemma 5.19 asserts that U, s ---?E,--- Upion
=Y BuP*Eyisin M,,,,,_,. Consider any term of this sum. If we write
pring  asPTRE((r, iy, i) (s, k1, ko)), then (ig, k) =(2"V~Yi” 4+ a,2" Y"Yk” 4+ a)
for some i”, k”, a (0 <a=<2"7*'—1). Hence ip=k, (mod2"’*). But
K(r,s) €4}, so by Lemma 5.5, K(c,d) €_4,. An extension by induction
shows that R, has property Q.

LeMMA 5.21. Suppose R, is constructed as in Definition 5.14, and 27
={V: VR,V*=R,, Vunitary, VEU}. If VE 7V, then there is a sequence
V.EM converging metrically to V, such that if V,eM, pET), VP
= Zaod pEcd with pEod - Ko.

Proof. By Lemma 4.3, it is sufficient to show that R, satisfies the con-

ditions of §4.1.
Suppose p € T' and consider PE;. We showed in Lemma 5.15 that if
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pEabe Ko, then Up+h pEab Up+h = pE,,b for h= 1. If pEabeE Ko, then K(a, b)
€A for some j = 1, so that ¢[K(a,b)]=(---,¢;_1,1,0,---,0). Therefore
Up+,,_j+1 pEab Up+n_,'+1 = pEab Bp+,._j+1, by Lemma 5.16. If we let d(a, b)
=n—j+1,then 1<j=<n implies 1 £d <n. Lemma 5.16 also asserts
that U,yn 4 PEw Upsns="Ep for k=j,j+1,--.,n—1, or n—k=<d.
Hence the conditions in the second paragraph of §4.1 are satisfied.

We recall that_#, = { K,}, and that if K, €_#/ for j 2 1, then K, = K,.
Thus Lemma 5.20 is an explicit statement of the final condition of §4.1.

THEOREM 5.22. Let R, be constructed as in Definition 5.14. Then R, is
semi-regular but not regular.

Proof. Let P, = N(R,). Since R, has property A (Lemma 5.15), Theorem
5.8 shows that P, is a factor. Because of Lemma 5.21, Theorem 5.10 applies
toR,, and P,= R(%,). But n > 1 and R(¥,) & R(¥) C¥ (by Corollary
5.13), so P, = R(%,) #= 4. Therefore R, is semi-regular but not regular.

We now proceed to show that if 9 is a *-automorphism of ¥ and n, # n,,
then we cannot have 4(R,) = R,,. For the rest of this section we assume
{Us t=1,2,...} constructed as in Definition 5.14.

Lemma 5.23. Suppose PE,, € K, and PE, € K;, with K, and K, in 4, for
some k=1. If ¢(K,) = (a;,---,a) and ¢(K,) = (by,---,b,), define u(a,p)
=2Q %1 aib) +ab,+ awby. Let ro= 2" "2p 50 = 2nth2g to = nth-2g
Then 2* is the number of distinct é’s such that

+n+k-2 +n+k—2
P Eroro[Up+?Jl e pErs ccc Up+2n]p E80+6,80+6

and
p+n+k_2Esoao[Up+% s pErs cct Up+2n] p+”+k_2E¢o+6,t0+6
are both nonzero.

Proof. If we consider the results of Lemma 5.17, then x is the number
of factors B,y (1=h<p+n-+k—2) which Upjnis—2-+-PEq--- Upinin—2
and Upinyk2--PEg-+- Upinir—2 have in common. If the first of these
products equals Y p, P*"**’E, and the second equals ) 5yt ’E,,
then 2* is the number of &’s such that the first sum contains the pair (a,b)
= (ro, S0+ 6) while the second contains the pair (c,d) = (so,t, + ). (This
is a result of straightforward calculation with the operators B,.;) Since
K,K;c #,we have a,=b,=1 and a,y,-:,8p bpy1,---,b,=0. So by
Lemma 5.16 (and the commuting properties of B, ,4x-1),

+n+k—2
Up+7)l°"pEn°" Up+2n’= zpubp " Eabe+n+k_1

and

—_ +n+k-2
Up+2n te pEu st Up+% = Zﬂod P Eod Bp+n+k-1-



1965] MAXIMAL ABELIAN SUBALGEBRAS 299

Thus 2* is also the number of 8’s such that the two expressions in question
in the lemma are both nonzero.

LemmA 5.24. Suppose ’E,€ K,, PE,€ K;, and K,, K;&€ 4, (k= 1).
Let w; = w(a), wo= w(8), and u = p(a,B). (See Lemmas 5.18 and 5.23.) If
K,= K,® K,, then the function Ciy(y) = 2*(1/7/2)'**2 depends only on k
and on K.

Proof. If ¢(K.) = (ay,---,a,) and ¢(Kj) = (b, ---,b,), then ¢(K,® Ky
=¢(K,) = (a,+ bj,az+ by, ---,a, + b,) (mod2). Suppose K.® K, =K,
with K., K, € 4. If ¢(K,) = (ai,---,a;) and ¢(Ky) = (b1, :--,b;), then
a4+ b =a;+ b, (mod2) for i=1,2,..-,n.

Let (w; + wy); be the contribution to w;+ w, from a; and b;, and let
u; be the contribution to x from a; and b;, so that w; + wy; = ZLI (w1 + w9);
and p = u

Suppose a;+ b; =a/ + b/ = 1. Then a; = b; and a! > b/, so that u; = u/
and (01 + w9)i = (w] + wi)i

Suppose a;+ b;=a/ + b/ =0. If a,b;,=al,b/, then clearly u; = u! and
(0 + wo)i = (0] + wb)i. If a;, b, =1 and a/,b! = O, withi=1,2,..-,0ork—1,
then direct computation shows that

2#;‘(1/\/2) (w1 +wg)i — 2»2(1/\/2)(«,&“2),- -1.
(We need not consider i = k, since ai, by = ai, bi = 1.) The same computation

and result apply if a;,b; = 0 and a/,b/ = 1.
Therefore

A2 =[] 2401 /v/2) 12

i

= H 24(1/4/2) “i+i  (gince individual factors are equal)

= 24(1/v/2) 1+
So this function depends only on k and on K,.

LEMMA 5.25. For each k= 2,3,---,n, let Py(s) be the operator such that
Py(s)Pt®I =3, P*2E,, .} o 14, where s” = 2%s, h=0 (mod 2"**),and 0 < h
< 2™ — 1. Suppose ’E,€ K,,’E,€ K;, K, and K, in _#, and K.® K,
= K,. Then
) [Upsz++-"En--- Upaa) P8 "™ [ Upsan -+~ "B+ Upsan]
has a term of the form Cy(y) P**E.. ., and a term of the form Cy(y) ***Ep ., ¢ 1r
where r” = 22, t” = 2%, and x = 2" If K,EX s, then K(r",t" + )
E/;/k—h If K‘y E-/,/k—l) then K(r” + x, t” + 1) E-/,/k—l-

Proof. We use the notation of Lemma 5.23. Let 4, be a typical index
which has the property that
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k—2 k—2
P Efo'o [Up+2n oo PEp - Up+2n] P E80+61»80+61
is nonzero, and 4, one with the property that
+n+k—2p +n+k—2
prn ESOSO[UIH'ZR ot pEst °tc Up+2n] prn E‘0+62,lo+62
is nonzero. Since U,y - - -, Up;s, are all self-adjoint,
+nt+k—2 k-
ptn E80+62.ao+62[Up+2n i PEy oo Upygy] PH 2E‘0t0

is also nonzero. For i = 1 or 2, let h(5;) = 2" **%; = 0 (mod 2" **%. Finally,
let w; = w(a), wy = w(B), and g = u(a,8). Then

p+%Er”.r”[ (*) ] p+2nEt”+w,:~+:

=[ > (LA E i) ][ > (122 Er ship o) ]
h(sy) h(s9)
These terms are the only nonzero ones after applying the projections, and
the signs are all positive by an obvious calculation. In the product of
these two sums, there are nonzero terms if and only if A(s;) = h(s;). So
by Lemma 5.23, there are 2* nonzero terms. Hence the entire product
equals 2*(1/A/2)1*2(***E,. .,.), where the scalar is equal to Ci(y), by
Lemma 5.24.

A similar argument gives the other term.

If K,E%,_,, then K, €_4; for some i < k — 2. Now

p+2nEr",t"+1 = p+2nE((r’ O, O) (ty O’ 2"_k+l))°
So by Lemma 5.5, K(r",t"+x) EA_,. If K,EN}_,, then "**E_., .,
=P*E((r,0,2" ¥ (¢,0,2" ")) implies that K(r” + x,t” + x) E A4y,
again by Lemma 5.5.

LeEmMMA 5.26. Suppose k= 2,’E,EK,E N}, PE,E K; EZ s (or vice
versa). Then, using the notation of Lemma 5.25,

p+2nEr’+f,r”+r[ (*) ] p+2nEt"+t,t’+r =0.

Proof. By Lemma 5.19, U, 9, -+ "E5 -+ Upyg, is in Mpipys—s. So it has
no elements of the form **?E.,, .., h=0 (mod 2" **?). Since P,(s)P+>!
=) P*E, hein h=0 (mod 2"**?), the product in question in this
lemma must be zero. (A similar proof holds if the roles of K, and K, are
exchanged.)

LEMMA 5.27. Suppose k=2 and WE M, is such that WPl = VPPl X1p]
with VP =3"g PE_ (K(r,s) E%s-1) and XP'=3 o, E, (K(r,s) EN)).
Let (r,t) be a fixed pair such that °E,& K, E%_,. Then the product

2P-1
PEnl Uptan--- WP .. Upin] 3 Pe) P [Upyan--- WP U] °E,
§=0

**
= A, )P+ 4+ Q(r, ™,
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where (APt QP+l — o gnd QPR =Y 2 o1y o Ci(y) PYPE, with
K(a,b) €A

Proof. The product (**) equals

2p—1 -

S (Uptan++ 60 "B+ Upson PO [ Uy - 1 "Eu - Upyon,
since Py(s)Pt¥ = PE Py(s)***’E, and PE,,’E."E, commute with
U (l21).

Case 1. K, E%’;,_,. Suppose s is such that K(r,s) and K(s,t) are both in
A4 The summand corresponding to this s includes the term ana;Ci(y)
X P**E_ ..., according to Lemma 5.25, which also asserts that this matrix
unit is contained in a set of #}_;. Consider the summands corresponding
to other s. The only possible way for them to yield something not orthogonal
to a matrix unit in _#,_; would be to have K(r,s) &.#,_, and K(s,?)
€%, (or vice versa), since Piy(s)P*? is a sum of matrix units in K.
But then K(r,t) €_#)_,, contradicting K(r,t) = K,E%}_».

Hence Y %5 apai Ci(y) P**E, .., gives thedesired Q(r,H)"+*!,

Case 2. K,E #;_,. Again suppose s is such that K(r,s), K(s,t) EA.
The summand for this s includes the term a,a, Ci(y) P**E, ., ., accord-
ing to Lemma 5.25, and again this matrix unit is in a set of #;_;. So sum-
mands for other s’s can yield something not orthogonal to it only if K(r,s)
EN,_1and K(s,t) EZ,_, (or vice versa). But Lemma 5.26 assures us that
these summands cannot have entries in row r” 4+ =, column t” + =.

Hence > 25" apai Ci(y) P *E,, 1. gives the desired Q(r,)P+*),

COROLLARY 5.28. Suppose k=2, W and (r,t) as in Lemma 5.27, and
q>p (p,qET). Then

’E,, wldl Z P (s)["] W *lel PE, = A(r, t)["]+ Q(r, t)["]

where (A9, QW) =0, Q¥ =3 pu'Ey with K(c,d) €A, and [[Q]]?
2 |25 apay |2/2P15* " (where the constants are from the sum defining
X,

Proof. We first obtain a lower bound for the function C.(y). Clearly
p2ab,=1and w4 w; < 2(27 — 1) = 4/ — 2. Hence Ci(y) = 2*(1/4/2)“1+*2
2 (1/2)*2

By Lemma 5.27, the corollary holds if ¢ = p + 2n, since

[[Q1]% = [[QP*™))]? =| Cytm) |? ”"z z/zm»; 3 anae

2
/ gp+én—4

Now
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’E,. W["]Z P,,(s)["] Wl *E,
=U,--. Up+2,,+1|:"E,., W[”+2"]Z P, (s) P+ pp xlp+2n] pEd]Up+2n+l U,

=U;-+ Uppma[ A(r, 8P+ 4 Q(r, t)lp+e]) Upiongr--- U,
= A(r, )"+ Q(r, 9L

The unitaries preserve the orthogonality of A and @ and the norm of Q.
Also, by Lemma 5.20, QP**'=,*E, with K(a,b) €_#,_, implies QY
=) pa’Eq with K(c,d) €E#}_,.

LEmMMA 5.29. Suppose WEM, is such that WP = VPPl Xl yih
VPl =38, PE,, (K(r,s) E€_1) and X' = 3" a,, PE,, (K (r, s) €E_#). Then
VI IIW]| and || X]|| < [|W]| +1| V]].

Proof. If K(r,s) E%£:_,, then ¢[K(©0,r)]= (ay,---,as_1,as ---,a,) and
o[ K(0,8)] = (by, -+, by_1,@s ---,a,). So both of these n-tuples are of the
form (---,a4,---,a,), where the first £ — 1 coordinates are arbitrary and
the last n — k4 1 are fixed. Call the set of all such n-tuples x. Define the
projection E, = 3 PE,,, where the sum is over all u such that ¢[ K(0,u)]
is in x. Then PE,=E,”E,,=?E E, = E,"E.E..

In general: Let «; be the set of all n-tuples (---,a{, -..,a?), where the
last n — k+ 1 coordinates are fixed for each i. If we sum over the pro-
jections E, for all possible sets «;, then VI?I=3.E WPIE_ If «; = «,,
then E, is orthogonal to E,,, since K(0,u) is uniquely determined. Hence
| V| = supi|| E;WPIE, || < || WP)||, and || V]| < || W]

Since X =W -V, || X]|| =||W]| +]| V]|

LEmMA 5.30. For j=1,2,---,n, let R(%;_)) be as in Definition 5.9, and
let 2;={V:V[R(Z;-)]V*=R(%;.), V unitary, VEU}. If VEZ,
then there is a sequence V,,& MM converging metrically to V such that if V,
eM, VE=38,"E, with K(r,s) EZ,

Proof. (i) Since Vis in ¥, || V|| < 1, there is a sequence W,, in M, || W,,||
<1, which converges strongly to V [3]. Strong convergence implies
metric convergence, so lim,[[W,— V]]=0. If W,EM,, then W[
clearly equals )_ 8, °E,, with K(r,s) EZ,.

(i) To show: Suppose j <k <n, and suppose there exists W, M
such that ||W,|| < 1,lim,[[W,— V]]=0, and W,EM, implies W'
=D 4 ’E,, with K(r,s) E%,. Then there exists V,, with the same prop-
erties except that V=3 g, *E, with K(r,s) €%, ..

We let the assumed W= VP4 X[l where

Ve =36, ’E, (K(r,s) EZ)-) and XE =3 a,?E, (K(r,s) EA).
Since (V,, X,) = 0, X, is Cauchy in the metric topology. Also, |Wal| =1
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implies || V|| =1 and || Xn|| £2, by Lemma 5.29. A slight adaptation of
a proof of Murray and von Neumann [6, p. 723] then shows that X, is
also Cauchy in the strong topology and has a strong limit X € ¥. Since X*
€ ¥ also, X and X* bounded operators, it is easy to verify that

([XnXn — XX*]]—0. _
Suppose limy[[ Xn]]#0. Then [[X]]#0, X=0, XX* 0, and so

lim,[[ X.X%]] 0. Hence [[X.Xx%]]?> 2% for all m and some ¢ > 0.

Choose W, such that [[W,— V]]<e/4. Suppose W,E M, Then
XP = > o, PE, (K(r,s) €4} implies

2P -1
(1) (1/29) 3| 3 anas

8=0

2
> 2672,

(The outer summation is over pairs (r,t) such that K(r,t) €%,_,, since
K(r,s), K(s,t) €#,.) Fix p from here on.

For every s =0,1,...,2° — 1, define Py(s) as in Lemma 5.25. We drop
the subscript k£ for the rest of this proof and consider Y 2 1 p(g)lp+2],
Since ***Ey ,pe4n is in Ko, ) ,P(s) is in R(%,_) for any j= 1. Hence
if VE?}, VQ_,P(s)) V*= TE€ R(¥,_), where T depends on k. So there
exists a sequence T,EM, [[ T, — T]]—0, and T, €M, (g I) implies T
=2 i ‘Eswith K(i,h) EX;_,. Choose T, such that [[ V(3 ,P(s)) V* — T,]]
<e/2, and take g such that T,€IMM, ¢g=p+ 2n, qET. Then

@ [ [ V‘“( S P@W) vl 7 ]] <e2.

Since 3, P(s)!"**! is a projection, so is 3_, P(s)", and hence 13, P(s)9)|
< 1. Thus

[ [W,[,‘,']Z P(s) la] W’:[ql _ V[vlz P(s) la] V*["]]]
@) = [[WAZPEWE — v ]+ [[(Wh - Vi) T P(s)le) vio)]
< 2[[Wrld — v} ] < /2.
It follows from estimates (2) and (3) that
(4) (Wi o)W Wt — T ] <.

On the other hand, if K(r,) €%, (k2j+122) and q€T, ¢>p,
then we can apply Corollary 5.28, with W, replacing W. Since QY
=2 0u’Eq (K(c,d) € #_) and T9= 2 na ‘Ea (K(i,h) € %j-1), where
k—1>j—1, we have (T Q%) =0 also. Therefore

[ ["E,, W,[,‘,’]Z p(s)lq] W,’,’{["“’Ea _ "E,,.Tl"] ”E,,] ]2
(5) =[[A(r, )Y + Q(r, ) — PE, TI9) PE,]]?
2 [0 2 | anas 2/ 2




304 SISTER RITA JEAN TAUER [February

So we have, finally:
> [[nglz P(s)["] W:'k'[q] _ qu]] ]2 (by (4))

> S [[PE. (WYY Ps) Wil — TI4)?E,] ]2, where K(r,t) € %4,
r.t)

2 3| X anay|?/277%7 (by (5))

r,
> 1662 (by (1)).

But thisis a contradiction. Thereforelim,; [ [ X;] ] =0. Since lim,[ [ V,— X;— V] ]
=0, we have lim;[[ V;— V]]=0, where || V||| =1, and V,EM, zET)
implies V,= Zﬂ,‘, ’E,, with K(r,s) E£s_..

Since we can extend this as far as k = j + 1 by a finite induction process,
the lemma is proved.

THEOREM 5.31. If j =1, and R(7) is the ring generated by the set 7
of Lemma 5.30, then R(?)) = R(¥).

Proof. To show: R(%)) C R(?)). Let TE€ R(%;_1). Suppose V,EM,,
Vil = >+ PE,, where K(r,s) €E%;_, and the signs are arbitrary. Since
Vi and V¥ are then in R(%; ), V\TV}E R(%;_) and V,E 7,

Suppose V,EM,, V'Y +°E,, where K(r,s) ©€#; and the signs are
arbitrary. There exists a sequence T, €M converging strongly to T such
that if T,, €M, (¢ ET), then

T =3 u ‘E(K(c,d) EZ ).
If z = max|[p,q], then

VEI T vt = [ > o E,,][ > Bu E,,d][ > o ‘E,,]
K(r, €A j K, dEZLj—1 K@ n€EAj
by Lemma 5.20. Now if Kj, Kjfe./,g and K;. e-%j—l’ then Kj® Kh® Kj»
€Y., calculating by means of the isomorphism of §5.1. So each matrix
unit of the product is in a set of £;_;, and V, T, VZ € R(¥;_)). Since V,
is fixed, V,T,.V# converges strongly to V,T V¥, which is then also in
R(%;_)). Therefore V,E€ 7.

But the collection of all unitaries which have the form of either V; or
V, is sufficient to generate R(%) (see Definition 5.9), and so R(¥))
CR©@).

On the other hand, R(%) C R(¥) by Lemma 5.30, and therefore R(%)
= R(%).

THEOREM 5.32. With R, constructed as in Definition 5.14, let L = length
of R, be as in §1. Then L(R,) = n.

Proof. P, is a factor, R, is abelian and R, > {«I}, and so R, & P,.
To show: N/(P,) = R(¥) for j= 0. () By Lemmas 5.15 and 5.21 and
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Theorem 5.10, N°(P,) = P,= R(¥,). (i) Assume N*'(P) = R(Z:_),
for 1<k <j. Then N¥P,) = N[N*'(P)]=NR[R(ZL:-1)]= R(¥ED, using
Theorem 5.31. Therefore, by induction, R’(P,) = R(%).

Since R(¥) & R(%j;1) (Corollary 5.13), R/(P,) G R/ (P,) for 0 <
< n — 1. Also, it is evident from the definitions that #*(P,) = R(¥%,) = 4.
Therefore L(R,) = n.

THEOREM 5.33. Let R, and R,, be constructed as in Definition 5.14, with
n, # ny. Then there cannot exist a *-automorphism 6 of U such that 6(R,))
=R,,.

Proof. A standard argument shows that if D, and D, are subrings of %
and ¢ a *-automorphism of ¥ such that 6(D,) =D,, then 6[N(D))]
=N[o(D,)] =N(D,). It follows that L is an invariant under *-auto-
morphisms of A. But by Theorem 5.32, L(Rnl) =n, and L(R,) = n,.
So we cannot have 6(R,) = R,

In the section we have therefore constructed an infinite sequence of
semi-regular (but not regular) maximal abelian subalgebras of ¥ which
cannot be pairwise connected by *-automorphisms of ¥.

6. A counter example: another semi-regular subalgebra. We present here
an example R’ which shows that the invariant L does not give rise to a
complete classification of semi-regular subalgebras. In the construction of
R’, we assume the definitions of §5.1 and Definition 5.4 with n =2, so
that Lemmas 5.2, 5.3, and 5.5 hold.

DEFINITION 6.1. We construct R’ as in §2.2, with {U;: t=1,2,.--}
defined as follows (B, is as in §4.1):

U,= Ifort < n=2. The rest of the unitaries are defined with reference
top = (2c+ 1)n = 4c+ 2, or p € T. If the matrix unit ?E,, is in K, then:

B U {PE,, if3=0 (mod2),
mYrt1 =\ PE, B,,, iff=1 (mod?2).
B U — {”E,, if=0,1 (mod 2%,
7 Zret = P, B,,, iff=2,3 (mod2).

Up+3 = UP+4 =1

LemMa 6.2. If {U,: t=1,2,...} is constructed as in Definition 6.1, then
R’ has property A (Definition 5.6).

Proof. The proof is like that of Lemma 5.15.
LEmMMA 6.3. Let {U;: t=1,2,...} be as in Definition 6.1, and suppose
p, ET, ¢>p, and TEM, If TP =3 5,°E, with K(a,b) =K,

(y=0,1,2, or 3), then TW'=3 g, °E, with K(c,d) = K,, and so R’ has
property Q (Definition 5.11).
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Proof. TW' = U,... U, TP'U,,,--- U, and by linearity it is sufficient
to consider U,---"E,--- U,, K(a,b) = K,

We show that the lemma holds for ¢ = p + 4, and the rest follows by
an obvious induction argument. Now U, 3= U,.s= I, and so U,,4---PE,
coiUpps =2 Bua"Ey is in M,,,. Consider one term. If we write PHE,
=PHE((a,iy, i) (b, 1,10)), then (ig, ko) = (2%” 4 v, 2%” + v) for some i”,
J7,v (0= v=3). Hence io=ky (mod 2%, or io=ky, so K(ip, ko) = K.
Therefore K(c,d) = K(a,b) ® K(iy, k) = K(a,b) = K,

Note. The property of Lemma 6.3 is stronger than property @ and
will be used to show that L(R’) = 1 # L(R,).

LEMMA 6.4. Suppose R’is constructed as in Definition 6.1 and 2'= {V:VR’ V*
=R, Vunitary, VEU}. If VE Y, there is a sequence V,E M converging
metrically to V, such that if V,E€M,(pET), V¥ =3 o, E, with ’E,
€ K,.

Proof. By Lemma 4.3, it is sufficient to show that R’ satisfies the con-
ditions of §4.1.

Suppose p €T and consider PE;. Lemma 6.2 states that if PE, & K,,
then U,y PEy Upyn = PE; for h = 1. Suppose *Ey ¢ Ko, but K(i,k) €4
for j=1 or 2. If K,= K(0,i) and K,= K(0,k), then « =8 (mod 2°7)
while a # 8 (mod 2*7/*'), by using §5.1. So Definition 6.1 shows that
Upi2-j41 PEx Upra_ji1 ="Ey Bpio_ji1. If we take d(i,k) = 2 — j+ 1, then
1=d<2. Ifd=2,then j=1 and «a = 8 (mod 2). So by Definition 6.1,
Up11 PE4 Uy, = PE. Hence the conditions in the second paragraph of
§4.1 are satisfied.

Finally, Lemma 6.3 is an explicit statement of the final condition of §4.1.

LEMMA 6.5. Let R’ be constructed as in Definition 6.1. Then R’ is semi-
regular but not regular.

Proof. Theorems 5.8 and 5.10 and Corollary 5.13 apply here, too, so the
proof is like that of Theorem 5.22.

THEOREM 6.6. R" S P’ CN(P’) =¥, and so L(R’) = 1.

Proof. Since P’ is a factor and R’ is abelian, R’ # P’. Also, by Theorem
6.5, P’ # A. So we need only show that X (P’) = U.

Let TE R(%,) = P’. Then there is a sequence T, converging strongly
to T, such that if T,EM, (ET), then T = B 'E.s with K(c,d)
= K,. Suppose V,eM, (pET), VPI=3 +*E, with K(r,s) = K, (y=0,
1,2, or 3) for all terms in the sum. If z = max[p,q], then

Vi 7l V;"[‘] _ [ S 6 En ][ 3 84 zE"‘]I: 3 5.t E"]

K(r,s)=Ky K(c,d)=Ko K(s,) =Ky
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by Lemma 6.3. But K,® K,® K, = K, and so each matrix unit in this
product is in Koy, and V,T, V¥ & R(¥,). Since V,T,V} converges strongly
to V,T V¥, this is also in R(%), and V, leaves P’ invariant.

But the collection of all unitaries which have the form of V, (for y =0,
1,2, and 3) is sufficient to generate R(%,) (see Theorem 5.10), and R(%>)
= U. Therefore A = R(Z,) C NR(P’), and N(P’) = 4.

LEMMA 6.7. Let R, be as in Definition 5.14, R’ as in Definition 6.1. Then
there cannot exist a *-automorphism 6 of A such that 9(R’) = R,, although
L(R’) = L(R) = 1.

Proof. We show first that there cannot exist a *-automorphism 6 of
such that 6(P’) = P,. The invariant is the fact that the product of two
operators which are in Pi is always in P;.

Using the definitions of §5.1 and Definition 5.4 for n =2, let S; and
S; be in M, (p € I) with

SPl =PE, (K(a,b) €4) and SF'="E4(K(c,d) EA).

Then SP'SY' = (S:8)%' = 3" 6.°E., (K(u,v) E4). So S1,S,, and S;S; = S,
are all in R(%y)* =P’*.

Let 6 be a *-automorphism of U, and suppose 6(S;) = T; for i=1,2,
or 3. Then T;€¥, so ||Ti| < =. By [3], we can choose a sequence T
€ M converging strongly to T; with || T} || <||Ti||. We now use §5.1 and
Definition 5.4 with n=1. If T,EM,(gET), let T = Pl 4 Xl
where Pl*'=3 0, ‘Ey(K(j,k) €£,) and X)W =Y 1, 'E, (K(r,s) EN).
Then P; € P, and X, € P{, so each of these sequences is Cauchy in the
metric topology. Lemma 5.29 depends only on the definitions of §5.1 and
Definition 5.4 and hence applies here. So || P, || <||Ti|| and || X, || < 2||Ti||,
and by [6, p. 723] each of these sequences is also Cauchy in the strong
topology. Hence P; has a strong limit P,€ ¥, X;, a strong limit X;& A,
with P,€ P, and X; € P{.

By uniqueness of limits, 6(S) = P, + X,, and so 67 '(P) + 6" (X) =S;
€ P’*. Assume that §(P’) = P,. Then 67'(P,) = P/, so that ¢~ (P) € P,
which implies §7'(P) = 0. Hence P;=0, [[P,]]—0, and [[X; — Ti]]—0.

Recall that N,={K,| when n=1. Then if X,, X, €M, (€1,
we have

( le X 2) le) — Xll‘” leql

= [ Z Qrs qErs:I[ Z Brs qErs] = Z O jk qult-
K(r,s)=K; K(r,s)= K, K(r,s)=Ky

So X, X, € R(¥)) =P, for all ». A familiar computation shows that

[[ X1, X; — T.T,]]—0, since all operators are uniformly bounded. Hence

T\T, is the Hilbert space limit of X, X, € P,. Since we also have T,T,



308 SISTER RITA JEAN TAUER

=0(SP8(Sy) €U, [6, p. 728] assures us that T,T,E P,. However, T, T,
= 0(S,Sy) = 0(Ss) = X5 € Py, which is a contradiction.

Therefore we cannot have 6(P’) = P,. Now if there were a *-automorphism
0 such that 6(R’) = R,, then we would have 6(P’) =9[N (R")]=N[o(R")]
= P,. But this is again a contradiction, so such a *-automorphism cannot
exist.

We have thus shown that the invariant L is not sufficient to determine
a complete classification of the semi-regular subalgebras of ¥.
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