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1. Introduction. The general study of algebras of operators on Hubert

space has led to the investigation of rings of operators, also called W*-

algebras or von Neumann algebras. These are self-adjoint, weakly closed

algebras of operators which contain the identity. If the center of a ring

(center in the algebraic sense) consists only of scalar multiples of the

identity, then the ring is a factor. Factors have been studied extensively

and divided into types by Murray and von Neumann [5; 6]. In his work

on reduction theory [9], von Neumann has considered the decomposition

of a ring with respect to various subalgebras contained in its center. When

the subalgebra actually is the center, then the rings making up the decom-

position are factors. The question of decomposition with respect to a sub-

algebra which is not the center of the ring, but is maximal abelian in its

commutant, is also of interest. Here, each of the rings in the decom-

position is isomorphic to the ring of all bounded operators on some Hubert

space [4]. This sort of decomposition is not unique, but rather depends

essentially upon the choice of the maximal abelian subalgebra. However,

not much is known about these subalgebras, even in the case of a con-

tinuous factor of finite type, or a type IL factor.

In this paper we restrict ourselves to the study of approximately finite

Hi factors, that is, those which are generated by a sequence of factors

90?„ of type I„, with 5DîniS2)în2£. • • . (The factor 9)?„ is essentially an n

by n matrix algebra.) It is proved in [6, §4.7] that all approximately

finite factors are algebraically isomorphic, while [6, §1.6] shows that the

concept of a subring of a finite factor is purely algebraic. This permits

one to obtain general results through specific constructions.

Dixmier has defined three types of maximal abelian subalgebras R in a

factor 51, as follows: Let ft (R) = P be the ring generated by ^= j V: VRV*

= R, V unitary, V£ 311. Then R is regular if P = 31, R is semi-regular but

not regular if P is a factor not equal to 31, and R is singular if P = R. Dixmier

has shown the existence of at least one subalgebra of each type in an approxi-

mately finite IL factor [2]. Later Pukánszky proved the existence of a
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countable infinity of singular subalgebras which cannot be pairwise con-

nected by *-automorphisms of the factor [ 7].

Both Dixmier and Pukánszky used groups and group algebras to con-

struct factors. In this paper we use a more straightforward approach.

Let 3D?P be the full 2P by 2P matrix algebra over the complex numbers, and

jpPy: i,j = 0,1, • • -,2P — 11 the matrix units which generate it. Imbed

30?„ in 3D?P+1 by letting pPy = p+lE2i,2],+ p+lE2i+l,2j+l. Then Up-_i 2«P =

39? is a *-algebra. If A = \at]\ is in 3D?P, then

Trace A = Tr(A) = (1/2P)¿X.
i = 0

Make 3D? into a pre-Hilbert space ip as follows: For A, B in 3D?, let (A, P) =

Tr(P*A), and \/(A,A) = [ [A] ], the Hilbert space norm of A. If A is in

m,B in §, then [ [ AP] ] ^ ||A|| [ [P] ], where ||A|| is a finite number

[8, p. 77]. So A is a bounded operator on $ and can be extended to the

Hilbert space closure ¿&. Let 31 be the weak closure of 3D?, or the ring

generated by 3D?.

The trace can be extended to 21 by continuity and has these properties:

(1) It is a linear functional. (2) Tr(AP) = Tr(PA). (3) If P is a pro-

jection, Tr(P) G [0,1]. It is well known, then, that 21 is a continuous

factor of finite type, or a IL factor [ 1; 6]. It also follows directly from the

definitions that 21 is approximately finite.

In §2 of this paper a simple construction is shown to yield a great

variety of maximal abelian subalgebras R of 21. A regular subalgebra is

easily identified in §3. For the construction of singular and semi-regular

but not regular subalgebras, the matrix units are divided into two or-

thogonal sets. Those in one set generate P, those in the other are in Px.

After presenting an example of a singular subalgebra in §4, the paper

proceeds to the construction of an infinite sequence j R„ ¡ of semi-regular

but not regular subalgebras. These cannot be pairwise connected by

*-automorphisms of 21, since each Rn has a different length, an invariant

which is defined thus: For any subring D of 21,9? (D) is the ring generated

by the unitaries which leave D invariant, and 5? J(D) = 3? [9? ; '(D)].

Then R„ g9i(RJ = P„ g3ft(PJ ^7c2(P„) g ... g 3?L(P„) - 21, where L =

length of Rn = re. However, this invariant does not lead to a complete

classification of semi-regular subalgebras, and a counter example is pre-

sented in §6.

The author would like to express her gratitude to Professor James G.

Glimm, her advisor, for the problems and methods he suggested and for

the painstaking care with which he surpervised the work of this doctoral

thesis.
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2. The construction of maximal abelian subalgebras. The following

general facts, which are easily verified by computation, will be useful

throughout the rest of the paper.

Lemma 2.1. Suppose U,A, and B are in 21, U unitary. Then [[UA]]

= [[AU]]= [[A]\,(U*AU,B) = (A, UBU*), and[[A]]= [[A*]].

We now proceed to the construction of maximal abelian subalgebras of

21. Following [6], we call the topology of tú the metric topology.

2.2. Definitions. Let Yp be the abelian subalgebra generated by

j pEkk: k = 0,1, • • •, 2P - 11. Let E = U p"=iEp, also an abelian subalgebra.

Let [Ut:t = 1,2, •••} be a set of self-adjoint unitaries such that: (1) Ut

E 5DÎ,; (2) U, is zero except for 2 by 2 blocks along the main diagonal.

(Note that pEkk commutes with Up+h for h £ 1.) Define Yt= UyU2--- Ut.

For each choice of j Ut: t = 1,2, • • ■ ¡, we construct a subalgebra as follows:

Let Sp be the subalgebra generated by j pEkk: "Ekk is a generator of Ep and

pEhk= YpPEkkYp*]. Let S = UP"=1SP, also a subalgebra (see Lemma 2.3),

and R = 8". For any A G 21, define the notation AlPl = Y*AYP (i.e., AiPi
=   UpUp-y-UyAUy..Up).

Lemma 2.3. If p ^ q, then qEhk = Yp "Eu/Y*, so S, C Sp. Also,A*lp] = Alp|*

for any A E 21.

Proof. Since Uq+X,---,UP commute with qEkk,

"Ekk =Uy.Uq "EkkUq ..-Uy

= Uy.-Uq...Up"EkkUp...Uy

= Yp qEkkYp.

A *|p| = Y;A*Yp = (Y*A Yp) * = A1"1*.

Lemma 2.4. Suppose D,AE 2ft/» with

D^ = Z«kpEkk   and   Â>l=£ «,/£„.

Then D is in S C R and A is in R1.

Proof.  By   §2.2,   D =_YPDM Y* = £>t YppEkk Y*,   so D   is  in  SCR.

On the other hand, Alp' is orthogonal to qEjj for all j, q (by definition

of the inner product). Now suppose qEjl is a generator_of S„. We can assume

q ^ p, because q < p implies S, C Sp. Since J^llô1 pEhkA^plpEkk = 0, it follows

that

Z»EkkA^pEkk = t! Uq... Up+lpEkkA^pEkkUp+1 • • • U, = 0.
A-0 *-0
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So A1'1 is also orthogonal to qE]j. Hence

(ÄW «Ej) = (Ä, YfEjjY*) = (À.'Ejj) - 0
(using Lemma 2.1). Therefore A is orthogonal to Sr for all r, implying that

A is orthogonal to S.

Now it is shown in [6, p. 728] that weak, strong, and metric closure of a

subalgebra of a finite factor coincide. So A is also orthogonal to R, the

metric or Hilbert space closure of S in 31.

Theorem 2.5. Let Sp, S, and R be defined as in §2.2. Then R is maximal

abelian as a subalgebra of 31.

Proof. We show first that R is abelian. Let pEkk and '£# be projections

which generate Sp and S„. Assume p 2; q. Then

"Ekk% = (YppEkkY*p)(YpqEMY*p)    (by Lemma 2.3)

= YppEkk"EjjYp = YpqEjjpEkkYp

= "E/Ekk-

Since S is an ascending union of abelian algebras, it is abelian.  By the

standard argument, so is its weak closure R.

Suppose A is in 31, and A commutes with R. There is a sequence A„ in

90? which converges strongly to A. If x£ ^equals 7, the identity of 31,

then [ [ A„x — Ax] ] = [ [ A„ — A J ]—< 0, so An also converges metrically

to A. Since A„ is in SDÎP for some p, we can write Ajf' = Pjf'-f A^1, where

Pip| = Z*a*"P*A and Ä>p|=£,y4a,/PJit. Then by Lemma 2.10, Dn is in

S £ R, and An is in Rx. A unitary transformation of A^' yields A, = D„

+ A„.
Assume lim„[ [A„] ] ?¿ 0. Then [ [A„] ]2 > 3f2 for all rc and some « > 0.

Now A„ is Cauchy in the metric topology, so _there_exists K(t) such that if

t,m > K(e),[ [At-Am] ] = [ [ (P, - DJ + (A, - A_m) ] ] < e. But Dt - Dm

is in R, and A, — Am is in R1; and so [[A, — Am] ] < í if t,m>K(t).

Choose t > K(() and fix A,, say in <3Jlq. Consider this q fixed from here on.

Now A commutes with qEkk for A = 0,1, •• -, 2" - 1, so that A 'Pw - "PMA

= 0. Since An converges strongly to A and there are only 2q projections

in question, we can choose m such that [[AmqEkk- qEkkAm]]2 < e2/2q for

all qEkk, and also m > K(t). Suppose Am is in Sftr, where we can assume

r ^ q. By Lemmas 2.3 and 2.1,

[ [ AmqEkk - qEkkAm] ]2 = [ [ AmYrqEkkY* - Y/PwYr*Am] ]2

= [ [ Y*AmYrqEkk - <P**Yr*AraYr] ]*

= [[ALr|'P**-'P**ALr|]]2<e2/2'.

Now PLr| = Zjß/Ejj, so D[^qEkk - qEkkD^ = 0. Hence
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[[ÄLr|'P**-'P**Ä£l]]2<t2/2«.

Let P(AÍ) =ZtöuEkkA^Ekk. Then

[[Ä>i-P(ÄL1]]2   ^ Z [[Ä^'P^-'P^ÄLI]2
*=o

^ 2?(e2/2') = f2.

But _by   Lemma   2.1,   [ [Ä"Lr|] ]2 = [ [Äm] ]2 > 3e2,   and   so   we must have
[[P(ALrJ)]]2>2£2.

However, At is in S»„ _and A]?,= Zf-o^EkkA^qEkk = 0, by definition

of Aj'l It follows that P(A\r) = ¿fo» %* A|r| "Ekk = 0, as in the proof of

Lemma 2.4. Thus we have:

e2>[[A!"-ALr|]]5

>
r 21-1£^(Air|-ALr')'P*J

= [[P(An-P(ALl]]2>2f2.

But this is a contradiction, and so lim„ [ [ A„] j = 0. Since

lim [[Pn + Ä„-A]] = 0,
n

we have lim„ [ [ Dn — A ] ] = 0, with D„ in S.

By assumption, A is in 21. Since it is in the metric closure of S, a sub-

algebra of a finite factor, it is also in the weak closure of S [6, p. 728].

Therefore A is in R, and so R is maximal abelian in 21.

3. A regular subalgebra. In this section we exhibit a regular maximal

abelian subalgebra in the approximately finite factor 21.

Lemma 3.1. Let E be defined as in §2.2. Let R = E~. Then R is maximal

abelian.

Proof. Let U, = / for t = 1,2,3, • • -, so that Yt= I also. Then Theorem

2.5 applies.

Theorem 3.2. R = E~ is a regular maximal abelian subalgebra.

Proof. Let pE¡k be any matrix unit in 3D?. Define the unitaries

Vx = "Ejk + "Ekl + Z "Ess   and    V2 = »Ejk - "Ekj - Z "Ess-

A routine computation shows that Vi and V2 leave E, hence R, invariant.

So Vx and V2 are among the generators of 3?(R) = P.

Since pEjk = (1/2)(V^+ V2), any matrix unit in 3D? is contained in P.

Hence 3D?" = 21 is contained in P, and so P = 21 and R is regular.
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4. Singular subalgebras. In this section we establish conditions for a

singular maximal abelian subalgebra, and then present an example which

satisfies the conditions.

4.1. Definitions. The notation is that of §2.2, with the following restric-

tions on the unitaries  U,:

Let

1    0
0    1

and let

By

Then U, = ('C¿;), where 'C0 is a 2 by 2 matrix,

1A/2        1A/21
1/V2    - 1/V2 J '

tp  _    0 if i*j,
lJ      \ Iy or By if i = j.

Let Bt = ('Di/), where 'Dy is a 2 by 2 matrix,

<n  = í °   if ¿ ̂  ¿
"ö    I Bi if ¿ = j.

Let r be an infinite set of positive integers Py < p2 < • • • . Assume that

if p E r, then we can divide the matrix units pEjk into two sets as follows:

(1) If Up+hpEjkUp+h = pEjk for all h è 1, then pEjkEK0. (2) If "Eik^K0,

then there exists d(j,k) (1 zZ d z% p) such that Up+dpEjkUp+d = pEjkBp+d,

while 7JP+„P£,* [/„+* = pEjk for 1 g h á <* - 1.

Also assume that if qE T,q> p, then pEjkE K0 implies

Uq • ■ ■ Up + y PEjk Up+y •■•  Uq= X«re *En>

with "En E X0; and pEjk £ Ä"0 implies

Uq ■ ■ ■ Up+ypEjk Up+y... Uq='^arsqE„,

with qEn $ K0. (Note:

fj,. • • fJp+1 "Ejk Up+y ...Uq=Y* Yp "Ejk Y*p Yq

will henceforth be abbreviated as Uq ■ ■ ■ pEjk ■ • ■ Uq.)

Lemma 4.2. Suppose p ET,pEjkE K0,d(j,k) = d. Let g=2dk + a

(a = 0,1,-.., or 2d-l), so that p+dEmzZpEkk. Then for every r^O, there

exist exactly 2r+1 projections p+d+rEhh zi pE¡j such that

[ ["^E^iUp^ ■ ■ ■ »Ejk ■ ■ ■ Up+d+r) P+X] ]2= l/2p+d+r+1.

Proof. Consider g =2dk + a fixed throughout the proof,

(i) By using §4.1, we have:
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p+dEhh Up+d... "Ejk - ■ ■ t/p+/+X = ^X^Pp+Z+X

Í     1A/2P+X   if o * 0 (mod 2) and h = h(g) = 2dj + a or 2dj + a + 1,

= j ± l/\/2p+%,   if a s 1 (mod 2) and A = h(g) = 2d> + a-lox 2dj + a,

(.     0 otherwise.

Hence the lemma holds for r = 0.

(ii) Take r ^ 1 and assume that

I I <^+r-lEki(Up+d+r.y ■ ■ • "Ejk ■ ■ ■ Up+d+r„x) P+X] ]2

l/2p+d+r   if "^^'P«, ú p+dEm,m,

0 otherwise.

Let

-{

p + d + r = s,    s-1Ehh=ZsEnA,   p+X=Zs~Xa-
1=1 r=l

Then  '"'P^L^.i • • • PP;* • • • l/s_i) S~X«,   is   a   multiple (possibly zero) of

a matrix unit s~1Ehgt. Because of the form of Us,

[ isEhlhl US(US_X ■ ■ ■ pEjk ■ ■ ■ Us-X)UrlEsJ]2

= [ [ SP„2„2 U,(U.-i. • • pP,* • • • l/,_i) U." lEu, ] ] \

So the sums over v of these two expressions are equal. Since the norms are

preserved by the unitaries Us, we have:

Z[[sEh¡hlUs...»Ejk--.Uss-iEg¿„]]2
«=i

= (l/2)Z[[s-lEhhUs...>>Ejk...Uss-%A]]2

„-i

= (1/2) [ [*"%* i/s_i • • • "Ejk ■ ■ ■ C/S_i '+%] J

I1/2S+1    if .-'Eu, ï p+dEm<m,

0 otherwise.

Hence  [ [p+d+rEh¡hl(Us ■ ■ ■ pEjk ■ ■ ■ UsV+dEm] ]2   equals l/2p+d+r+l if and only

if sEh¡hi = p+d+rEhih¡ £ p+dEmm, or for 2(20 projections p+d+rEhiH.

Lemma 4.3. Suppose R is constructed according to §2.2 and §4.1, and

°y = j V: VR V* = R, V unitary, V E^\-If VE1^, then there is a sequence

Vn converging metrically to V, such that if Vn£3D?p (p£r), ¿Aera VlPi

= Zßab"Eabwith>>EabEK0.

Proof. Let V be in ty. Then there is a sequence Wn £ Sft which converges

strongly to  V. Since WnE^i, we must have  Wn£$D?p for some p £ I\
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the set referred to in §4.1. Then we can write Wjf' = Vjf'+ WJ,p|, where

Vj,pl = X ßo, "Fai with "E* E K0 and W[pi = £ajk pEjk with pEjk G K0. By

the last paragraph of §4.1, this decomposition is independent of p, i.e.,

if q > p,qE T, then

Vn'J=i7?...<Jp+1V^p+1...[/,

and

Wq\=Uq...Up + yW^Up+y...Uq.

So Wn = Vn + WB2_and  ( Vn, Wn) = (X

Suppose lim„ [ [ W„] ] * 0. Then [ [ Wn] ]2 > 16e2 for all n and some t > 0.

We can assume t ^_l/9. Since Wn is Cauchy in the strong and metric

topologies and ( V„, Wn) = 0, there exists Kie) such that if m,t > Kie), then

[[Wt - Wm\ ] < e. Choose t > KU) and fix Wt. If Wt E 3JÎP (p G rj, then
W =£«>*"£>*  (^ÍXJ  implies that

(1) (l/2p)XM2> 16e2.

Consider p fixed from here on. Next choose m > Kit) and also such that

[[Wm- V]]< c/32(2*).

For now, fix one pair (j,k) in the sum for Wjpj, and let d = d(j,k), as in

§4.1. Consider the 2d projections Eg such that ElP+dl = p+dEgg z% "Ekk. By

definition, EgER, and so VEÄV* = FÄG R> with Fg a projection. Since

V£í-FíV=0,[[Wm£,-F,Wm]]<f/16(22p).By [6, p. 761], there isa

sequence of projections^. G S (see §2.2) such that [ [Fgi — Fg] ]—»0. Choose

i (for each g) such that '[ [WmEg - FgiWm] ] < e/8(22p). Let r = r(j,k) be

large enough so that Wm and all Fgi are in 9Díp+íJ+r, and so that p + d -\- r

E r. Let s = s(/, k) = p + d + r. Then

[ [ w!W - Fj;) wü1] ] - [ [ ( vw^w - F]f VÜ1) + ( ̂ '£is| - F,w W^) ] ]

<f/8(22p).

Since ¿?g and Fg¡ are in R H 2)is, Egs^ and F^Js| are sums of minimal projections

"Em. Hence by definition of V£J and W$, the two expressions in paren-

theses are orthogonal, and so

[[W$Egsi- Fg^WV]} < </8(22p).

Suppose Fgfl = £sEMim. Let Ge = \h: h ¿¿ ß(g) for any ßig) in the sum,

and %» z% "Ejj}.' Recall that E[gs] = Us ■ ■ ■ pJrdEm ■■■Us=   p+dEm. Then

(2) Z [ [ %» W$ p+%] ]21= [ [ W% p+dEm - F];] WLS|] ]2 < e2/64(24p).

On the other hand, let us consider PE]}W\s] "Ekk = ajk U,--- pE]k ■■■Us.

Now pEjk $z~K0,s = p + d + r, and p+dEgg ¿, "Ekk. So Lemma 4.2 asserts that

there are exactly 2r+1 projections sEhh g PF¿ such that
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Let   Hg=\h: sEhhiiiPEjj   and   the   preceding   equality   holds ¡.   Clearly,
#(Hg) = 2r+1.

The set we are interested in is HgnGg. Since [ [ Wm - V}}< t/16(22p),

a routine calculation shows that [[VEg- FeiV] }=[[ VEgV* - Fg¡\ ]

<e/4(22p) <i/4(2p+d).Now V is unitary, [ [Eg]} = \/(l/2p+d), and t g 1/9,

so it follows that [[PSl.]]2= {[ZP+d+rEm,m]]2 < 17/16(2p+¿). Hence

the sum has fewer than 17(2r)/16 terms. But if p+d+rEhh g PP;> and h^ß(g),

then h E Gg. Therefore,

#(HgC\Gg) * #(Hg) - #\ß(g): sEm,m é í*l)

> 2r+1- 17(2r)/16= 15(20/16.

Let  J = «/(/',*) = ! (Kg): p+% ^ »Ekk and A G Hg n G, |. Then #(J)
^ 2¿[ min, #(P^nG,)]^ 15(2d+r)/16. So

E [ ['En, W]sl p+%] ]2 g; 15|«„|2/32(2p).
J

(We use (3) since (h,g) E J implies hEHg for some g.) On the other hand,

£ [ [ %» Wt] P+X1 ]2 á 2d[ max Z  I I %» W" p+dPs

< t2/64(22p)    (using (2) and d ^ p).

From here on,_we do not regard (j,k) as fixed, but let Z = \ (j,k): pEjk is

in the sum for W]p'(. Note that d, r,s, and J are still functions of (j, k).

Let s0 = maxz[s ]. Then

e2è [[#!*■•- wt]])2

^Zi[PEjj(W¡s°] - Wt) pEkk}}2
z

= Z[iPEjj(W^-Wl:)pEkk}}2
z

Z( Z sp^(w|s| - wj^i) p+dps

£E %» wjs| p+dpa
Z    J

ZZ sEhkW^p+dEs
z   j

E£[[%*wj'i p+dp.

>

■>/(Ç9
U(Ç 15|«;*| V32(2p)) - J( Ç<2/64(22p)

Ehh W'*1 p+dPa

> |V(15(16í2)/32) -V(2V/64(22p))|2>É2 (by(l)).
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But this is a contradiction.  Hence lim„ [ [ Wn] ] = 0 and lim„ [ [ Vn — V]]

= 0, where Vn has the required form.

Theorem 4.4. Let R be such that the conditions of §4.1 are satisfied, and

also "EjkE K0 if and only if j = k. Then R is a singular maximal abelian

subalgebra.

Proof. As usual, V = [ V: VB. V* = R, V unitary, VE 21}. Using Lemma

4.3 and the fact that the strong and metric closures of S in 21 coincide, we

have ^CR, and so P, the ring generated by °y, is contained in R. On the

other hand, any ring is generated by its unitaries [ 1, p. 4], and any unitary

in R is in ^, so R C P. Therefore R = P, and so R is singular.

4.5. Definitions. In order to construct a subalgebra satisfying the con-

ditions of Theorem 4.4, we define the set { Un: n= 1,2, •••] as follows:

We shall say that U„ is of type r (where r < n) if and only if

rrp  ,,   _ Tj rV   _\ r-E«        when ¿ = 0 (mod 2),
£,,, un - un au - \ rEu Bn    when ¿ m j (mod 2)

This completely specifies any U„ if we assign to Un an integer r < n to

designate its type.

If n > 1, let n = 2s + r, where s = 0,1,2, • • • and 1 z% r ^ 2s. Then we

require that U„ be of type r. We set Uy = 2", and let

r= \p: p = 2', Í = 0,1,...¡.

Theorem 4.6. If R is constructed according to §4.5, then R is a singular

maximal abelian subalgebra.

Proof. Let pEjk be any matrix unit with p E T,p = 2s for some fixed s.

If n > p, write n = 2' + r, where / ^ s and 1 á r Ú 2l. First consider the

case r ^ 2s = p. By definition, Un is of type r. If pEy¡ ¿ rEuu and pEkk z% rEm

then

TT PP    n  - TJ rF    PF   rF    11  -[ "Eik iîU ~ V   (mod2)'
un a* u„ - un nuu nIk n,m un     i P£jkBn    ifufév (mod 2).

Next suppose r > p. Then pEjk = J), rEj¡k¡, where j¡ = 2r~pj + i and kt = 2r~pk

+ i, so that ji = ki (mod 2) for all i. Hence Un "Ejk Un= l7„Z¿ rF;¡*¿ Un

= ¿¡ rFÄ. = pE]k. So if n > p,Un pEjk Un is equal either to pEjk or to pEjkBn.

Straightforward calculation shows that if n>p, then UnpE¡jUn equals

"Ej,, so that "Ejj EKQ.lt follows directly that if q G T,q > p, then Uq • • • p£;>

Suppose p£;i is such that ;' ?í Ä. Then there exists t = 0,1, • • -, or p — 1

such that j^=k (mod2'+I), while j = k (mod 20. Hence j = 2'j0+i and

k = 2'k„+i for some j0,k0 such that j0^k0 (mod 2). If p = 2s, take

m= 2s + (p - i).  Clearly Hp-(^2S,  so   Um is of type p - t.   Then

t/m "£,* L/m = Um p-'EJoio pEik p-'E^0 Um = "Ejk Bm, so    pEjk G K0.
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Let d be the smallest positive integer d' with the property that Up+d'

y."EjkUp+d, = pE]kBp+d,. Since p + 1 á P + d ^ m, it follows that 1 ^d

¿,m — p = p — t^p. Also, if 1 ^ h ^ d — 1, Up+h pEjk Up+h is not equal to

pEjk Bp+h, so must equal pEjk.

The preceding shows that pEjk £ K0 if and only if j = A. Also, we see that

if j ¿¿ k, then the alternate condition (i.e., condition (2)) of §4.1 is satisfied.

If q E T, q > p, then j ^ k implies Uq ■ ■ ■ pEjk ■■■ Uq = £ «re qE„ with r^s,

so that qErs £ K0. Thus the final condition of §4.1 is verified.

Therefore Theorem 4.4 applies and R is singular.

5. An infinite sequence of semi-regular subalgebras. In this section we

construct an infinite sequence of semi-regular subalgebras which cannot

be pairwise connected by *-automorphisms of 31.

5.1. Definitions. Throughout this section we regard n= 1,2,3, ••• as

fixed. Let r = \p: p = (2c + l)n, c = 0,1,2, ■■■}, an infinite set of positive

integers. If pElk is such that p ET, then pEik is in some set Ky, where 7 = 0,

1, • • -, or 2" — 1. Let Sé\ be the class containing all the sets Ky.

Let ©„ be the set of all ra-tuples (ai,a2, ••■,a„), where ak = 0 or 1. This

is a commutative group under the operation of coordinate-wise addition

(mod 2). Define a function <j> from^n to ©„ as follows: If y = £Lia*2n~\

then <b(Ky) = (ax, ■ ■ -,ak, ■ ■ -,a„). If we define an operation ® on 5£„ by

the rule that Ka®Ks= Ks if and only if <b(Ka) + <b(Kß) = <b(Kt), then <b

is an isomorphism of^„ onto ®n (with respect to these two operations).

We determine the set Ky in which "Eik is contained as follows: For any

index i (0 = i £ 2{2c+l)n - 1), let i =^2c=o¿r2m, an expansion to the base

2\ Then 0 ^ ir ^ 2" - 1, so that ir = ¿î_,rt2"-* and (r„ ■ • .,rb • ■ -,rn)

£($„. Designate this element of ©„ by \b(ir). Let A(i) =^?=0¡reveD\l/(ir),

where the addition is coordinate-wise (mod 2), so that A(¿) £®„. Define

K(pEik) = 4>'l[A(i) + A(k)] to be the set Ky containing pEik.

Lemma 5.2. Suppose p £ r, "Eih £ Ka and pEhkEKä. Then pEikE K„

<g> P„ = K„-<8> Ka. Also, K("EJ = K(PEJ.

Proof. The proof is immediate from the definitions of §5.1 and the prop-

erties of the group ©„.

Lemma 5.3. Suppose p £ r, pEik £ Ky. Let i = i'22" + ix2n + i0, A = A'22"

4- Ai2" 4- A0 (with 0 ^ ix, i0,kx,k0 ̂  2" — 1), and write

pEik = pE((i',ix,i0)(k',kx,k0)).

If >-*Ei.k£ Ka and "E^EK,, then Ky = Ka® Kg. Also,

'-*£«. pElk p-2nRk'k> = "Elk.

Proof. If p £ r, then p = (2c+l)n for some fixed c. We show first that

A(i) = A(i') + MiQ). If i' = Z^oi'r 2™, then A(i') = £*¿.«.#W). Since
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i = i'22" + ¿,2" + ¿o,   it   follows   that   A(i)  = Z t~0,r even  HU) + Hh) = A(P)

+ A(i'o).  A   similar   argument   shows   that   A(A) = A(A') + A(A0).   Hence

</>(P,) = A(i) + A(A) = A(i') + A(A') + A(i0) + A(A0)

= A(KJ+<t>(Kff) = A(Ka^Kß),

so Ky = Kn® P„.

Since 0 ^ i12B+ i0 ^ 22n - 1, we have i = 22Y + a, with 0 ^ a ^ 22n - 1.

Thus PP„ ^ p-2"P,,-. Similarly, pPt* ^ p'2nEk.k; and therefore the second

statement holds.

Definition 5.4. Define the following classes of sets: ^0=-^/o= [Pol-

For  ;= 1,2,-.., re, Sê,= \K,: 7 = 0 (mod   2*'*)}   and  ^■=^~^-_1.

Lemma 5.5. Suppose »èl, p£T ared pErsEKhE-^K, with O^h^j.

Let p+2nEikEKy be of the form p+2"£((r,i1,i0)(*,ÄlfÄo)). If h^j-1, then

KyE^j if and only if i0=k0 (mod2"-J),i0^k0 (mod2" J+1). If h=j,

then KyE-^j if and only if i0 m k0 (mod2"";+1).

Proof. Let Kfi=K(nE^). By Lemma 5.3, Ky = Kk K„. If 0 ^ A ̂

j-1, then 0(PT) = (•••,<:,_!, 1,0, ...,0) = 4>(K¿ + ¿(KJ if and only if

<j>(Kfi) =Hio) +i(h) = (•••,%_!, 1,0, ...,0), or i0 = A0 (mod2"J), ¿o ̂  K
(mod 2" ;+1).

If A = y, then </>(PT) = (• • -,Cj_x, 1,0, • • -,0) if and only if 4>(Kß) =
(•..,ay_i,0, ...,0), or ¿0= A0 (mod 2n-J+1).

Definition 5.6. Let R, j {/,: f = 1,2,3, — } be constructed as in §2.2, and

let P0 be defined as in §5.1. If pEikEK0 (per) implies Up+kpEik Up+h

= pEik for all A ̂  1, then R has property A.

Lemma 5.7. Suppose that R Aas property A. Let V be a unitary in SD?P

(p ET) such that Vlp| = Z ± Pj^«> ^Aere pPre is ¿re P0 ared íAe sigres are

arbitrary. Then V leaves R invariant.

Proof. It is sufficient to show that V leaves S invariant. Because of the

structure of S, we need only consider one of its generators, say P+,P**

(see §2.2). Then

yp+,p„ V* = [ Yp y|p| Yp*] Yp+(p+,P** Y*+t [ Yp V|p|* Y*}

= YP[Z± pPre]f/P+i • • • Up+tp+'Ekk Up+t■ ■ ■ Up+l[Z± pE„]Y*.

By Lemma 5.2, pPreGP0 implies pEsrEK0. So   Up+h"En = pPra Up+h and

Up+hpEsr = pEsr Up+h for A = 1,2, • • •, t, by property A. Hence

Vp+'Ekk V* = Yp+t[Z±PE.}p+'Ekk[Z±"Esr}Y*+t = ± Yp+l[p+%jY*+t,

where rg depends on A. But by definition, this is also in S. Therefore V

leaves R invariant.

Note. Since KCE^) is independent of p (p G r), we use P(a, b) as notation

forP(pPJ.
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Theorem 5.8. Suppose that R has property A. Let P = 9c(R) be as in §1.

Then P is a factor.

Proof. Suppose E E P, E commutes with everything in P, £^0 or ai.

Since RCP and R is maximal abelian, we must have E£R. Since E

commutes with E* and hence is normal, it has a spectral resolution, and

its spectral projections also commute with P. So without loss of generality,

we can suppose E itself is a projection. If 0 < [[F]]2 zi 1/2, let F = E.

If 1/2 < [[E]]2< 1, let F= I-E. Then 0< [[F]]2^ 1/2, and F also

commutes with P, F G R.

By [6, p. 761], there exists a sequence of projections Fm which converges

to F in the metric topology, with Fm G S. Since F ¿¿ 0, from some point on

Fm * 0. Let [ [ F] ]2 = 5, and take e = a/26. Choose Fm such that [ [ Fm - F] ]

< e/2. If V is any unitary in P, then

(1) [[VFm- FmV] ] = [ [ VFm - VF+ FV-FmV] ] < e.

Also, since 0 < [ [Fm] ], [ [ F] ] ^ 1 and | [ [Fm] ] - [ [F] ]\ < e, a straight-

forward calculation shows that | [ [ Fm] J2 - [ [ F] ] 2| < 4e = 5/24. Hence

Ô-o/24<[[Fm]]2<a + ô/24.

Without loss of generality, we may assume 5 —5/24< [[Fm]]2^ 1/2.

(An analogous proof holds in the other case.) If FmG90îp (pET), then

F[p] = Y,HpErr for some subset ffC(0,l,-,2'-l}. It follows from the

estimate of [[Fm]]2 that 2P(5 - Ô/24) < #(H) z% 2p-\ For each rEH, we

can then choose s(r), s = 0,1, ■•■, or 2P — 1, s(£H, such that if r^r',

then s(r)^s(r').   Let J = \(r,s):    rEH,s = s(r)\, so that

(2) #(J) = #(#)> 2p(á-á/24).

Consider pErs for (r, s) E J- Suppose K(r, s) = Ka. If

p+2nEik = p+2nEHr,iy,io)is,kx,ko)),

then p+2nEikEKa® KHo,ko), by Lemma 5.3. Hence p+2nEik E K0 if and

only if <b[Ka] + <b[Kiio,ko)] = 4>(K0), or cfiiKJ = ^(i0) + fik0). This equality

clearly holds for exactly 2" pairs ii0,k0), where each index 0, l,--.,2n— 1

appears only once as first component and once  as  second.  Let

Oir,s) = j (¿„A): <biKa) = Hi0) + *(*„)}

and let Zir,s) = {(i, k): p+2"Elk = p+2"F((r, ix, i0) is, kx, k0)), », - *a - 0,1,

••.,2B-1, and ii0,k0) E Oir,s) \. Then Zir,s) contains 22n pairs (i,k),

and for each of these, p+2nF¿* is in K0. The sum Z (»,*>ez<r,») p+2nEik contains

not more than one nonzero element per row or column, since ¿i = ky. It

foUows, by definition of J, that £(r..)e.r[E<¿,«ez<r..) p+2nFit + p+2nF,I] also

contains at most one nonzero element per row or column.

Therefore we can define a unitary V such that

vlp+2n|= Z r  E   p+2^ + p+2«fJ + £p+2'ifíí,
(i-,s)e^L('.*)ez(r,s) J
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where the final sum is over all t ¿¿ i or A if (i, k) is in Z(r,s) for any (r,s)

in J. All terms of ylp+2nl are in K0 so by Lemma 5.7, V leaves R invariant,

orVEf.
Then we have:

i'>[[V*lFL')-fJfll'l»l]]!   (by(D)

4H?'b")-(fs")vw]T
= T       Z    ("E. Vip] "Err ~ pE„ V[p] "Ej\

LLrG//,s$H JJ

^   £  [[»ErrV^pEss]]2 =   £  [['ErV^'E.]]*
(r.s)GJ (r,s)EJ

=   Z  I        E    P+2"£.*l       (using Lemma 5.3)
(r,s)e</LL(«.*>eZ(r,«) JJ

= Z22"/2p+2n>5-5/24    (by (2)).

This yields: 5/26 = f > «2 > 5 - 5/24> a/2, which is a contradiction. Hence

the initial assumption that 0< [[P]]2^ 1/2 is incorrect, and we have

either [ [ P] ]2 = 0 or [ [ P] ]2 = 1. Therefore P = 0 or 7, and so P is a factor.

Definition 5.9. Let R(5fj) (j ■* 0,1, •••,») be the ring generated by

9CS = {F: P£ S0?p (p £ r) and P[p| = "P^ with PT(a,b) E Sfj\.

Theorem 5.10. Suppose that R Aas property A, and P and V are as in §1.

Suppose also that if V £ í^, íAen ¿Aere is a sequence Vm £ 90? converging

metrically to V such that if Vm£ 2ttp (p £ r), Vlpl= ¿a^ pP„i wiíA PP„¿,

£P0. Then P = P(if0).

Proof. The collection of all unitaries V which have the form required in

Lemma 5.7 is sufficient to generate &0, hence R(Sa^. Therefore R(Sé'o) E P-

On the other hand, if V E a^, then V is in the metric closure of the sub-

algebra generated by the set 3CÜ, and hence V is in its weak closure R(&0).

Thus P £ P(ifo), and so P = R(5é'0).

Definition 5.11. Let R, \Ut: t= 1,2, •••( be constructed as in §2.2.

Suppose p, ç£r, q>p, and A £ 30îp. If Alpl = Z«a* "Eat with K(a,b)

E-^j implies Alq] = J^ßcd"Eod with K(c,d)E^„ then R has property Q.

Lemma 5.12. Suppose R Aas property 0. If P£S0ip (p £ r), P|pl = PP„6

wiiA P(a,6) £^, where 0 g j < k, then P£ R(5fj).

Proof. Suppose P £ R(Sé'j). Then there is a sequence Pm converging

strongly to P such that if Pm£30í, (qET), then F[q] = ¿5«, "P^ with

P(c,d) £^y. Choose P„ such that [ [ Pm - P] ] < 1/2P, and choose q so that

a£ r and Fm, P£ 3W,. By property 12, P1'1 = 2>oi) '£** with P(a, A) £_^.
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Since k > j, (F[q\ Flq) = (Fm, F) = 0. So we have: l/22p > [ [Fm - F] ]2

= [[Fm]]2+[[F]]2> 1/2P, which is a contradiction. Therefore F

(£R(&j).

Corollary 5.13. If R has property Q, then Ri5f}) c¡ R(/é)+1) for any

y = 0,1, ■■-,«- 1.

Proof. Clearly &¡C&j+i, so S^CA^i). But by Lemma 5.12,

R&¡)*R(%j+l).

Definition 5.14. We construct R„ as in §2.2, with \Ut: t = 1,2, •••}

defined as follows iB¡ is as in §4.1):

Ut = 7 for t zZ n. The rest of the unitaries are defined with reference to

p = (2c + l)re, or p G r. If the matrix unit pF0,r is in Kß, then:

Í "Err
PE,r Up+y =   j  pj^

if/Ss 0 (mod 2),

Bp+1       if/3 = 1 (mod 2).

pE„U, = [pErr \tßsQ,\,...,T-k-l-\ (mod 2"-*),

ffup+B_»     (p^B^,,^    if/3s2-*-\ ...,2"-*- 1 (mod 2"-*).

: _("£„ if/f-0,l."-,S"-1-~l(Md'2l,)l
"". p+n      l pF,r£p+n       if/8 * 2*-1, • • .,2n - 1 (mod 2").

I _[pErr if/8=0,l, ■■■,2n'k'1-l  (mod2n-*),
¿V up+n+k     | p^^^    if ß m 2-*-», • • .,2""* - 1 (mod 2"'*).

Lemma 5.15. 7/ \U¡: 1= 1,2, •••( is constructed as in Definition 5.14,
i/iere R„ Aas property A.

Proof. Suppose p G r, "EikEK0. If "E0,iEKg and pF0,tG KT, then

K8 ® Ko = Ky implies ß = y.

(i) Suppose h = 1,2, • • • ,2n. Then it is evident from Definition 5.14

that Up+h pEik Up+h = Up+h pEu pEik pEkk Up+h = pEik.

(ii) Suppose h = 2íra'-f- 1, 2tn -f 2, • • -, 2tn + 2n for any positive integer

t. Now "Fa = £ p+2tnEiit)+aMt)+a, where t(t) = 2a"», *(t) = 2*%, and the sum

is over a = 0,1, •• •,22m — 1. A straightforward calculation based on §5.1

and the properties of ($„ shows that each term of this sum is in K0- If we

let p' = p + 2tn E r, h' = 1,2, • • -, 2n, then we can apply part (i) to this

situation, and conclude that Up+h pEik Up+h = pEik for all h ^ 1.

Note. For the rest of this section, we assume p Ef-

Lemma 5.16. Suppose pErsEKy and <f>(Ky) = (o,,o2, •••,aj. Ifak+1= 1,

then Up+n±k pFre Up+n±k = "E„Bp+tt±k. If ak+l = 0, then Up+n±k pFra Up+n±k
= "E

Proof. Let Ka = K(Q,r) and Ä"a = Ki0,s), so that XQ® Ky = Kß. Suppose

ak+y = 1. Then the ik + l)st coordinate of (¡>iKa) does not equal the ik + l)st
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coordinate of <p(Kß). So a = y G {0,1, • • .,2"-*_1 - 1} (mod 2""*) if and

only if ß = zE{2n-k-\---,2n-k-l\ (mod 2" *). Then Definition 5.14

shows that  Up+n±k pPre Up+n±k = pPre PP+„±*.

Suppose ak+x = 0. Then the (A + l)st coordinate of <j>(Ka) equals the

(A+ l)st coordinate of <b(Kß). So « = yG{0,l, •••,2" *_1 - 1) (mod 2"-*)

if and only if ß s z S {0,1, • • -, 2""*"1 - 1}    (mod 2""*). Thus in this case,

Up+n±k    En Up+n±k =    Pre-

Lemma 5.17. Suppose PP„GP7 ared 0(P,) = (a^, . • -,an). Let S

= JA: ai+1 = 1,A ̂  0\. If ax= 1, then

L'P+2n - • •   Pre '

If ax = 0, then

Up+2n ■ • • En

up+2n="P™ r n Bp+n+k 1 pP+J n ¿w*l
L kes J L *es J

• up+2n=ppre r n Bp+n+k 1 r n pP+»-* 1.
L *es J L kes J

(Note. The operators Pp+i commute.)

Proof. Using the fact that Pp+( commutes with Up+t+i for I ^ 1, we can

apply Lemma 5.16 over and over again to perform the required calculation

and obtain the results stated in this lemma.

Lemma 5.18. Suppose pPreGP, and 4>(Ky) = (ax,a2, •• -,an). Define

u>(y) = 2(Z"~2ad + ax. Then the nonzero entries of Up+2n---pErs •■■ Up+2n

have numerical value ± (l/^/2)"('1',.

Proof. This follows by direct calculation with the results of Lemma 5.17,

because of the form of P P+i-

Lemma 5.19. // P(pPre) = P, G-^y 0' ^ 1), iAere Up+2n • • • pPra • • • Up+2n

is in yjlp+n+j-u When written in 3D?p+2n, it is made up of 2"~J+2 by 2n~J+2 blocks

which are either zero or else of the form of Figure 1, where ß = (l/v2)"w-

ß 0

ß 0

ß        o
ß

Figure 1
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Proof. Since Ky E-^¡, <P(Ky) = (ax, • ••,(»;_„ 1,0, • • -,0). First take j * 1,

so that 7 — 1 5¿ 0 and j — ÍES. In fact, 7 — 1 is the largest integer in S.

So by Lemma 5.17, Up+2n • • • pFre • • • Up+2n = pErs Bp+n+;_< ■ ■ • Bp+n_,+i,

where the subscripts are in decreasing order. Hence the  product  is  in

Wlp+n+j-l'

Now

Ers Bp+n+j_y ■ ■ ■ Bp+n-j+X = Bp+n+j-y [   En • • • Bp+n-j+y\

= ßp+n+;-l[E±«P+"+J"2^]

= Z±«P+n+1~2EakBp+n+j-y

(for certain pairs (a, b)). This is made up of 2 by 2 blocks which are either

zero or else of the form ± aBx. Hence, when written in 99?p+2n, the product

is made up of 2"~;+2 by 2"";+2 blocks which are either zero or else have the

the form indicated in the lemma. Here ß = a/s/2 = (l/\/2)"w, by Lemma

5.18.

If 7 = 1, then Up+2n • • • pFre ■ • • Up+2n = pFre Bp+n, and the preceding

paragraph applies to this case also.

Lemma 5.20. Let { Ut: t = 1,2, ••• ( be constructed as in Definition 5.14.

Then R„ has property ü (see Definition 5.11).

Proof. Let AEWp,q>p,p and 0 in r. Alq] =£/,.. • Up+X A[p] Up+X ■■■Uq,

and because of linearity it is sufficient to consider Uq- ■■ pErs •■■ Uq, with

Kir,s)E^j.

Suppose 7 = 0. Since R„ has property A (Lemma 5.15), Uq • • • pFre • • • Uq

= pFre. But pFre = X, qEm, where n = 2"-pr+ i, s, = 2?^ps + i, and i

= 0,1, • ..,2'"p — 1. Again, a calculation based on §5.1 shows that each

term of this sum is in K0.

Suppose j ê 1. Then Lemma 5.19 asserts that Up+2n ■ ■ ■ p£re • • • Up+2n

= Elßcdp+2nEcd is in iVlp+n+j-X. Consider any term of this sum. If we write

p+2nEcdasp+-2nEiir,iy,io)is,ki,ko)),then H0,k0) =(2-^-1'i* + aX^^k" + a)

for some i", k", a iOziazi 2n-J+1 - 1). Hence i'0= k0 (mod2" J+1). But

Kir,s) E-^j, so by Lemma 5.5, Kic,d) E-^j- An extension by induction

shows that R„ has property fi.

Lemma 5.21.  Suppose R„ is constructed as in Definition 5.14, and °y

= { V:  VRnV* = R„, V unitary, V G 21 ¡. If V G ^ then there is a sequence

VmEW converging metrically to   V,  such  that if  VmE^P ipET),   llp)

= £/acd"EcdwithpEcdEKo.

Proof. By Lemma 4.3, it is sufficient to show that R„ satisfies the con-

ditions of §4.1.
Suppose p G r and consider pFo4. We showed in Lemma 5.15 that if
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"Eat E Ko, then Up+k pEab Up+h = pPa6 for h è 1. If "E^ £ K0, then K(a, b)

E-^i for some j è 1, so that <b[K(a,b)] = (•••,c,_i,l,0, ---.O). Therefore

Up+n^j+xpEabUp+n-j+x = pEabBp+n-j+x, by Lemma 5.16. If we let d(a, b)

= n — j + 1, then 1 ^ ; ^ n implies 1 ^ d ^ ra. Lemma 5.16 also asserts

that Up+n_k "Eat Up+n_k = pEab for A = j,j + 1, • • -, n - 1, or n- k ^ d.

Hence the conditions in the second paragraph of §4.1 are satisfied.

We recall that-^o = {K0\, and that if KyE^¡ for ; è 1, then Ky ¿¿ K0.

Thus Lemma 5.20 is an explicit statement of the final condition of §4.1.

Theorem 5.22. Let R„ be constructed as in Definition 5.14. Then R„ is

semi-regular but not regular.

Proof. Let P„ = ft(R„). Since R„ has property A (Lemma 5.15), Theorem

5.8 shows that P„ is a factor. Because of Lemma 5.21, Theorem 5.10 applies

toR„, and P„ = P(5f0)- But n ^ 1 and R(Sf0) g R(Sêx) £ 31 (by Corollary
5.13), so P„ = R(Sé'o) 5^31. Therefore R„ is semi-regular but not regular.

We now proceed to show that if 6 is a *-automorphism of 31 and nx ?± n2,

then we cannot have 0(Rni) = Rw¿. For the rest of this section we assume

{ U,: t = 1,2, • • • j constructed as in Definition 5.14.

Lemma 5.23. Suppose pErs £ Ka and pEst £ Kp, with Ka and Kß in sti for

some k è 1. If <t>(KJ = iax, ■ ■ -,a„) and (b(Kß) = (by, ■■■,bn), define p(a,ß)
- 2(Z*=2 a[6,) + o,6, + a„bk. Let r0 = 2n+*~2r, s0 = 2n+k-2s, t0 = 2n+k~2t.

Then 2" is the number of distinct ô's such that

p+n+k-2p       \JJ PJJ> JJ lp+n+*-2p
Clr0r0\.up+2n • ■ '    &rs • ■ ■  Vp+2n\ ^s0+i,s0+6

and

p+n+*-2p        \JJ pp    ...JJ lp+n+*-2p

are both nonzero.

Proof. If we consider the results of Lemma 5.17, then p is the number

of factors Bp+h (l^h^P + n + k-2) which Up+n+k-2 • • • pPre • • • Up+n+k-2

and Up+n+k_2 ■ ■ • pEst ■ ■ ■ Up+n+k-2 have in common. If the first of these

products equals '£pabp+n+k~2Eab and the second equals J^Vcdp+n+k~2Eod,

then 2" is the number of 5's such that the first sum contains the pair (a, b)

= (ro, s0 4- à) while the second contains the pair (c, d) = (sQ, t0+ ô). (This

is a result of straightforward calculation with the operators Bp+n.) Since

Ka,KßE-Ji,we have a*=6*=l and ak+x, ■■■,an, bk+x,---,bn = 0. So by

Lemma 5.16 (and the commuting properties of Bp+n+k_y),

Up+2n • • •    Er, • • • Up+2n = ¿^Pab Eat Bp+n+k_y

and

Up+2n ■ ■ • pEst ■ ■ ■ Up+2n = ¿^vcdpi        EdBp+n+k-X.
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Thus 2" is also the number of 5's such that the two expressions in question

in the lemma are both nonzero.

Lemma 5.24. Suppose pPreGP„, pEstEKß, and Ka, KßE-^k (A ̂  1).

Let ü>i = oj(a), w2 = u(ß), and p = p(a,ß). (See Lemmas 5.18 and 5.23.) //

Ky = Pa» Kß, then the function Ck(y) = 2"(l/\/2)"1+"2 depends only on A

and on Ky.

Proof. If 4>(Ka) = (olf •••,a„) and <t>(Kß) = (6lf -••,&„), then <i>(Ka® Kß)

= 0(PT) = (ax + fe,, a2 + b2, ■ ■ ■, a„ + fe„) (mod 2). Suppose P„ » Kß = Ky,

with Ka,,Kß.E^k. If *(K„.) = (aí,-.,aí) and <p(Kß) = (b'x, ■ ■ • ,b'n), then

a¿ + b'i = ai + bi (mod 2) for   i = 1,2, •• -, re.

Let (oji + ü>2); be the contribution to «d, + <o2 from a, and fe„ and let

Pi be the contribution to ß from a¡ and fe„ so that u, + w2 = ]j£*_i («i + «2)1

and m = J] ;=i Mi-
Suppose a¿ + 6, = a'i + b'i = 1. Then a¿ ?í 6, and a- ;¿ 6,', so that /i; = MÍ

and (u>i + ü)2)¡ = (o>í + ü>2)¡.

Suppose a¿ + fe, m a¡ + b¡ = 0. If a¿, fe¿ = a¡, fe,-, then clearly ¿i¡ = m¡ and

(«x + o)2)¿ = («í + uQ¡. If a¡, 6, = 1 and a¡, b[ = 0, with i = 1,2, • • -, or A — 1,

then direct computation shows that

2"'(l/v/2)Wl+"2,i = 2"'(l/\/2)l"i+"2)' = 1.

(We need not consider i = A, since ak, bk = a'k, b'k= 1.) The same computation

and result apply if a¡, fe¡ = 0 and a-, o- = 1.

Therefore

2"(l/v/2)("1+"2) = n^'d/V2)'"1"^"2''
i

= n 2"¡(1 A/2) ("i+"2)l   (since individual factors are equal)
i

= 2"'(l/V/2)("í+"2).

So this function depends only on A and on Ky.

Lemma 5.25. For each A = 2,3, •••,«, tei P*(s) fee iAe operator such that

Pk(s)^+2n] - £„ p+2nPs.+M.+A, wAere s" = 22ns, A = 0 (mod 2""*+2), and 0 á A

^ 22" - 1. Suppose pPreG P„, pE^EKß, Ka and Kß in ^, ared P„® Ps

= Pr TAere

C) [ Up+2n • • • pPre • • • fJp+2n] P4(«)lp+2nl [ Up+2n ..."£„... t/p+2n]

Aas a terrei o/iAe /orm (^(7) p+2nErÊf+T and a term of the form Ck(y) p+2nET*+rX+x,

where r" = 2^r, t" = 22"f, and w = 2"-*+1. If KyE&k-2, then K(r",t" + w)

G-^i-v If KyE^k_u then K(r" + *,t" + w) E^k-u

Proof. We use the notation of Lemma 5.23. Let 5i be a typical index

which has the property that



300 SISTER RITA JEAN TAUER [February

£}jroro[uP+2n ^rs • • •  uP+2n\ ^s0+iy,s0+6y

is nonzero, and Ô2 one with the property that

p+n+k-2p        \tj PR1    ...  77 1 P+n+k-2-p
í!'»0«oLc'p+2b-"   &st up+2n\ ■C,<0+i2.'0+{2

is nonzero. Since Up+X, ••-, Up+2n are all self-adjoint,

p+n+t-2p \jj ...PJT   ...77        1 P+n+*-2ci
Ji«0+*2.«0+«2Lc'p+2B -^sí uP+2nJ -Ci0(0

is also nonzero. For i = 1 or 2, let A(í¡) = 2n-k+% = 0 (mod 2"~*+2). Finally,

let uy = oj(a), o)2 = cods), and ji = pia,ß).   Then

p+2nF^[(*)]p+2nFr+,,r+,

= F Z (l/V2)"1(p+2nFr.,s.+n(Sl)) IT Z (l/v/2)"2(p+2nFs-+n(i2,,r+J 1 •
L *<»1> JL A<«2) J

These terms are the only nonzero ones after applying the projections, and

the signs are all positive by an obvious calculation. In the product of

these two sums, there are nonzero terms if and only if hiô/) = A(ô2). So

by Lemma 5.23, there are 2" nonzero terms. Hence the entire product

equals 2"(l/v/2)"1+"2(p+2"F^,r+,), where the scalar is equal to Ckiy), by

Lemma 5.24.

A similar argument gives the other term.

If Ky E%k-2, then Ky E-A for some i z% k - 2. Now

p+2nE^r+t = p+2nEHr,0,0)it,0,2n-k+1)).

So by Lemma 5.5, Kir",t" + ir) E^k-i- If KyE^k-i, then p+2nFr.+I,r+ir

= p+2nE((r,0,2n-*+1)(i,0,2',-*+1)) implies that K(r" + *,f* + x) E-^k-x,

again by Lemma 5.5.

Lemma   5.26.   Suppose  k^2, pFre G Ka E-A-u "Est G K, E^k-2 ior vice

versa). Then, using the notation of Lemma 5.25,

p+2nFr.+T.r+.[ (*)]p+2nFr+,r+I = 0.

Proof. By Lemma 5.19, Up+2n ■ ■ ■ pErs • • • Up+2n is in iVlp+n+k_2. So it has

no elements of the form p+2nFr.+TS.+n, h = 0 (mod 2n'k+2). Since Pkis)[p+2n]

= ZP+2nES'+hx+h, h = 0 (mod 2"~k+2), the product in question in this

lemma must be zero. (A similar proof holds if the roles of Ka and Kß are

exchanged.)

Lemma 5.27. Suppose k^2and WEWP is such that WM= 1^ + Xw,

with ^ = Zßrs"Ers iKir,s)E%k-x) and X^ = YictnpEn(K(r,s)E^k).

Let (r,i) be a fixed pair such that pErtE KyE&k-\- Then the product

2P-1

"Erri Up+2n ■ ■ - W[p] ■ ■ • Up+2n] Z Pkis)[p+2n] [ Up+2n - • • W*[p!.. • Up+2n]»Ea
s=0

(**)
= A(r,i)[p+2nl+Q(r,r)[p+2n),
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where   (A^p+2"\    $p+2n) = 0,    and    Q[p+2nl = E-o"1 a^CM'^E^with

K(a,b) e^k-x.

Proof. The product (**) equals

2P-1

Z   [ Up+2n • • • Ôre "Pre • • • Up+2n] Pk(s) ^ [ Up+2a • ■ ■ bb PE« ■ ■ • Up+2n] ,
s-0

since Pk(s)lp+2n) = "P^ Pk(s)lp+2n| "E^ and pPm "E^, "Ett commute with

Up+l(l^l).

Case 1. KyE^k-2- Suppose s is such that K(r,s) and K(s,t) are both in

yVk. The summand corresponding to this s includes the term «„¡«is Ck(y)

X p+2"Pr,c+„ according to Lemma 5.25, which also asserts that this matrix

unit is contained in a set of ~^k-\. Consider the summands corresponding

to other s. The only possible way for them to yield something not orthogonal

to a matrix unit in yVk_l would be to have K(r,s)E^k-\ and K(s,t)

E*£k-2 (or vice versa), since Pt(s)'p+2n' is a sum of matrix units in P0.

But then P(r,<) G-A-i, contradicting P(r,i) = KyE&k-2-

Hence Z'f^o1 «,*«* Ck(y) p+2nErr+„ gives the desired Q(r, f)lp+2nl.

Case 2. KyE^K~i- Again suppose s is such that P(r,s), P(s,i)G-^*-

The summand for this s includes the term areâ0Ct(7) p+2nEr+,r+„ accord-

ing to Lemma 5.25, and again this matrix unit is in a set ofyf/k_1. So sum-

mands for other s's can yield something not orthogonal to it only if K(r,s)

G-^»-i and P(s,f) E^h-2 (or vice versa). But Lemma 5.26 assures us that

these summands cannot have entries in row r" + v, column t" + w.

Hence ZT~ol «^C^y) p+2nP^+,r+, gives the desired Q(r, i)[p+2nl.

Corollary 5.28. Suppose A ̂  2, W and (r, t) as in Lemma 5.27, and

q>p (p,gGT). TAere

pEn Whl Z Pk(s)lq] W*i,] pPtt = A(r,t)["] + Q(r,t)l"\
s = 0

where (A1'1, Q1'1) = 0, Qh) = ZPcd'E* with K(c,d) E^k_x, and [[Q]}2

= iJ^^o1 are«is |2/2p+6n 4   (where the constants are from the sum defining
Xlpi).

Proof. We first obtain a lower bound for the function Ck(y). Clearly

M ̂  akbk = 1 and wx + w2 g, 2(2; - 1) = 4; - 2. Hence Ck(y) = 2"(l/v/2)"1+"2

è (1/2)2"-2.

By Lemma 5.27, the corollary holds if q = p + 2re, since

[[Q}]2=[[Q^}]2 = \Ck(y)\'<
2P-1        _

Z araai»
s-0

/2p+2n^     £>„«*    /2p+6"-4.

Now
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p£(rW[,1£i>t(s)í,1W*[«1 PP«
s

= [/,... up+2n+l[ pe„ w[p+2n]ZPkis)lp+2n] w*ip+2"] ppttl[/p+2„+1 •.. uq

= [/,-•■ Up+2n+x[ A (r, <)lp+2n| + Q(r, i)lp+2n)] t/p+2n+i... (7,

= A(r,t)[q]+Q(r,t){q].

The unitaries preserve the orthogonality of A and Q and the norm of Q.

Also, by Lemma 5.20, Q[p+2n| = P pEab with P(a,6) £-/*Vi implies Q[q]

= Zp^E* with K(c,d) E-^k-i-

Lemma 5.29. Suppose W £ 90?p is sucA ¿Aai W[pl = Vlpl4- X[pl, with

^ = ZßrsPEn(K(r,s)E&k-X)andXW = ]rarspErAK(r,s) E^J. Then

\\V\\ ú\\W\\ and\\X\\ è\\W\\ +\\V\\.

Proof. If K(r,s) E&t-i, then <b[K(0,r)]= (ay, ■••,ak-y,ak,--..an) and

<b[K(0,s)] = (bx, ■ • •,bk_x,ak, • ■ -,an). So both of these n-tuples are of the

form ( • • •, ak, • • •, a„), where the first A — 1 coordinates are arbitrary and

the last n — A 4- 1 are fixed. Call the set of all such re-tuples k. Define the

projection E, = XPEIM, where the sum is over all u such that <b[K(0,u)]

is in k. Then pPre = P. pPre = pPre P. = P, "En P..

In general: Let k¡ be the set of all re-tuples (•••,a|'), ■■■,a{¿)),  where the

last n — k + 1 coordinates are fixed for each i. If we sum over the pro-

jections Px¡ for all possible  sets  *,,  then   V{p] = X.P«,Wlp]Et¡. If kx ̂  k2,

then En is orthogonal to P<2, since K(0,u) is uniquely determined. Hence

||ylp'|| =suPl.||P.,WlpX|| ^||Wlpl||, and || V|| *||W||.

Since X=W- V, \\X\\ z\\W\\ +\\V\\.

Lemma 5.30. For j = 1,2, ••-,«, let R(5é'j_x) be as in Definition 5.9, and

let %=\V:V[R(%1_X)]V* = R(%1_X), V unitary, V£31¡. If VE%

then there is a sequence Vm £ 30? converging metrically to V such that if Vm

£9ftp,   VLPi = Z^PP*  with   K(r,s)EK

Proof, (i) Since V is in 31, || V|| = 1, there is a sequence Wm in 30Í, || Wm||

álf which converges strongly to V [3]. Strong convergence implies

metric convergence, so limm [ [ Wm - V] ] = 0. If Wm £ 30?p, then W[p]

clearly equals ¿/3ra pPre with K(r,s) E&n.

(ii) To show: Suppose j <k^n, and suppose there exists Wm £ 9JÎ

such that ||Wm|| ^l,limm[[Wm- V]]=0, and Wm£30íp implies W^

= ^ôrepPrewith K(r,s) E*£k. Then there exists Vm with the same prop-

erties except that  Vlp* = £/3ra pPre with  K(r,s)E&k-i.

We let the assumed  W{p] = VÍf1 + X[p\ where

y[np] = YßnpErs    (K(r,s)E&k-ù   and  XÍ?1 = 2>„'£„   (K(r,s) E-A).

Since ( Vm,XJ = 0, Xm is Cauchy in the metric topology. Also, || Wm|| ^ 1
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implies H Kill ^ 1 and ||Xm|| ^2, by Lemma 5.29. A slight adaptation of

a proof of Murray and von Neumann [6, p. 723] then shows that Xm is

also Cauchy in the strong topology and has a strong limit X G 21. Since X*

G 21 also, X and X* bounded operators, it is easy to verify that

[[XmX¿-XX*]]^0.

Suppose limm [ [ Xm] ] ^ 0. Then [[X]]^0, X ^ 0, XX* ^0, and so

limm[[XmX*j]?¿0. Hence [ [XmX*] ]2 > 2<V for all  m  and some t > 0.

Choose   Wm  such   that   [ [ Wm - V] ] < e/4.   Suppose   WmE^P.   Then

XL"1 = Z«„ pFre iKir,s) G>t) implies

(1) (1/2") £
2P-1

2w  ars<*ts
s=0

>  2V.

(The outer summation is over pairs (r, t) such that Kir, t) E&k-u since

Kir,s), Kis,t) E-^k) Fix p from here on.

For every s = 0,1, • • -, 2P - 1, define Pkis) as in Lemma 5.25. We drop

the subscript k for the rest of this proof and consider Z»=o~1F(s)lp+2"i.

Since p+2nFs»+n,s-+n is in K0,£sPis) is in Ri&j-y) for any ;' £ 1. Hence

if VE % V(£sPis)) V*=TE R(&j-Ù, where T depends on k. So there
exists a sequence^ G 9W, [[T.-T]]-*0, and T,E^q (?GT) implies TM

= T,Vik «FlAwithX(i,A) E&j-u Choose T. such that [[ V(£,P(s)) V* - T.]]
<«/2, and take ? such that T„G2/c„  Q^P + 2n, qET-   Then

(2) WZP(s)W) V*W - it111 < </2.

Since£sP(s)lp+2n| is a projection, so is£sP(s)[?1, and hence |LE.P(*)bl||

S 1. Thus

[ W£p(*)l«J w*iql - ^^P(s)w y*1?)] ]

(3) á [[WWEP(s)l'l(WÍl- V*lí])]] + [[(WÈJ- Viql)ZPis)iql V*^]]

è 2[ [W;1«1 - V*loll 1 < e/2.

It follows from estimates (2) and (3) that

(4) [ [WÍí'ZPis)M W*lq] - Tí«»] ] < f.

On the other hand, if Kir,t) E&k-i (A ̂ 7 + 1 è 2) and qET, q>p,

then we can apply Corollary 5.28, with Wm replacing W. Since Q1'1

= ZPcd"E«i (X(c,d)G Vi) and 7?J = 2>a'£* (/f(i,A) €#,_,), where
*- 1 >/'- 1, we have (Ti«J, Q1"1) = 0 also.  Therefore

[ [ pF„ WWZ Pis) t») W;''l pFfl - »EnTlq] pEu] ]2

(5) = [ [ A ir, t) I»' + Q(r, f)1?1 - "£„ T^ PF„] ]2

^[[Q(r,0[il]]2^  |Z«»«*|y2p+6"-4.
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So we have, finally:

*2 > [ [ W^ZP(s)["] W*M - Tl"]]]2    (by (4))

^ Z [ [pE„{Wk]ZP(»)[9] w*q] - Tl«)pEu] ]2,   whereK(r,t) E^k-X
(r,t)

èZlZ«re«*r/2p+6"-4    (by (5))
(r,i)

>16(2    (by(D).

But this is a contradiction. Therefore lim( [ [Xt] ] = 0. Since lim, [ [ V¡—X¡— V]]

= 0, we have lim, [ [ V, - V] ] = 0, where || V,|| ^ 1, and V, G 3D?Z (zE T)

implies V, = ZP* zPre with P(r,s) £#*-i.

Since we can extend this as far as A = j + 1 by a finite induction process,

the lemma is proved.

Theorem 5.31. // ;' ^ 1, and P(^) is the ring generated by the set ^

of Lemma 5.30, ¿Aere P(^) = R(5f}).

Proof. To show: R(5ë)) E R(^¡) ■ Let TG R(&j-i). Suppose V, G 3D?P,
Vlp' = Z ± P^™» where K(r,s) E&j-i and the signs are arbitrary. Since

V, and V? are then in P(^; j), VYTVt E R(^j-i) and V^G^.
Suppose V2G30?p, V2p]Z± "E*, where P(r,s) G-^ and the signs are

arbitrary. There exists a sequence Tm G 3D? converging strongly to T such

that if Tm G 9D?, (q G T), then

T^ = ZßoäqEAK(c,d)E^i-X).

If z= max[p,q], then

vt]n]v^ =[   Z   j/eJ      Z    a^ 1     E   «»^™1
L mr.t)e*j JL k(c,*g^>_i JL »vie<; J

by Lemma 5.20. Now if K¡,KyEA and K»e#,--i, then P;® P„<§> Ky
E^j-u calculating by means of the isomorphism of §5.1. So each matrix

unit of the product is in a set of ^,~i, and V2Tm V2* G P(-^-i). Since V2

is fixed, V2 Tm V* converges strongly to V2 T V*, which is then also in

Ä(5i;-i). Therefore V2 G 9/.
But the collection of all unitaries which have the form of either Vx or

V2 is sufficient  to  generate  R(&) (see  Definition  5.9),  and  so  R(Sé'j)

ER(n-
On the other hand, R(%) E R(&ji by Lemma 5.30, and therefore P(^)

= *(#,).

Theorem 5.32. With R„ constructed as in Definition 5.14, let L = length

ofRn be as in §1. TAere L(Rn) = re.

Proof. P„ is a factor, R„ is abelian and R„5¿ \al}, and so R„f¿ P„.

To show: yiJ(Pn) = R(&j) for ; ^ 0. (i) By Lemmas 5.15 and 5.21 and
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Theorem 5.10, 9c°(P„) = P„ = ÄCSQ. (ii) Assume SRk-\Vn) = Ri%k_x),
for 1 S kz% j. Then W*(PJ = ^[^^(PJ] = W[R(Sfk-u]= Ri&ù, using
Theorem 5.31. Therefore, by induction, 9Î;(P„) = Ä(.Sf;).

Since fi(^)SÄ(^J+1) (Corollary 5.13), 9cJ(P„) g 9c'+1(P„) for 0 g;

z%n-l. Also, it is evident from the definitions that 9cn(P„) = P(if„) = 21.

Therefore L(R„) = n.

Theorem 5.33. Let Rni and R^ be constructed as in Definition 5.14, with

nx 5¿ ra2. Then there cannot exist a *-automorphism 6 of 21 sucft that 0(Rni)

= R„2.

Proof. A standard argument shows that if Dx and D2 are subrings of 21

and 0 a *-automorphism of 21 such that diDx) =D2, then «[^(Dj)]

= 9c[ö(Dj)] = 9Î(D2). It follows that L is an invariant under *-auto-

morphisms of 21. But by Theorem 5.32, L(Rni) = nx and L(R^) = n2.

So we cannot have 0(Rni) = R„2.

In the section we have therefore constructed an infinite sequence of

semi-regular (but not regular) maximal abelian subalgebras of 21 which

cannot be pairwise connected by  *- automorphisms of 21.

6. A counter example: another semi-regular subalgebra. We present here

an example R' which shows that the invariant L does not give rise to a

complete classification of semi-regular subalgebras. In the construction of

R', we assume the definitions of §5.1 and Definition 5.4 with n = 2, so

that Lemmas 5.2, 5.3, and 5.5 hold.

Definition 6.1. We construct R' as in §2.2, with \Ut: r=l,2, •••(

defined as follows (fi, is as in §4.1):

Ut = I for t z% n = 2. The rest of the unitaries are defined with reference

to p = (2c + l)n = 4c + 2, or p G r. If the matrix unit pE0,r is in Kß, then:

PF   JT      _ [pEn if/? = 0 (mod 2),

""   p+1     I "En Bp+y    if ß s 1 (mod 2).

PF   TI      - i"E" if*-0,1  (mod22),

"   p+2     I "Err Bp+2   if ß m 2,3 (mod 22).

t/p+3 =   Up+4 =  I.

Lemma 6.2. If \Ut: t = 1,2, • • ■ } is constructed as in Definition 6.1, then

R' has property A {Definition 5.6).

Proof. The proof is like that of Lemma 5.15.

Lemma 6.3. Let \Ut: t= 1,2, ••• j be as in Definition 6.1, and suppose

p, qET, q>p, and TE$RP. If T[p| = £ 0ab "E^ with K(a,b) = Ky

(7 = 0,1,2, or 3), then Tiql = '£ßcä''Ecd with Kic,d) = Ky, and so R' has

property U iDefinition 5.11).
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Proof. Tlq] =[/„••• Î7P+1 Tlp] Up+X • •. Uv and by linearity it is sufficient

to consider Uq- ■ • pEab ■ ■ • Uq, K(a,b) = Ky.

We show that the lemma holds for q = p + 4, and the rest follows by

an obvious induction argument. Now Up+3 = t/p+4 = 7, and so Up+4 ■ • • PP„¿

••• L/p+4 = J]ßcd p+4Ecd is in 9J?p+2. Consider one term. If we write P+4P„¿

= p+4P((a, ¿i, i0) (b, iu ¿o)), then (¿0, *„) = (22¿" + V, 22j" + v) for some i",

j",v (0 á Pá 3). Hence i0=A0(mod 22), or i0 = A0, so Kii0,k0) = K0.

Therefore 7í(c,d) = 7í(a, b) 8 P(i0, A0) = 7i(a,6) = Ky.

Note. The property of Lemma 6.3 is stronger than property Q and

will be used to show that P(R') = 1 ^ L(R2).

Lemma 6.4. Suppose R'is constructed as in Definition 6.1 and °y= [V: VR' V*

= R', V unitary, V£3l j. If VE^, there is a sequence Vm£Sft converging

metrically to   V, such that if  Vm £ 9ftp (p £ r),   V^ = '£laabpEah with "E^

EK0.

Proof. By Lemma 4.3, it is sufficient to show that R' satisfies the con-

ditions of §4.1.

Suppose p £ T and consider PP¿*. Lemma 6.2 states that if pPrt £ K0,

then Up+hpEikUp+h = pEik for A £ 1. Suppose PP¿*£P0, but K(i,k) E^j

for ;" = 1 or 2. If Ka = K(0,i) and Kß = K(0,k), then a = ß (mod 22"J)

while a ^ ß (mod 22 ;+1), by using §5.1. So Definition 6.1 shows that

Up+2.j+x pEik Up+2.j+x = pEikBp+2.j+x. If we take d(i,A) = 2-/4-1, then

1 g d g 2. If d = 2, then j = 1 and a = ß (mod 2). So by Definition 6.1,

Up+X pEik Up+X = pEik. Hence the conditions in the second paragraph of

§4.1 are satisfied.

Finally, Lemma 6.3 is an explicit statement of the final condition of §4.1.

Lemma 6.5. Let R' be constructed as in Definition 6.1. Then R' is semi-

regular but not regular.

Proof. Theorems 5.8 and 5.10 and Corollary 5.13 apply here, too, so the

proof is like that of Theorem 5.22.

Theorem 6.6. R'gP'QÎÎ(P') = 31, and so L(R') = 1.

Proof. Since P' is a factor and R' is abelian, R' ¿¿ P'. Also, by Theorem

6.5, P' ?± 31. So we need only show that ft (P') = 31.

Let TE Ri&o) = P'. Then there is a sequence Tm converging strongly

to T, such that if Tm£9ft, foe r), then  TÍ?1 = ^ßCd "Ecd  with  K(c,d)

= Ko. Suppose V, e 3ftP (P e r), Vf' = £ ± pPre with K(r,s) = Ky (y = 0,

1,2, or 3) for all terms in the sum. If z = max[p,ç], then

L K(r,s) = Ky JL K(c.d)=K0 JL K(s.r)=Ky J
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by Lemma 6.3. But Ky® X0® Ky = K0, and so each matrix unit in this

product is in K0, and VyTm V* G P(^o). Since VyTmV* converges strongly

to VyT V*, this is also in Ri5f0), and Vy leaves P' invariant.

But the collection of all unitaries which have the form of Vy (for 7 = 0,

1,2, and 3) is sufficient to generate Ri$a2) (see Theorem 5.10), and RiS£2)

= 21. Therefore 21 = P(if2) C 9t(P'), and W(P') = 21.

Lemma 6.7. Let Ry be as in Definition 5.14, R' as in Definition 6.1. Then

there cannot exist a *-automorphism 0 of 21 such that 0(R') = Ri, although

L(R') = LÇRy) = 1.

Proof. We show first that there cannot exist a ^-automorphism 0 of 21

such that 0(P') = Pi. The invariant is the fact that the product of two

operators which are in P^ is always in P^

Using the definitions of §5.1 and Definition 5.4 for n = 2, let Sx and

S2 be in 9KP (p G r) with

Mp| = pFo*(X(a,6)G^i)    and   S^ ='E^iKic.d) E-A).

ThenSW = (SySjw = 2XPFTO (K(u,v) G^). So Sy,S2, and SyS2 = S3

are all in Ri^0)± = P'±-

Let 0 be a *-automorphism of 21, and suppose 0(¿>¡) = T¡ for t = 1,2,

or 3. Then T¡G2l, so ||T,-|| < œ. By [3], we can choose a sequence Tif

G 9ft converging strongly to T, with ||T¿J| z% ||T¡||. We now use §5.1 and

Definition 5.4 with n = l. If Tiy E SW¡ (q E r), let T;l?l = P£l + X£\

where P,]'1 = Zp» "Fjk (K(j, k) E&o) and X^ - ¿,a «¿„ (X(r,s) 6-^9-

Then P¿v G Pi and X^ G P/, so each of these sequences is Cauchy in the

metric topology. Lemma 5.29 depends only on the definitions of §5.1 and

Definition 5.4 and hence applies here. So|| PJ | £\\T¡\\ and||X¡J| g2||T,||,

and by [6, p. 723] each of these sequences is also Cauchy in the strong

topology. Hence P,r has a strong limit P,G21, X^ a strong limit X.G21,

with P¡ E Pi and X, G Pi".

By uniqueness of limits, 0(S,) = P + X„ and so 0_1(P¿) + 0_1(X¡) = S¡

G P,x. Assume that 0(P') = Pi. Then 01(Pi) = P') so that 0_1(P,)GP/,

which implies 0-'(P) =0. Hence P, = 0, [[PjJ]-»0, and [[X¡, - T¡]]-*0.

Recall that Ny=\Ky\ when n - 1. Then if Xv X^íOÍ, (çGr),
we have

iXyX2)^=Xy^X2^

= 1"    Z    «re'FreT     £    /3re'Frel=     £    ^'^-
L ITir.»)-Ki JL ÄV,s)=.tfi J       Jf<r,s)=tfo

So XXrX2¡> E Ri-é'o) = Pi for all v. A familiar computation shows that

[[X„X2 — TyT2]]—»0, since all operators are uniformly bounded. Hence

TXT2 is the Hubert space limit of X^X^GPi- Since we also have TyT2
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= Ö(S,)Ö(S2)G21, [6, p. 728] assures us that TxT2EPu However, TXT2

= e(SxS2) = 0(S3) = X3G PiS which is a contradiction.

Therefore we cannot have ö(P') = P,. Now if there were a *-automorphism

6 such that ö(R') = R^ then we would have fl(P') = 0[3?(R')] = 3?[0(R')]

= P,. But this is again a contradiction, so such a *-automorphism cannot

exist.

We have thus shown that the invariant L is not sufficient to determine

a complete classification of the semi-regular subalgebras of 21.
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