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1. Introduction. When we apply the method of separation of variables to

solve an equation like the reduced wave equation, or Helmholtz equation,

(V2+ k2)u(x,y) = f(x,y), we assume the solution expanded in a series of

eigenfunctions of one of the variables. The coefficients depend upon the other

variable. We substitute the expansion into the equation, thereby obtaining

ordinary differential equations for the coefficients. The method relies upon

the completeness of the eigenfunctions corresponding to one of the variables.

For selfadjoint problems this assumption is justified by the usual expansion

and completeness theorems of Sturm-Liouville theory [l]. For non-selfadjoint

problems it is sometimes not true. An example of the latter type is the

problem (for a rectangle)

V2u + A2u = —rxcosk0x,
2A0

(1.1) u(0,y) = u(x, 0) = u(x, 1) = 0,

"x(l,y) =cu(l,y),

where ka ̂  0 is a solution of A0 = sin A0 cos A0 and c = cos2A0. Here the method

breaks down because of the incompleteness of the eigenfunctions of the x

problem [6]. An attempt is made in this paper to extend the applicability

of the method of separation of variables by including generalized eigenfunc-

tions for the purpose of completion. This is modelled after the finite-

dimensional case. Here a basis of eigenvectors and generalized eigenvectors

can be found for non-selfadjoint operators, leading to the Jordan canonical

form. Some work has been done on developing expansion theorems in terms

of generalized eigenfunctions. It has not been applied, however, to separation

of variables. George Birkhoff proved [2] that a large class of functions could

be expanded in a series of functions associated with a contour integral. They

arise as residues of an integral in the complex plane of the Green's function

for a linear homogeneous ordinary differential equation with "regular"

boundary conditions. He did not investigate the properties of these residues

in the non-selfadjoint case. J. Tamarkin [3] went further and showed that
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these residues were principal functions (generalized eigenfunctions) of the

associated differential operator. He did not investigate their properties, nor

those of the coefficient functions in the expansion, any further. Naimark [4],

showed that for a special class of second-order equations these principal func-

tions were generalized eigenfunctions and satisfied certain orthogonality rela-

tions with the coefficient functions. Friedman [6] pointed out that spectral

representations of both ordinary and partial differential operators are modi-

fied by the presence of multiple poles in the Green's functions. He compared

the generalized eigenvectors of an operator with those of its adjoint. J.

Schwartz has treated more general operators and has shown that a function

may be expanded in a series of eigenvectors, with possibly a finite number of

generalized eigenvectors, of a spectral operator. H. P. Kramer [11 ] specifically

studied even order differential operators and showed that they were spectral

if their coefficients were bounded operators.

2. Properties of generalized eigenvectors. Let L be a linear operator with

domain a linear manifold D in a Hilbert space H. We call x a generalized

eigenvector of rank r for the operator L and eigenvalue X when x, (L — k)x,

• • -, (L - \)r_lx all belong to P, and (L - \)rx = 0 but (L - X)r~xx ?¿ 0. Thus

let L be the ordinary differential operator

(2.1) Lx = poit)xin> + pxit)x{"-l) +•■■+ Pnit)x,       poit) ^Oon [a,b],

and D the linear manifold of those functions xit) with continuous derivatives

up to order n on [a, b] such that

(2.2) Ux = 0.

Herepj(i) are complex-valued functions in cn'[a,b], and the boundary form

Ux is the vector

U¡x = ¿ (a^-V) + M0-"**».        i = 1, • • -,n

(here ia¡j) and (6¿;) are complex matrices). Then a generalized eigenfunction

of rank r for L and X is any solution of

(L - X)rx = 0,        (L - X)'"1* ^ 0,

Ux = o,     uiL - \)x - o, • ••, un - xy-'x = 0.

The notation is taken from Coddington and Levinson [5]. We see that for

x to lie in the domain of L it must satisfy n linear homogeneous boundary

conditions at both end points on its first n — 1 derivatives.

Some easily shown properties of generalized eigenvectors (not necessarily

of ordinary differential operators) follow. If x is of rank r for L and X then

x, (P — \)x, • ■ -, (P — X)r_1x form a chain of linearly independent generalized

eigenvectors of decreasing rank. Of course (P — X)r_1x is an ordinary eigen-

vector (rank 1). Since two chains may merge at some lower ranked com-
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ponent, we call a collection of chains "independent" when their rank one

components form a linearly independent set of vectors. All the generalized

eigenvectors in an independent set of chains constitute a linearly inde-

pendent set of vectors. Adding a lower rank to a generalized eigenvector

does not change rank, nor will the chains generated by such vectors be inde-

pendent. Suppose a generalized eigenvector of rank A is linearly independent

from all the generalized eigenvectors of rank A or less in an independent

set of chains for L and X. Then it is linearly independent from all the vectors

in the set. If for each eigenvalue of a finite set for L we have an independent

set of chains, then the totality of all the vectors is a linearly independent set.

Most of these properties are known [6]. They are generalizations of proper-

ties of ordinary eigenvectors, and are proven by applying powers of L — X

to combinations of generalized eigenvectors, and equating coefficients. Also,

since the set of generalized eigenvectors of rank m or less for L and X is an

invariant subspace of H (for Lx = (L — X)x -f Xx), then the usual theorem

on the Jordan canonical form may be phrased as follows: If the space of

generalized eigenvectors of rank m or less for L and X is finite-dimensional,

then there exists a basis for this space consisting of independent chains.

Furthermore, the number and lengths of these chains are unique.

Since we are going to consider expansion theorems in terms of generalized

eigenfunctions of ordinary differential operators such as (2.1), the concept of

the adjoint operator, introduced in general situations by Birkhoff [2], is

essential. This is true also in the case of ordinary eigenvectors. The salient

points are [5] few. First, the operator M, with domain the set of functions

yit) E Cn[a, b] satisfying Vy = 0, is said to be adjoint to L if (Lx,y) = (jc, My)

for all x, y E C"[a, b] such that Ux = 0, Vy = 0. Here V is a boundary form,

and the scalar product is the standard formula (x, y) = fab x{t)y{t) dt. L and

U determine M, along with its domain, uniquely. The formal adjoint M is

called L+, and is the differential operator

(2 3)     L+y = ( ~ m^°y) {n) + {~ 1)n~1{Piy) l*~1) + • • •+p-y»

Poit) 9¿ 0 on [a, b].

Vis called U+, so that the domain of L+ is the set of functions y(£) G Cn[a, b]

satisfying

(2.4) U+y = 0.

The problem L+y = 0, U+y = 0 is said to be adjoint to the problem Lx = 0,

Ux = 0. The basic (alternative) theorem about adjoints is that both of these

problems have the same number of linearly independent solutions; Lx = f,

Ux = 0 has a solution if and only if / is orthogonal to the null space of L+ [5].

The generalized eigenfunctions of rank m or less for L and X are the solutions

of

(2.5) (L-X)mx = 0,    Ux = 0,    fJ(L-X)x = 0, ...,f7(L-X)m-1x = 0,
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whereas for P+ and X they are the solutions of

(P+-X)my = 0,    U+y = 0,

2.6
U+ÍL+ - x)y = 0, • • -, U+ÍL+ - X)m V = 0.

Note that the solution spaces of (2.5) and (2.6) are finite-dimensional. A

problem is said to be selfadjoint if P = L+ and both operators have the same

domain. For such problems all generalized eigenfunctions are of rank one.

The fact that they form a complete set is given by Sturm-Liouville theory.

One of the othogonality properties from this theory is now generalized to

higher ranks for the non-selfadjoint case.

Theorem 2.1. If x is a generalized eigenfunction for L and X, and y is one for

L+ and Jî, p 9e X, then (x,y) = 0.

Theorem 2.2. The basis of independent chains for the space of generalized

eigenfunctions of rank m or less for L+ and X matches that for L and X in number

and lengths of chains.

Theorem 2.1 is established by induction on the ranks of x and y. Theorem

2.2 is established by showing that the vectors of rank j or less, j'' = 1, • • -, m

in each basis are the solutions of adjoint problems and thus agree in number.

For details see [10]. These theorems would also follow from J. Schwartz's

results [9] if it were established that L is a regular differential operator.

3. The use of generalized eigenfunctions in expansion theorems. Generalized

eigenfunctions are brought into expansion theorems by use of Birkhoff's

result on the contour integral of the Green's function. It will be recalled [5]

that if the problem

(3.1) (L-X)x = 0,    Ux = 0        (where Lis given by (2.1))

has only the trivial solution for at least one complex value of X, then the

Green's function G(i, i',X) for this problem exists. G satisfies

iL-\)G= bit -t'),        UG=0 iôit - f) is the Dirac delta function)

for X not an eigenvalue, and is a meromorphic function of X with poles only at

eigenvalues. faG{t,t',\)f{t') dt' is the unique solution of

(L - \)x = /,        Ux = 0,

for continuous /, and X not an eigenvalue. Furthermore, the only possible

limit point of the eigenvalues is œ. For selfadjoint problems the eigenvalues

are real and the poles of G are simple. Birkhoff s result [2] is that if U satisfies

certain mild conditions which make the problem "regular," then for func-

tions/made up of a finite number of pieces in [a,b], each real, continuous,

and with a continuous derivative,

(3.2) i ¡fit + 0)+fit-0)]= Um[- ¿¿-<£   fW f, \)fit') dt'dxj on (a, b).
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At £ = a and £ = b the sequence converges to linear combinations of fia + 0)

and fib — 0). Here C„ is a circle about the orgin of radius n in the X-plane.

For selfadjoint problems the residue of G at the eigenvalue X = Xp [5] is

- ¿ xjMiif),
j=™p

where the x¡ and \p¡ are the eigenfunctions for L and L+, respectively. Thus

(3.2) for this type of problem takes the form

4" ¡fit + 0) + /(« - 0) ] = ¿ x}it) {f, ij).¿ ;=i

This is the usual expansion theorem.

Thus we expect for the non-selfadjoint case that the residue of G changes

only by the addition of generalized eigenfunctions.

Theorem 3.1. Let G(£,£',X) be the Green's function for the problem (3.1).

TAen

y[/(i + 0)+/(£-0)] = lim[-^f£ j"o G(£,£',X)/(£') d£'dx]    on (a,b),

(3.3) = - zz}-r lim <£   T Git, £', X)/(£') dt'd\
ZXÍ n—mJCnJa

= ÊxAt)(f,ij)   on ia,b).
M

Here the x/£) and \f/jit) are generalized eigenfunctions for L and L+, respec-

tively. Also

(3.4) (xj,tk) = o)k.

More specifically, if ¿is a pole of order m of G, then the residue at / is

Res, = - [xu(£)^(£') + • • • + xlni(£)¿u(£')]

(3.5) - [x21(£)^(£') + • • • + x^itHnit') ]-

- [xPAt)tpnpit') + ■■■ + xpnpit)xjpxit')],       m = nx^..-^np.

The x¿J(£) constitute a chain basis for the space of generalized eigenfunc-

tions of rank m or less. The first subscript denotes chain number and the

second denotes rank. The ^-(f) constitute a corresponding chain basis to the

adjoint problem (2.6) (with X replaced by /), the subscripts having the same

meaning. The orthogonality relation

(3.6) (X™, V'm'n') = &nm'Sn,n„, + l-n'

holds.
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We may prove this by writing out the Laurent expansion of G, applying

powers of L — X, and matching coefficients. See [10] for details. Alternatively

this would follow from Theorem 3, Corollary 2 of J. Schwartz's article if it

were established that L satisfies the hypotheses therein.

4. Application to separation of variables for a rectangle. We attempt now to

solve the Helmholtz equation for a rectangle by separation of variables. We

will find that in some cases we must use the preceding theorems to obtain the

necessary expansions. The problem is to solve

iV2+k2)uix,y) = /(x,y),       xi<x<x2, yi<y<y2,

(4.1) Ux(xi,y) =21u(x1,y),       uAx2,y) = z2u(x2,y),

uyix,yù = Ixuix,yx),        Uyix.yJ = Puix.ya).

The impedance constants, as well as k, may be complex. By the separation

procedure we will obtain systems of ordinary differential equations. We will

have to investigate their solvability and the uniqueness of solutions.

The separated problems arising from (4.1) are

X" + «2X = 0,   X'(xi)=2iX(x!),    X'(x2)=22X(x2),

Y" + ß2Y = 0,    Y'iyx) = IxYiyx),    Y'iyJ = I2Yiy¿,

where a2 + ß2 = k2. The nonzero eigenvalues, a2, are the squares of the

solutions of

(4.3) «(aj = (2l - ian)iz2 + toje-4-»^-^- (zi + ian)iz2 - ian)eto"()C2-X1, = 0.

Zero is an eigenvalue if and only if z2izxxx — 1) = Zi(z2x2 — 1), and then

the corresponding eigenfunction is

X0 = zi(x - Xi) + 1.

An application of Rouché's theorem [7] shows that the an asymptotically tend

toft7r/(x2 — Xi) as n approaches infinity. The adjoint problems of (3.2) are

X+" + «2X+ = 0,    X+\xx) - ziX+(xi),   X+'ixJ = z2X+ixJ,

(4'4)     Y+" + ,32Y+ = 0,    Y+(yi) = TxY+iyx),    Y+iya = T2Y+{y¿.

We denote by X„„ that generalized eigenfunction corresponding to di which

is of rank m. Thus for each n we have a chain basis

Xni,Xn2, • • • ,X.nmn

of (4.2), where m„ is the order of an as a pole of G(x, x', a), and correspondingly

of (4.4). These bases satisfy

(4.5) (Xnm, Xpg) = ànpbm,mn+\-q-

Letß2n=k2-a2n.



1965] GENERALIZED EIGENVECTORS 511

Having determined the bases of the x problem and its adjoint by the methods

of §3, we proceed according to standard technique. Thus let u(x,y) be a solu-

tion of (4.1). Then, expanding u and / in series of the x functions (we note that

the x problem has impedance boundary conditions, and is thus regular in the

sense of Birkhoff) we get

«      mn

UiX.y) = £   T,anmiy)Xnmix),
n=l m=l

(4.6)

fix.y) = EI cnm{y)Xnmix).
n=l m=l

By (3.5)

Cnmiy) — \f,Xn¡mn+X-m).

Theorem 3.1. Suppose (4.1) Aas a solution. Substitution of (4.6) into (4.1)

bads £o sysbms of ordinary differential equations for the a^Cy). // A2 is not an

eigenvalue of (4.1) these sysbms are uniquely solvabb. If k2 is an eigenvalue of (4.1)

£Aese sysbms are solvabb if and only iff is orthogonal to all the eigenfunctions of

the adjoint of (4.1). TAe arbitrariness in the solutions of these sysbms induces an

arbitrariness in the solution of (4.1) to within at most an eigen]unction. In either

case, once the anm(y) are found, the solution to (4.1) is given by (4.6).

Proof. Substitution of (4.6) into (4.1) and use of (4.5) leads to the following

systems of ordinary differential equations for the a^'s.

an,mn-l + ßnan,m„-l = Cn,m„-1 + d "%'

(4.7)

<2 + ß2nan2 = cn2 + a„3,       n = l,2, •••,

any + ß2nanX = cnX + an2,

aLiyù - IiOnmiyu, , „
m = 1,2, ■■-,mn; n= 1,2, •••.

a'nJjè = hanmiyè,

We observe that the expression (4.6)  for u already satisfies two of the

boundary conditions in (4.1). Each equation in (4.7) is of the form

a" + ßla = g,   a'(yx) = Ixaiyx),   a'(y2) = I^yy^,

where g differs from equation to equation. Thus the system (3.7) are unique-

ly solvable if and only if

(4.8) a" + 02a = O,   a'(yx) = Ixa(yx),   a'^ = /^(yj

has only the trivial solution. In solving (4.7) we consider separately the cases

where A2 is and is not an eigenvalue of (4.1).
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Case A. We assume k2 is not an eigenvalue of (4.1). Then (4.8) has only

the trivial solution for each n. For if a0iy) were a nontrivial solution corre-

sponding to n0, then uQix,y) = X„oi(x)a0(y) would be an eigenfunction of

(4.1), contradicting our assumption. We may then solve (4.7) by using the

Green's function G{y,y',ßn), which is the unique solution of

G" + ß2nG = hiy - y'),    Gyiyx,y',ßn) = IxGiyx,y',ßn),

Gyiy2,y',ßn) = I2Giy2,y',ßn).

By the properties of G the solution of (4.7) is

(4.9)    anmiy) = pG^y'./SJtc^iy) + an,m+xiy')]dy',
m = 1,2, •••,m„,

r« n = 1,2, •••.

Here a„,m„+i = 0. The Green's function is

riv v' a i    U2y> + (l - I2y2)][Iiy< + (l - IM      ,    R    0Lr(y,y ,0J = -j-jz-j-r-j-r-,-r—r- lor  ß„ = 0,
I Al - Ziyi) - P(l - /¿y^

(4.10) = ^A [ih + ißn)e^> -*>- (/2 - í73>-^> -*]
¿pnA

X [(/, + &)«**<-»» - (P - i0>~*,,<y<~n)J.  forft, * 0.

Here y> = maxiy^'), y< = min(y,y'), and

A = (P + ißn)ih - ißue**<»-yi) _ (/, _ ¿^(/2 + ¿ft,)*-**»-*)

From (4.6), (4.9), (4.10) and the form of the X+m, the anmiy) turn out to be

linear combinations of functions of the form

e±¡to j      \pAx)fix,y')e±l[a-(x~^±^\dxdy'.
J yi   J *i

Also from (4.6) and (4.9) the solution for u is

»      "hi      fyi
uix,y) = Z Z        Giy,y',ßJ[cmiy) +an,m+xiy')]dy'Xmnix),

<n=l m = l Jy\

concluding Case A.

Case B. Now let k2 be an eigenvalue. We show here that (4.7) is solvable

if and only if / is orthogonal to all the solutions of the homogeneous adjoint

problem of (4.1). Furthermore any arbitrariness in the solution of (4.7) intro-

duces an arbitrariness in u to within at most an eigenfunction of (4.1). Before

establishing this we must investigate the nature of the eigenfunctions of (4.1)

and its adjoint problem. This adjoint problem is

iV2 + ~k2)v=0

(4.11) vAxx,y) =zxvixx,y),       vAx2,y) = z2vix2,y),

vyix,yx) = Txvix,yx),       Vyix.y^ = T^ix.yù-
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We show this by using Green's theorem. Let u and v be any functions satis-

fying the boundary conditions (though not necessarily the differential equa-

tions) of (4.1) and (4.11), respectively. Then

<V2u,u) = I vV2udxdy
J n J *i

The boundary integral vanishes by virtue of the boundary conditions.

We now investigate what the eigenfunctions of (4.1) and (4.11) are in

terms of the solutions of the separated problems. The answer is given by the

following.

Lemma 4.1. If A2 is an eigenvalue of (4.1) then A2 = a2 + ß2 for some pair of

a and ß (there may be more than one pair, that is, k2 may be degenerate), where

of and ß2 are eigenvalues of (4.2). We denob the chains corresponding to them by

(4.12) Xi, X2, • • •, Xm ; Yy, Y2, - - -, Yn,

where m, n are the indices of a2 and ß2, respectively. Then the eigenfunctions of

(4.1) are the linear combinations of

XyYy, XyY2 - X2Y y, ■ • -, XyYj.y - X2Y,_2 + • • • + ( - lyX^ Y»

XyYj - X2Y,_, + • • • + i-iy+lXjYu       j = min(m,ra).

We refer to these as chain products. (Ira £Ae case of degeneracy we have such chain

products for each pair of eigenvalues at ß\ such that k2 = a\ + ß2n.)

Proof. First let

(4.14) u>(x,y) = X1Y*_1-X2Yt_2+... + (-l)*X*_1Y1,       %*k*j + \.

We will now show that w is an eigenfunction of (4.1). We define the operators

L and M by Lwix,y) = - w^ix.y), Mwix,y) = - Wyyix,y).   Thus  (call-

ing Xo = Y0 = 0)  to preserve notation)

(V2 + A>(x,y) = - (L - a2 + M - ß2) Z (-l)p+1Xp(x)Yk-„(y)
p=i

= - Zi-l)p+1[Xp_Ax)Yk_piy) + Xpix)Yk^piy)]
p-i

= ¿ (-l)pXp_i(x) Yk-Piy) + £(-DpXp(x) Yk-X-Piy)
p=2 p = l

= ¿(-DpXp_,(x)Y,_p(y) - £ i-lV'Xp,.xix)Yk.p-iy)
P = 2 P'=2

= 0.
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Also w satisfies the boundary conditions by virtue of the conditions on the

Xp and Yp, and is thus an eigenfunction. Next we assume that w is an eigen-

function of (4.1). We will find its form. From previous arguments

mn

«>(x,y) = Z Z anmiy)Xnmix),
n=l m=l

where the a^ are to be found. Substitution into (4.1) with / = 0 leads to

(4.7), With Cni = Cn2=   ■■■ =Cnmn= 0.

For those n for which ßl is not an eigenvalue, aH = an2= ■■• = a„„n = 0.

For some n = n0, ßl is an eigenvalue. Otherwise anm = 0 for all n, m and u

would not be an eigenfunction. Let ß2 = ß% «2 = a2^. Dropping the chain

subscript from the a^m and from the generalized eigenfunctions, the n0th

system of (4.7) becomes

a'm + ß2am=0,

a'm_x + /32am_i = am

(4.15) •    •    • a'p{yx) = Pap(yi), a'piyè = I^ßpiyjj,

o.'{+ß2a2 = a3, P = l,2,...,».

a'{+ ß2ax = a2,

We solve this separately for the cases m ^ n and m> n.

Case a. m íS n. The general solution of the first equation is am = cYx. The

second equation is then

o*_1-r-|82am_1 = cY1>

whose general solution is am^x = —cY2 + dYx, since —cY2 is a particular solu-

tion. Similarly the general solution of the third equation is am_2 = cY3 — dY2

+ eYx. Continuing this way we arrive at the last equation, whose general

solution is

a1= (-l)m-1cYm+ (-l)m-2dYm_!+ ••• + i-lfiY2+ i-l)ajYx.

Thus (assuming ß'i^ is the only ßl that is an eigenvalue) we find

m

uix,y) = Za,(y)X;(x) = (-l)m-1c(XiYm - X2Ym„x+ ••• + (-l)ralXmYi)

+ (-l)"'-!y(X1YIB_1-X2Ym_2+ ••• + (-l)^2Xm_!Yi) + •••

+ (-l)ü;XiYi,

which is of the asserted form.

Case b. m > n. Again the solution of the first equation is am = cxYx. The

second has solution am_i = — cxY2 + c2Yx, and so on, until we come to the

(n + 1) st equation. This equation is

a'L-n + ß2am_n = am.n+x = (- l)-1c1Y1, + ( - D^2c2Y„_i +... + (- l)uc„Yi.
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Because this equation has a solution, the alternative theorem implies

0 = (ora_B+1, Yt) = (i-ir-'cyYn, Yt) = (-1)"^.

Thus its general solution is

am-n= (-i)-fc.Y.+ (-1)"-^.-!+ ••• + i-iycnY2+i-iycn+yYy.

If m — n = 1 we are finished. If not, the next equation is

am-n-i 3 ß am_n_y = am_n.

Again, since this has a solution we get c2 = 0. We continue in this manner,

using the alternative theorem. When we get to the mth equation we have

cx = c2= --■ = cm_n_x = 0. The mth equation is

a'l + ß2ax = a2 = ( - l)"-1cm_„YB + ( - l)-JfeM_1H.1y,_1 + ... + (- DV.-1Y1.

Thus cm_n = 0. Its solution is

ay = ( - l)"-1tm^+yYtt + i - l)n'2cm_n+2Yn_y + ■•■ + (- l)ucmYy.

Thus since an+l = an+2 = • • • = am = 0 we finally get

wix,y) = i-l)°caiXyYy) + i-iycm„yiXyY2-X2Yy) + ...

+ i-iy-k^+yiXyYn-r-  ■■■ + ( - l)""^ Yy) .

This is of the asserted form, proving the Lemma.

Applying Lemma 4.1 to obtain the eigenfunction of (4.11) we see that they

are linear combinations of

XÏYÏ.XÏYt - XtYt,--.,XtYT-X - X2+Y/_2+ ••• + i-iyx^Yt,
(4.16)

Xt Y/ X2+ Y/_ !+... + (-1 )^X/ Yt,       j = minim, n).

The X+ and Yp are generalized eigenfunctions of (4.4). The orthogonality

relations among these functions are

(4.17) (X1,X/) = ôi>m+1_J,        (Y1,Y/) = ôi,„+1_;.

We are now ready to establish our initial assertion on the necessary and

sufficient conditions for the solvability of (4.7) when A2 is an eigenvalue.

Dropping the chain subscript the ra0th system of (4.7) becomes

a'm + ßlam = cm,

am_y + ß2am_y = cm_y + am,

(4.18) •    •    • a'piyy) = Ixap(yx), a'piyj = I2apiy2),

a'2'+ß2a2 = c2 + a-0, p = l,2,-..,m.

a'{ + ß2ax = cx + a2,

First assume that (4.7) has a solution for the a^. Define
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•••it

"(X,y) = Z   Z anmiy)Xnmix).
n=l m=l

Then

(V2 + ft2)Ù(x,y)=/(x,y).

Let u+ix,y) be any solution of (4.11). Then

f * fX2fix,y)U+ix,y)dxdy=(f,u+) = ((V2-f ft2)Ù,a+)

= <û~,(V2 + P)u+) = 0,

estabhshing the necessity. Now assume that / is orthogonal to all solutions

of (4.11). Those systems of (4.7) for which ßl is not an eigenvalue are

uniquely solvable, as before, by the method of Green's function. For the

remaining systems, a typical one being (4.18), we have to show that in each

equation the inhomogeneous term satisfies the orthogonality criterion of the

alternative theorem. By our assumption

ry2 r*2 _       _

/(x,y)Xi+(x)Yi+(y)dxdy = 0,
J y\ J *i

f2 (X2fix,y)Xx+ix)Y2+iy)dxdy- P (^ fix,y)X2+ix)Yx+iy)dxdy = 0,
Jy\ Jii J y\ J h

(4.19)

(*y¿  f*x2 /*y2   i*x2

fix, y)Xi+(x) Y/_ i(y) dxdy - fix, y)X2+(x) Yf_2iy) dxdy+...
J y\ J *i J n J *i

+ i-l)J f' P fix,y)Xr-Ax)Ytiy)dxdy = 0,
J yi J *i

rn rx2 _       _ çyt rx2 _        _

/(x,y)Xr(x)Y/(y)dxdy- /(x,y)X2+(x) Y/_i(y)dxdy + •••
Jn J *i J y\ J xi

+ i- 1)J+1 P2 fZ2fix,y)X;ix)Yfiy)dxdy = 0.
Jy\ J *\

We want to show

(4.20) <cm, Yt) = (€„_! + am, Yt) = • • • - <c, + a2, Y?) = 0.

Starting with the first equation,

Çy2 r*2 _       _
(cm, Yt) = fix,y)Xx+ix) YTiy) dxdy = 0.

Thus this equation is solvable, its general solution being
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(4.21) am = amp + dyYx,

where amp is a particular solution and dx is arbitrary. Then

rn rn _       _
(cm_1 + am, YT) = /(x,y)X2+(x) Ytiy) dxdy + (am, Yt)

« P" p/(*,y)X>(x)Y2+(y)dxdy+<am,Yr>

rn _
=        cm(y)Y2+(y)dy+(am,Y?)

Jn

',(y) + ß2am(y)]Y?(y) dy + (am, Yt)

= [a'mY2+ - amYSyfx - (am, Yt) + (am, Yt) = 0

by (4.18). The general solution of the second equation is then

(4.22) om_1 = o(m_1)p-d1Y2 + d2Y1,

where a(m_1)p is any particular solution of a" + ß2a = cm_i + amp. Note

that this equation is solvable, just set dx = 0 in (4.20). We continue

proving (4.20) in the same manner. We replace each cp by f^ fS2 f(x,y)

• Xm+X-p(x)dxdy. Then we use (4.19) to replace these expressions by ones

involving lower ranked x adjoint functions. We now replace these latter

integrals by higher indexed cq's; use (4.18) to replace these by derivatives

of the higher aq's. Then we integrate by parts, to get (L+ — ß2) operating

on the adjoint y functions. Finally we use the boundary conditions to

show that the resulting expression is zero. After establishing

(4.23) (cm, Yt) = (cm~x + am, Yt) = ■■■ = <c,_«_M + om_0_2) , Yt) = 0

we have for the general solution of the system of the first j equations of

(4.18),

am = a^ + dyYu

am-i = 0(m-i)p — dyY2 + d2Yx,

(4.24)

am^-2) = a[m-(,-2)]p+ i-iy-'idyY1_y3i-l)'-H2Y].2^ ■■■

+ (-l)1c^2Y2 + d;_1Y1,

ara-0-1, = a|m_0_1)]p+ (-iy-VlYi+ i-iy-%Y].y+ •••

+ (-l)Ui_lYt + dyY1.

Here the d's are arbitrary and o((B_g) , q = 0,1, ■ •-,j — 1, is any particular

solution of

(4.25) a" + ßla = cm_q + alm_(,_1)lp)



518 MAURICE MACHOVER [March

where a(n>+1) = 0. By (4.23) this equation is solvable. (Just set the d's = 0).

If j = m we have covered all the equations of (4.18) and have established our

assertion. The general solution is (4.24). Thus the contribution of this

system to u is

m

Z apiy)Xpix) = dm(Xi Yi) + (- 1)^ i(Xi Y2 - X2YJ
p-J

(4.26) + (-l)2dm_2(XiY3 - X2Y2 + X3YX) + ■■■

+ i-l)m-idxiXxYm- X2Ym-l+  ■■■ + i-l)mXm-1Y2+ i-l)m+iXmYx)

+ XxaXp + X2a2p+ ■■■ + Xmamp.

This is arbitrary to within an eigenfunction of (4.1). If instead j = n <m

we have to go further and show that

\Cm-n + Om-(n-l), Yx) = (Cm_(n+i) + Om-rn Y\ ) =   • • •

(4-2?) = <c2 + as, Yi+) = (ci + a2, Yi+) = 0.

To do this we will have to fix some of the d's, thus restricting the generality

of our solution.

Case a. j = n < m = n -   r ^ 2n, therefore r g,n.

In this case the general solution of (4.18) is

am = amp + dXoYx,

Om-i = a(m_1)p + ( -1) ^ Y2 + d^ Yx,

am_2 = a(m-2)p+(-l)2dloY3+(-l)1d%)Y2 + d3oYi,

am_(r_i, = alm_(r_i)t) + ( - ly-'d^ Yr + ( - lY'H^ Yr_x + . ■ ■

+ (-l)1d(r_i)0Y2 + da)Yi,

am_r = a<m_r)p + i-l)rdXoYr+x+ (-l)r-1d2oYr+ •••

+ ( -1) 'dr0 Y2 + dr+x Yx       (delete if r = n),

am^i) = alm-{n-1)ip+i-iy-1dXoYn+i-iy-2d^Yn_x+...

+ (-l)"^Y„_(r_1)+ (-l)"-ir+1'dr+iYn_r+ ••• + (-1)^.1 Y2 + dnYi,

am-n=a(m-n)p+ (~ D""1^ Y„ +  — + ( " D "^"^O Y„_(r.2)

+ (- l)"-rdr+i Y-fr-i) +••• + (-1) ldn Y2 + dn+x Yx,

a2 = a2p+i-iy-idroYn+i-iy~2dr+xYn-x+...

+ i-l)1dm-2Y2 + dm-XYx,

ax = aXp+i-iy-1dr+xYn+--- + (-l)1dm_iY2 + dmYx.
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Here dr+1, dr+2, ■ ■ -,dm are arbitrary, and aipI ■ ■ -,amp, dl0, • • -,dr(j are defined

as follows: a(m_ç)p for g = 0,1, • ■ -,ra — 1 is any particular solution of

(4-29) a" + ß2a = cm_, + alm-iq-i)ip,

where we set a(m+x)p = 0. This is solvable by (4.23). We define in order dlQ,

aym-n)p, d^ a^m-{n+X)^, ...,dro, aXp by

dTO = -i-l)"-l[{cm -in + q-1), Yt) + (alm_(n+,_2)]p, Yt)],

(4.30) g = l,2, ...,r,

0{m-q)p + ß2a(m-q)p = cm_, + alm_(,_1)jp+ i-iy-^+y^Y«,

g = re,re -)- 1, ..-,rai — 2,m — 1.

Note that the choice of d^, • • -,dro makes this latter equation solvable. One

can now check that (4.27) holds and that (4.28) is indeed the general solution.

Caseb.

; = ra < m = ra -f r > 2ra,        therefore r > n.

Again we define aXp,.-.,amp, d^, ...,dro by (4.29) and (4.30). The general

solution of (4.18) is then

am = amp + dy0Yx,

am_i = a(m_1)p+ i-iyd^Yi + d^Yy,

am-(n-i) = alm_(„_1)t+ (-l)"-y^Y.+ (-l)B-y%YB_1+ •••

+ (-l)1d(n_1)oY2 + d„0Y1,

am-„ - a(m_n)p + (-l)B-yaoYB+ • • • + (-l)1d^)Y2 + d^+DoY^

(4.31)

Om-(r-l) = aim-(r-l)Jp+ ( — l)B~1d(f_n+i)0 Y„ +  ••• + ( — 1) tyr-i),, Y2 + drQ Ylf

aa_r-atw_ri,+ (-l)',-1d(r_B+2>0YB+ ••• + (-D^Y. + d^Yi,

a2 = a2p+(-l)n-1d^)Yn+(-l)^2dr+1Y„_1+...

+ (-l)1dm_2Y2 + dm_1Y1,

a1 = alp+(-l)"-1dr+iYn+(-l)'l-U+2Yn-i+---

+ (-l)1dm_1Y2 + dmY1.

Thus in either case (4.27) holds and one can check that the contribution of

(4.18) to u is arbitrary to within an eigenfunction of (4.1). Thus (4.7) is

solvable for the case A2 an eigenvalue to within the asserted degree of

arbitrariness. Thus, we have proved Theorem 4.1.

It is worth noting that the actual solution of (4.1) may be carried out in

two steps. The first uses the unmodified procedure of separation of variables,

dealing only with ordinary eigenvectors. It involves solving
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«.       mn

(V2 + WuAx.y) = fix,y) - Z Z cmiy)Xmix),
n=l m=2

UiAxuy) = zxuxixx,y),       uXxix2,y) = z2"i(x2,y),

"iy(*,yi) = /i«i(x,yi),       ulyix,y2) = huiix.yz)

by substituting in

Uiix.y) = Za"iCy)Xnl(x),
»-i

<*      ">n <°

fix.y) -II c^iyJX^ix) = Icnl(y)X„i(x).
n=\ m=2 n=l

This leads to the single equation

a'nx + ßlani = cnX,   a'niiyù = IxanXiyx),   a'^iyj = /2anl(y2).

Any consideration of higher ranks in this part would only give us systems of

ordinary differential equations whose solutions are

Onm = 0    for m > 1.

The second step involves solving

(V2+a«2(xj)  =11 Cnmiy)Xnmix),
n = l m=2

"2x(Xi,y) = ZiU2(xi,y),        u2x(x2,y) = z2n2(x2,y),

«¡îyU.yi) = P"2(x,yi),       u-iyix.yj = huAx.yJ.

Here we substitute in the complete expansion

m„

u2ix,y) = 11 anmiy)Xnmix),
n = \ m = l

but we need only solve those systems corresponding to chains along which /

has high rank components. For we must have

anl = an2 =   ■ ■ ■ = ünm = 0

for the other systems. Thus there are relatively few systems to solve. Of

course, the solution to the original problem is then

u — ux + u2.

5. Extensions. This extended procedure of separation of variables, using

generalized eigenfunctions, may be applied to other coordinate systems as

well as to a larger class of partial differential equations. Let

(5.1) £ = £(x,y),       v = vix,y)
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be any conformai transformation. The Helmholtz equation then transforms

to

(5.2) u((+um + k2h2it;,r,) =0.

The metrical coefficient ft2 is given by

«2(£,»/) = x2+x2.

A necessary and sufficient condition for separability of (5.2) with impedance

boundary conditions in this system is

AUl)-/(0+íW

for some / and g [8]. Thus all separable coordinates obtained by conformai

maps of the z = x + iy plane are obtained by solving

x\+xi=M)+gir,).

Theny(£,7/) is obtained as the harmonic conjugate of x(£,if). In order that

the impedance conditions

<5-3) f=zH,n)u
on

also separate for the finite domain bounded by the coordinate curves

(5.4) £ = |i,    £ = |2,    V = »Jii    V = V2,

z(£, t;) must be restricted to certain forms along the boundaries. By express-

ing du/dn in terms of u{ and u, we see that z must satisfy

/      \        — ̂ i /      \ L2
z(|i,J/) = TT--r, zfe,r?) =

ä(€i,u)' WB"     Mían)'

Mf.iíi)' *&*>'

where Cx, C2, Dx, D2 are complex constants. If we substitute

uii,n) = Fi&G(n)

into (5.2) and (5.3) they separate into

P" + (ft2/ - a2) F = 0,   P'(li) = dP(ii),   F (&) - C^fa),

(5,5)      G" + (ft2g + a2)G = 0,   G'iVx) = DxGiVx),   G'ivè = D2Ginè,

where a2 is the separation constant.

Thus, for example, for elliptic coordinates [8]

/(£) = d2cosh2£,       git,) = -d2cos2>j,

where d is a real constant. Then (5.2), (5.3), and (5.5) become
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uK + u„ + A2d2(cosh2£ - cos2tj)u = 0,

"Atuv) = Cxuiçx,7,),       uA$2,v) = C2uii.2,r,),

(5-6) u,(|, ,0 = Dxuit, 1,1),       u,(|, 7,2) = D2u(i, t,,) ,

F" + (A2d2cosh2£ -a2)F=0,   F iQ = dJPtfe),    F' (fe) = C\F<&),

G" + ( - A2d2cos27, + a2) G = 0,    G' M = DxGir,x),    G' iV2) = D2GiV2).

These are Mathieu equations. We have made the assumption that the region

(5.4) contains no singularities such as the origin or the focal axis.

To apply separation of variables we first determine chain basis for the £

problem. If the eigenvalues are ai, re = 1,2, • • -, and the chains are F^iÇ),

FtmiO we again have

{£run,-Fpq) = OnpOqimn+X-.m

Here mn is the index of aln. Substitution of

u({,n) = IZ amiv)Fm(i),       /■({,„) = ZZ C-(")F™(^
n=l m=l n=\ m=l

into

u(i + um + k2h2it,v) = rit,r,)

leads to the systems

a'Ln + ik2g + afjanmn = cnmn,

a'n,mn-\ + ik2g + al)animn-x = Cnj^-y — o«^,        a'^M = Dxanmiyx),

/r m Onm(')2)  = •L^ûnmUî),

a'ñx + ik2g + aÍ)anX = cnX - an2,

m = l,2,...,mn,    » = 1,2,....

If A2 is not an eigenvalue then neither is ai, so that we may solve (5.7) by the

Green's function method. If A2 is an eigenvalue then we require r(£, ?,) to be

orthogonal to all the eigenfunctions of the adjoint of (5.2), and proceed ex-

actly as in the x, y case.

The extension to more complicated operators also involves no great

changes. Thus consider the problem

(5.8) (L1 + L2 + A2)u(x,y)=/(x,y)

for a rectangle, where

" ó"1 " Ö"

Li = E anix) — L2 = X bn(y) —.
n=0 OX n=0 dy
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We assume the boundary conditions on u are such that substitution of u (x, y)

= mix)niy) leads to the component problems

(Pi + X)m(x) =0,       Am = 0,
(5.9)

(L2+(ft2-X))n(y)=0,       Pn = 0.

Here A and B are the usual boundary forms defined by

Aim = I [a^-'Axù + Mi«-M<atf I       i = 1,2, • • -,p,
;'-i

Pin = I[ci^-1,(yi)+dyn^1'(y2)],       ¿ = 1,2, .-.,*?.
;-i

Assuming the x problem is regular we first find its chain bases X¡mn, n = 1,

2,---,rml, m = 1,2, ■ ■ -, C¡, / = 1,2, • • •.Xímn is the nth ranked generalized

eigenfunction for the mth chain of the eigenvalue \¡. Ci is the number of

chains for X¡ (C/ = 1 for Pi -f P2 = V2), and r^ is the length of the mth chain

for X(. We correspondingly determine the XZm- The orthogonality relation is

(5.10) (Ximn, Xfm'n') = o'll'&mm'&n,rmi+l-n'-

Substituting

»      Q     rmi

u(x,y) =11 Ia,m„(y)Xim„(x),
¡ = 1 m = l n = l

/(X,y)=I   I   I ßlmniy)Xlmnix)
1 = 1 m=l n=l

into (5.8), and using (5.9) and (5.10), leads to the systems

(L2 + Ui)a¡mrm¡ = ßlmrml,

(L2 + Ut)aim,rml-1 = ßlmfml-l ~ almrml>

(5.11) ... , Pa/m„=0,

(P2 + ui)alm2 = ßim2 — aim3,

(L2 -f U¡)a/mi = ßlmX — a/m2,

n= 1,2, •••,rm/, m = 1,2, ...,C/,/= 1,2, •••.

Here u¡ = k2 — X,, /ä^iy) = {f, X~tm/ml+X-n)■ If £2 is not an eigenvalue then

neither is ut so that (5.11) may be solved. If k2 is an eigenvalue then we have

the usual orthogonality conditions on fix, y).
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