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I. Introduction. Ascoli's theorem deals with continuous functions and states

that the space of bounded, equicontinuous functions is compact. The present

paper extends it to the measurable functions. The space of bounded "equi-

measurable functions," is compact, and it contains the bounded equicontinu-

ous functions as a subset.

The above theorem is applied to two problems in the theory of optimal

control:

1. To give an existence proof of optimal control among allowed control

functions which are measurable and enter the system equations in a non-

linear manner.

2. To derive a necessary condition for optimal control in bounded phase

space (Theorem 8). The condition is different and simpler than the one

derived previously by Gamkrelidze [l]. It is proved to be also sufficient for

linear systems, and its applications to engineering problems are given in

previous papers [2].

In their classic paper [3], Boltjansku, Gamkrelidze, and Pontryagin

derived the "maximum principle" by assuming the existence of optimal

control. Gamkrelidze [4] gave an existence proof for the linear case with

discontinuous control. Markus and Lee [5] sketched an existence proof for

the linear case with discontinuous control and also stated an existence

theorem for the nonlinear case with continuous control satisfying a Lipschitz

condition. None of these existence proofs are sufficiently general to form a

basis for proving Pontryagin's maximum principle and the above-mentioned

condition for optimal control in bounded phase space.

The method used in deriving the latter is also different from that used by

earlier investigators. In place of the rigid bound, a cost function with a multi-

plier K is introduced for regions beyond the boundaries in phase space. It is

shown that in the limit of the multiplier K approaching infinity, both the

added cost and the maximum excursion of the optimal path beyond the

boundaries approach zero, and the condition for optimal control is thus

derived.

The generalized Ascoli theorem is useful in both the existence proof of

optimal control, and in proving the existence of a limit as K approaches

infinity.
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IL Equimeasurable functions.

Definition. A function fit) is said to be measurable if there exists a

sequence of step functions g At) such that

lim|^(i)-/(0H0
¿—.CD

except on a set of zero measure.

An infinite set of functions P is said to be equimeasurable on a closed inter-

val T if there exists a sequence of step functions g ¿At) for each /¿(0 G P such

that the following conditions are satisfied:

2.1. giAt) has no more than k discontinuities.

2.2. For every tx> 0 and ôx > 0, there is a finite number Kitx,ôx) and for

every g ¿it) with k > Kitx, ôx)

(1) \g,At)-fAt)\<tx,      ¿=1,2,..., œ,

except on a set of total measure less than 5X.

Theorem 1. The following sets of functions are equimeasurable:

(a) functions with uniformly bounded variations on T isame bounds for all

the functions bebnging to the set),

(b) piecewise equicontinuous functions,

(c) functions obtained by a finite number of addition, subtraction, and multi-

plication operations on equimeasurable functions.

Proof, (a) Given a function fit) with bounded variation M in an interval

T = [ti,t2], and Kitx,6x) is selected to be

¿txbx

The interval T is divided into k subintervals t, of equal length. Let

a, = sup/(i),        6, = inf/(t).
í£r¿ ten

The step function g At) is defined by

£*(«)= ¿(a,+ W,       íGt¡.

Since the maximum variation is M, the number of intervals with a, — 6,

^ 2«! is not greater than M/2tx. Therefore, for any k > Kitx,ôx)

\fit)-gAt)\<cx

with the exception of at most M/2tx intervals, the total length of which is

M itx - y

(b) For piecewise equicontinuous functions, as T is bounded and closed,
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a modulus of continuity 0(A) can be defined [6] which holds for all functions

f¡ and bET:

|/,(6 +A) -/,(&)!< 0(A).

0(A) = 0(|A|)—>0 as |A| —>0 except at a finite number i<N) of discontin-

uities which can be different for different /,. Given any tx, ôx, a Ax is defined

as the smaller of the two, An and Ai2:

¿i
0(Au) = í1,        Al2=2Ñ'

Then

«ft,«-*^.
Ai

For each value of A, the interval T is divided into A equal intervals and #,*(£)

is assigned the mean value of/,(£) in each interval. Then (1) is satisfied. Q.E.D.

In the following, the functions /,(£) are assumed to be bounded from above

and below on an interval T. Consequently the step functions glk{t) are also

bounded from above and below. Let S, denote the sequence of step functions

gikit), A = 1,2, • •-, œ. Let Gk denote the sequence of step functions gik{t),

i = 1,2, • • -, œ. Let L denote the length of the interval T. In what follows,

the length and measure of a subset T' of T are synonymous, and is denoted

by *{!"}■

Lemma 1. Given any A, a sequence of functions g„*(£) can be selected from

Gk such that it converges in measure to some function Vk{t) :

(2) Ât\\gnk-Vk\^l-\<-
\ n )      n

Furthermore, each gnt(£) is selected from the subset of Gk with i = n.

Proof. Let £a,£l2, •••,£!*' denote all the points of discontinuity of glkit) and

ii(*+D • • • tlk be any other points in T. These A points partition the interval

T into A + 1 subintervals. Let alX,ai2, ■ ■ .,ai{k+x) be the values of glkit) in the

subintervals. The set £¿i,£l2, • ••,£,*, aix,ai2, • • -,al{k+X) defines a point P, in a

bounded (2A + 1)-dimensional space. It follows from the Weierstrass-Bolzano

theorem that the set of points {P, j representing Gk has at least one point of

accumulation tx,t2, • • • ,tk, ax,a2, • • • ,ak+x. Therefore, a sequence of points

{P(„,} can be so selected that

Kn-klè-,       I =1,2,...,*,

|o(B), - a,| g-,       / -1,2, •••,* + 1.
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The step function specified by tx, t2, ■•-, tk, ax,a2, ■■-,ak+x is VAf), and P(n) is

the representative point of gnkit) in (2).

The condition i è n can be met as follows: After selecting each P(n > which

is the representative point of g¡ At), the next point P(„<+1) is selected from the

subset {Pi. J with i" > i'.   Q.E.D.
Selection of two-dimensional array \\gnkit) \\- Let the sequence ¡g„¿(£)¡ be

denoted Hk. Then the sequence Hk+X is selected from Gk+X as follows.

Each term g^(i) in Hk is identical with a g,At) in Gk. Correspondingly there

is ag1(/fe+i)(£) in Gk+X, and all the gnk+yit) so selected constitute a subset G'k+X

ofGk+x. The sequence g„(*+u(i) is selected from Gk+X in exactly the same way

as gnkit) is selected from Gk. In identical manner gnik+2) is selected from the

subset G'k+2 of Gk+2, etc.

Using the above procedure, and starting from k = 1, one obtains the two-

dimensional array of functions j j gnkit) j (, k = 1,2, • • -, oo and n = 1,2, • • -, œ.

Each member of the array satisfies (2) and the following condition:

For any gnkit), and k' < k, there is a gn<*<(<) which belongs to the same

sequence S¿. That is,

gnkit)  = ga(í)

and

gnkit) m g*(î)       ¡èn'èn.

Lemma 2. Tne diagonal sequence j g„„(i) ( o/ ifte array | {g„¿(f)}} is a Cauchy

sequence in measure.

Proof. Given t and ô, there is a K(e/4, 6/4) as defined by (1). Let lit, 5)

denote the least integer which is larger than all three: Kit/4, 5/4), 4/t and

4L/Ô. Consider any two functions in the sequence g„„(£) and gmmíí) with

n> m> IU,ô). Because of the rule of selection, there is a gsm(i) with s ^ n

which belongs to the same S, with gnAt) ■

Inequality (1) gives

(3) | gnnit)  - gsmit) | Ú   | gnniD  ~ fiiO | +   | gsm(i)  - f AD \ ik £

except on a set of total measure less than 5/2. Inequality (2) gives

\gsA0  - gnJjt) | â   \gsmit)  -   Vmit) | +   |g„m(i)  -   Vnit) \

(4> !      !      «

s     m     z

Combining (3) and (4) gives

(5) p{t\\gnn-gmm\^t\<à.

Q.E.D.



1965] ASCOLI'S THEOREM 449

A by-product of the above proof is that no two members of the sequence

jgnn) belong to the same S¡. For each g„„(£) there corresponds an S¡- and

/,'(£). Let /,-'(£) be redenoted f„(£). Then all members of the sequence) f„(£) ¡,

n = 1,2,..., œ, are distinct. It follows from equations (1) and (5) that

j f„(£) ¡ is a Cauchy sequence in measure.

Theorem 2. Let {/(£)} be an equimeasurable set of functions which are

bounded from above and bebw. An infinite subsequence {/(„)(£)( can be selected

from )/,(£)} sucA £Aa£/,„,(£) converges almost uniformly to a measurable function

vit).

Proof. By Lemma 2, a Cauchy sequence in measure {f„(£) | is selected from

j/¿(£)}. A subsequence of jf„(£)} is a Cauchy sequence [almost uniform] [7j.

Let it be denoted by {|/(n)(£)|. By Cauchy's theorem [8], j/<„)(£)) con-

verges to a measurable function almost uniformly on T.   Q. E.D.

Definitions. The norm of a vector a is defined as

(6) || («i,«2, —, «aí) || =     sup    |«i| .
i = l,2,---,,ÍV

A vector function has a finite number of components. A set of vector func-

tions ¡u>,(£)} is said to be equimeasurable if conditions 2.1 and 2.2 are valid

with (1) replaced by

(7) ft{t|Utt-wt|£<i}<<i.

The norm of vector functions takes the place of the absolute values of

scalar functions.

Corollary 1. An infinite subsequence \winAt) \ can be selected from an equi-

measurable set \wAt) | sucA £Aa£ u>,n)(£) converges almost uniformly to a measur-

able function Vit).

Proof. Let u^(£) denote the jth component of Wi(t). From each vector func-

tion Wi(t), a scalar function /,-(£) can be defined:

fAt+ij-l)L) = wÍ(í),       j=l,2,..-,N.

Then [/,(£) j is an equimeasurable set defined on an interval of length NL.

By Theorem 2, a subsequence {/(„)(£)} can be selected from j/¿(£) j such that

it converges almost uniformly to U{t). By decomposing /<„>(£) and U{t), u>(nl(£)

and V(i) are obtained.   Q.E.D.

Corollary 2. Let B denote an enumerably infinite set of vector functions

\wit) J. £acA wit) has m components wAt), w\t), • -.,wmit) which are uniformly

bounded on a closed interval T. The components w"it), 1 zi u g mx, are equicon-

tinuous; the components wAt), mx + 1 g v = m, are equimeasurable.

Then from B a subset of vecbr functions {wMit)}, n = 1,2, • • -, °°, can be
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selected which converges to a limit Vit) in the sense that the components W\nAt)

converge uniformly to Vit) and the components W\nAt) converge almost uni-

formly to Vit).

Proof. As equicontinuous functions are equimeasurable, by Corollary 1,

a subsequence j W(n)(f)} can be selected which converges uniformly to Vit)

except on a set V of zero measure. Then Vit) for tET', p= 1,2, •■•,mx

can be defined as the limit of V"it), t ET — T', from either side. The uniform

convergence of { W(n)(i) j to Vit) on V follows from Moore's theorem [9].

Q.E.D.

III. The control problem. The controlled system is described by a set of first

order differential equations

(8) x1 = /'(x, u,t),       ¿ = 0,l,2,...,/h,

where x and u stand for the two vectors ix\x2, ■ ■ -,xni), and iuL,u2, • • -.u"2),

respectively, and x will be used to note the vector (x0,*1, • • -,xni). The func-

tions /' together with partial derivatives df/dx', i,j = 0,1,2, •••,nx are

single valued, bounded, and continuous in all the variables x, u, and t on a

product region XXUXTX where Xx, Ux are open regions in the nx-dimensional

x-space and n2-dimensional u-space, and Tx is an open interval of t, (see

Note 1). It is understood that all the properties and relationships stated in

the subsequent sections are on the Xx Ux Tx.

Note 1. The existence of bounded and continuous derivatives in x is

required for proving Pontryagin's maximum principle, but not required for

proving the existence theorems. For the latter, it is sufficient to assume that

f(x, u, t) satisfies Lipschitz's condition in x.

It follows from the Carathéodory existence theorem that if the initial xitx)

and uit) for a subsequent interval are given, x{t) is uniquely determined on

the same interval. Thus an allowed control can be defined as a function uit)

satisfying the following conditions:

3.1.

(9) uit) EU,       ttététa

where U is a closed bounded region in Ux. The closed interval [tx,t2] is

denoted by T, TETX.

3.2. There is a finite Kit, 5) for each t > 0 and & > 0, and Kit,è) is the

same for all uit). A sequence of step functions g At) can be found for uit)

such that for each k S: Kit,8):

(10) p{T\\\gAt)-uit)\\^t\<ô.

3.3. The x(i) resulting from uit) satisfies

(ID x(f) EX,       h è t á t2,
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where X is a closed region in Xx. Note that in the special case of X being

the entire accessible region (accessible under the constraint that (9) and 3.2

are satisfied by u(£), the problem is reduced to one without bound in x-space.

The function x(£) resulting from an allowed control u(£) is called an allowed

path.

In the following sections the following distinction will be made: x, u imply

x(£), u(£) for the entire path, tx < t < t2; x(£3), u(£3), etc., denote the values

at a particular instant £3.

The set of all allowed controls is denoted by C. The set of all allowed paths

is denoted by P. The set of all allowed control-and-path pairs u, x is denoted

by A.
A return function or functional R is defined in terms of the xu(£2) resulting

fromu

(12) P[u]=xu(£2)-x°(£1).

There are two basic types of terminating conditions: (a) £2 is fixed, and (b)

x(£2) is fixed, and tx = £2 = T2 but £2 is otherwise unknown. The interval

[ti, T2] E Tx. The condition (a) is referred to as "free end point." The condi-

tion (b) is referred to as "fixed end point."

An allowed control ux E C is said to be optimal if

(13) R[ux\ = sup Riu).

In any given problem, there may be more than one optimal control. The set

of optimal controls under free end point conditions is denoted as S0, and the

set of optimal controls under fixed end point conditions is denoted as S0(T2).

Theorem 3. A is compact.

Proof. Let u, x be an allowed control and path pair. An iny + n2+ 1)-

dimensional vector function wit) is formulated from the components of x(£)

and u(£): u/(£) = x'(£), í - 0,1, ■•■,ll1; w1+^it) = uJ(£), j = 1,2, • • -,n2. Let

R be a set of wit) with infinite members.

The components x are bounded and equicontinuous because f(x, u, t) is

bounded and £2 — £i is finite. The components u are bounded and equi-

measurable by definition. Corollary 2 of Theorem 2 states that a sequence

w(kAt) can be selected from B which converges to a limit function Vit), Vit)

= iV, V1, •■•, V"l+ni). Because X is closed, and the vector iw\k), w2k), ■ ■ -,

w^EX for k= 1,2,.-.,œ,iV\ V2,..., V"i) EX. Similarly, (V*+l,-.-,

yni+"2) e U almost everywhere except on a subset T'L of zero measure. Let

û(£) be defined as

frit) = V"1+l(£),        tET-T'L

and û(£) be any vector G U, on the subset T'L. Then û(£) EU on T.
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Let x(í) denote the vector iVit), V\t), ■■■, VnAt)). It remains to be shown

that (8) is satisfied by (x(r),û(î)). If

(14)
x(i3) -J   f(x,û,t) dt - xitx) >a>0

for any f3 G T, then a contradiction can be shown as follows:

Since f(x, u, t) is continuous in x and u on a closed set, it is uniformly con-

tinuous [10]. For any t2 > 0, it is possible to find a 52(«2) > 0 such that

|| f(x, u, t) - fix,ù,t) I <t2

for all x and u satisfying

|x-x|| <ô2(«2)

and

Let

||u-û||<ô2(i2).

a

£2 = 3(f2 - tù '

«3 = inf J -,ô2(e2)| ,

ßf~     sup     ||f(x,u,í)||,
x,u,tSX,U,T

a

6^"

For sufficiently large k, the components xw(f) and uw(0 of w(kAt) satisfy the

following inequalities:

(15)

(16)

||xw(r)-x(r)||<e3<-,

íf(xw,uw,í)dr-  C3fiSc,ù,t)dt
J'i Jtx

<53.2ßt+tAt3-tx)^~.

As uik> and xw constitute an allowed control and path pair

(17) X(*)(ta) = J(   f(xw, uw, Í) dt + xitx).

The inequality (14) is contradicted by (15), (16), and (17). Therefore
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±ih)= r fa, ù,t)dt+xitx).

Differentiating the above equation with respect to t3 and then setting t3 = t,

(8) is obtained for x and u.   Q.E.D.

IV. Existence theorems.

Definitions. Let the set of all allowed paths x satisfying x(^) = $x be

denoted by p(¿i,£i). The set x(i3), with t3 2: tx and xGp(*i,£i), is denoted

by fi(£3). It is the accessible region at i3 with the initial condition understood.

The set of points x(£), with tx ̂  t ^ £3 and x Epitx,ix), is denoted by Í2(í ^ i3).

It is the accessible region up to and including t3.

The distance between a point x and a region R is defined as

(18) d(x,P)= inf||x-x'||.
x'eR

The set of x with d(x, R) < t is called the «-neighborhood of R, or simply

NiR).
A boundary point £ of X is called returnable if there is a uit) E £7 such that

fi$,u,t) points inward (of X). Consequently, if x{t) = {, the path x(i) can

be continued to some larger value of t.

Theorem 4. ü{t3) is closed.

Proof. Let y be the limit point of a sequence yw, and each y(W G Œ(i3). By

definition of ß(£3), there is an allowed path xwG p(/i,£i) that x(*)(f3) = y(*).

Theorem 3 states that a subsequence can be selected from j X(*> J to con-

verge on an allowed path x. Therefore, there is a subsequence in yw which

converges to a limit x(t3). Therefore, y = x(r3). y G ßfe).   Q.E.D.

Lemma 3. //x(í3) o/an allowed path is either an interior point or a returnable

boundary point of X, then given t > 0, there is a rit) such that x(f3) is in the

t-neighborhood of Q(i) for every t satisfying \t — t3\ < rit).

Proof. Lemma 3 is due to the boundedness of f. For sufficiently small t,

rit) = t/ßf. Q.E.D.

Theorem 5. // all the common boundary points of üit ^ i3) and X belong to

the returnable set, then fi(í ^ i3) is closed.

Proof. Let y be the limit point of a sequence yw, and each yw G Hit Ú t3).

Then one can find a set t(k) so that y(t) G &(£(*>) for all k. Since there are

infinite tik) in the closed interval [tx, t3], there is at least one point of accumu-

lation. Let it be denoted i. Then a subsequence y^j can be selected from

yw so that

limyw-*y,        limiw-»î.
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Since [£!,£3] is closed, £G[íi,*3], and ü{t) C ß(i ^ h).  Also  fi(£)   is  closed

because of Theorem 4.

If y £ Ö(?), an (! > 0 can be found such that

(19) d(y,0(t))>tl.

For sufficiently large A

(20)

Lemma 3 gives

yw-y<-y-

t — í|*j < TCi)

(21) d(yw,o(t))<|.

Inequalities (20) and (21) contradict (19). Q.E.D.

Theorem 6. // £Aere is an allowed control, there is an optimal control with

free end point. (S0 is not empty.)

Proof. By definition (12) of Riu), the problem is whether there is an

xEP such that

x°it2) = M =supxu(£2).
xGP

If M is not equal to one of the xu(£2) in the set, there is a sequence x(n) G P

such that

(22) limx^(£2)^M.

By Theorem 3, a subsequence X[„j can be selected to converge to x G P.

Therefore lim x^iQ -. x°{t¿. By (22), &°it¿ = M. Q.E.D.

Theorem 7. If there is an allowed path which terminates at f2 at some t2 g T2,

there is an optimal control among the allowed set which terminates at £2 on or

before T2. iSoiT^ is not empty.)

Proof. Let X denote the straight line

* = É2

in the in 3 1)-dimensional x-space. A point on X, is specified by its value of

xu. Let

/ = xno(í ST2).

Each point on / is the terminal point of an allowed path and vice versa. / is

not empty because of the condition of the theorem.

As J is the intersection of a closed set X (X includes =fc œ), and a closed set
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®it = T2) (Theorem 5), / is closed. Therefore, there is a point xE I such that

xu = supx°.
xei

Since x G IC S2(i = Ty, there is at least one allowed path leading to x on or

within T2. Q.E.D.

Corollary. // £Aere is an allowed path terminating at £2, in finite time

ix{ti) = (2), there is a minimal time control among the allowed set terminating

a£{2.

Proof. Since there is no need to consider any allowed path which termin-

ates at £2 at a later instant, T2 = t2. The corollary is reduced to a special case

of Theorem 7 with fix,u,t) = -1.

V. Optimum control in bounded phase space.

Definitions and assumptions.

Definitions. Subscripts are used to denote components of covariant

vectors:

*  =  (lAo, 4>) = (lAo, ih, Í2, •••, tnx) ,

i\ — (t/o,n) = im, 11»V2, ••-,Vnx)■

iNote. A light face greek letter \|* or n without subscript is meant to be the

enlarged vector (^0,^) or (j/0,ij). A light face greek letter with a subscript

is meant to be a component of the vector.)

The concept of "magnitude" of a vector does not enter into the problem

nor the theorems. However, in proving the theorems, it is desirable to have

these concepts so that bounds can be defined or calculated. The magnitude

of a vector x is denoted as | x | and defined by

(23) 1*1»-(*")»+<*y+... + (ary.

The same is true for covariant vectors. In the subsequent sections, "distance"

is redefined in terms of the magnitude rather than the norm.

Assumptions. The region X and functions /'(x, u, £) are assumed to satisfy

the following conditions:

5.1. X is n-dimensional.

5.2. A unique normal exists on every bounded point xb of X.

The unit vector in the direction of the normal at xb pointing outward is

designated by ij(x;,). The component vo is identically zero.

5.3. The partial derivatives dr]Ax)/dxJ are uniformly bounded.

5.4. Every point x within a certain distance d¿ from X is on one and only

one of the normals n(x¡,). The normal i»(x6) therefore can also be identified

asij(x), where x may be any point on i; within a distance d, from the boundary.
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5.5. There exists a distance d2, dx> d2> 0, and a constant a, > 0, such that

at every point x within distance d, from X there are at least some uEU

satisfying:

(24) £ mix) . fix, u, t)<-ax,       uE U.
¿=i

The closed region extending outward from the boundary of X up to distance

d2 is denoted by X0.

(25) X + XoEXx.

A constructed problem. Because of assumption 5.4, a distance function vix)

can be defined as follows:

y(x) = 0 if   xEX,
(26)

vix)=ZvAx)ix'-x'b)    if   xGX0.

Let the problem defined in §111 with the added assumptions be denoted as

P. A constructed problem PiK) is defined as follows:

5.6. In (8), the equation for í = 0 is replaced by

(27) xu = Ax,u,r) -K[vix)f.

5.7. Equation (11) is replaced by

(28) x{t) G X + X0,       tx^t^ t2.

The allowed controls satisfy conditions 3.1, 3.2, 3.3. The terminal condition

is that t2 is fixed but x(i2) is free.

VI. Optimal path of the constructed problem. An allowed path can be gen-

erated by choosing any uit) when x(i) is an interior point of X + X0, and

choosing a uit) which gives

i:\1(x)/'(x,u,i)<o
1=1

when x(r) is a boundary point of X + X0. From Theorem 6, the optimum

control exists.

Lemma 4. Given any distance d, 0 < d < d2, a sufficiently large Mid) can be

found such that if K > Mid), vix) < d for every point x on an optimal path

TAK)ofPiK).

Proof. Since f is bounded there is a constant Bx such that

(29) \fix,u,t)\<Bx
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for all x, u, and £ in the product region (X + X0) UT. Then

jtv(x) = Z [vAxH* - xl) - ,,4 + mf] = Zvf.

The first and second terms vanish since ij and x¡, are perpendicular to the

normal but x — xb is parallel to the normal. Therefore

£■«
^,.

Let the largest value of t;(x)  be denoted by d3. Since x(£0 G X, £2 — £i

^ d3/ß!. Then

fJ'irty 3 Pi

Let Rx represent the return of any allowed path of P. The same path is also

an allowed path in problem P(X) with the same return. Let R0iK) denote

the return of the optimal r0iK), then

RoiK) = Ry.

Kdi
But

RoiK) = Bxit2 - tx)

Therefore

(31) w -^ = Pi(£2 - ty) - Rx.

Let

If

then

Mid)

3  Bx

3Bx[BAt2 - ty) - Ry]

K > Mid)

(32) j^^iBiih-tê-Ri].

Since Pi(i2 — £i) — Pi is always positive, (31) and (32) give d3 < d. Q.E.D.

In the subsequent paragraph, some properties on the displacements about

a given path are derived. It is assumed that xGX + X0 but K = 0. Thus

the calculated x is x(£, 0). The result can be applied to a problem with K^O

by modifying only 5xu:

(33) bx\t,K) = bx\t,0) - K\  6[vix)fdt.
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Let t denote an infinitesimal quantity, and Ax, Ai, etc., variations of the

order unity and are independent of t. Following an initial displacement

5x(i3) = eAx(i3) + •••, the subsequent change in x(î)  can be expressed as

(34) Ôx(î) = eAx(í) H-

where ••• means infinitesimal quantities of higher order in t. From  (8)

(35) Ax'(i) = Z (^Qp AxJ(i)

where the subscript r means that the partial derivatives are evaluated

along the original path.

Lemma 5. Let K = 0, and x(i) G X + X0. At any point x(î3) G X0 along

an allowed path with

d   , , ax

it is possible to apply a uxEU for an infinitesimal interval tAt to cause a

subsequent displacement «Ax from the original path satisfying

(36) - ¿ 7,,(x(í))Ax'(í) > A^Aí,       t3<t^t3 + T
i = l

and

(37) |Ax| <M2Aí,        ísáfáíj,

where Mx, M2, and t are constants independent of x.

Proof. From (30)

(38) Z\,(x(t3))/'(x«3), u, t3) = - Ç.
1 = 1 <5

From assumption 5.5, there is a ux satisfying (24). Applying ux instead

of u for an infinitesimal interval gives

Ax'(í3) = [flixit3),ux,t3) -/'(x(í3),u,í3)]AÍ.

From (24) and (38) one obtains

i=n o

(39) T,ViixitJ)*x'itJ < - -axAt.
1-1 d

From (35)

d l=n 'J~n / flfl\

(40 iE*r-*fc(2\**>.
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Let 2X denote the upper bound of the eigenvalue of the symmetrical matrix

with

\dXJ       dx'/r

as its ¿, jth element. (An upper bound exists because df'/dx1 are bounded

for all i and ;'.) Then for any given £, the right-hand side of (40) is shown

to be bounded by 2X| Ax(£) |2 by a linear transform of Ax(£). It follows then

d

The solution is

Since

¿í|Ax(£)| gX|Ax(£)|

|Ax(£)| ^^-^|Ax(£3)|,        £>£3.

| Ax(£3) | zi 2ByM,

one has

|Ax(£)| è2BxekV-'-*At.

Inequality (37) is satisfied by choosing an M2 as follows:

M2 = 2BxeHt^>       if X > 0,

= 2BX if X = 0;
(41)

(42)

The sum

*%•*-$$&*+$$'&"

is the ¿th component of a covariant vector. Let a denote the vector. There

is a P2>|«| on (X-r-Xo)LT, since f, Vj, dfJ/dx', and dr,t/dxJ are all

bounded. Equation (42) gives

d '=n
-j Y, Vi&x1 < B2\ Ax| < B2M2At.
at ¡=y

Let My = ay/3, and t = a!/3P2M2, inequality  (36)  is satisfied. Q.E.D.

Lemma 6. Let T0(X) be the optimal path in problem P(K). For sufficiently
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large K, it is possible to find a sequence of t of no more than 2itx, tjj /r members :

t'\,t'2, ■ ■ -,t'm, ■ ■ -,t'N such that all the following conditions are satisfied:

(i) h^t'x<t'2... t'N< t2, N ^ 2(t2 - tx)/r.

(ii) Along YAK)

(43) ZvÂxitXtixiCùJ'n) >- ~,      m = l,2,...,N.

(iii) Along YAK), vixit)) = 0 unless t is in one of the intervals t'm ̂ t ^ t'm+ t.

Proof. Choose a K sufficiently large such that along an optimal path T0iK)

(44) "(*)<¥ •
o

The time interval tx < t < t2 is divided into subintervals of equal duration

t/2. Let the subintervals be numbered in chronological order. If, in a sub-

interval, there are some values of t such that

(45) x(i) G X0 + boundary of X

and (43) is satisfied, then the smallest t which satisfies (43) and (45) is

selected as one of the t'm. If (43) and (45) are not simultaneously satisfied

for any t in a subinterval, no t'm will be selected. The Cs are then numbered

in chronological order.

The total number of t'm is no more than the total number of subintervals,

and (i) and (ii) are automatically satisfied.

If there is a t'm in the kth subinterval, condition (iii) is satisfied in the

{k + l)st subinterval. If there is no t'm in the fcth subinterval, either x is

in the interior of X for the entire fcth subinterval, or x is on the boundary

or outside of X for some part of the subinterval, but vix) is decreasing at

a faster rate than what is permitted by (43). In the latter case, since x is

continuous in t, vix) must be monotonically decreasing in t for as long as

vix) E X0. Since (44) is satisfied at the beginning of the period, x must

be in the interior of X at the end of the ¿th subinterval. In any case x at

the beginning of the ik + l)st subinterval must be a point in X. Since in

leaving X, (43) and (45) are always satisfied, and the smallest t in the

(& + l)st subinterval satisfying (43) and (45), (if any), is chosen as a t'm,

(iii) is again satisfied for the ik + l)st subinterval.

Since k can be any value from 1 to N - 1, and x(ii) G X, (iii) is satisfied

for the entire interval £i — t 5S t2. Q.E.D.

Lemma 7. For sufficiently large K, it is possible to find a M3 independent

of K such that

(46) K (2 vix) dt < M3,
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where x(£) describes an optimal path of PiK).

Proof. Inequality (46) can be proved by induction. Suppose

(47) K f2  i>(x)d£<Cm+1,

where Cm+X is a constant independent of K. Following a change in u at

t'm, there is a bxitQ = tAx(£¿). At £ = £2

J% ,=n duix)
2Xi;(x)y:—VAx'd£

t'm 7TÍ   ôx'

= Axu(£2,0) - 2a: f 2u(x)£,,(Ax'd£,

(48)

Ax°(£2,X) = Ax°(£2,0) - 2X |2   i;(x)X'/.Ax'd£
Jfm+l i

-2K fm+1vix)J\Vlàx'dt.
Jt'm i

Since x(£) is an optimal path, Axu(£2, K) = 0. Because of Lemma 6, it is

possible for vix) to differ from zero in the interval t'm = £ = £„+1 only if

t<t'm+T. Substituting (36), (37), and (47), into (48) gives

2K I        vix) dt ■ MxAt < M2At + 2Cm+xM2At,

Kf3i)dt<1M)(l+c«3c"'-c-

Let t'N+l = £2. Inequality (47) is obviously true for m = N. Repeating

(49) N times gives (46). Q.E.D.

Choose K sufficiently large so that d < d2. The optimal path is in the

interior of X + X0.

Let u(£) and x(£, K) denote an optimal control and optimal path pair

for problem PiK). Due to a change of u(£) for an infinitesimal period

eA£ at £ —.

eAx(£, K) = x(£, K) - x(£, K) -\-
(50)

= [f(x,u,£)-f(x,M)]tA£.

The significances of e and Ax, A£ are stated in the proof of Lemma 5.

From (35), x(£2, K) is related to Ax(£, K) by a linear transform:
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(51) Ax'(í2,K) = ZA¡it2,t)AxAt,K),        i = 0,1,2, • • •,nx.
i=o

Since x{t,K) is an optimal path

Axu(r2,P:)^0.

Let the covariant vector A%t2, t) be denoted as i At)- The above inequality

can be written as

(52) Z Ht) [fix, u, t) - fix, ù,t)]è 0.

Let the Hamiltonian function be defined as

(53) H iii, x, u, t) = £ Ut) fix, u, t).

Inequality (52) implies

(54) //(*,*, ù,t) = sup H i), x,u,t).

For problem PiK), equation  (35)  is modified by adding  — K[vix)f to

/°(x, u, t). With the modified (35), it can be readily shown that

íkm ; m v i df^x>u>v   o « Kl,<*dv{x)
(55) ti + 2_, ik-t^—  = ¿ioKvix) -j^r .

By definition of vix):

dvix) v
—-r = viix)        if X G X0,

dx
(56)

= 0 if x G X.

Substituting (56), into (55) gives

(57)        ¿, + I>//J(*,M) = 24oKoix)mix),       i = 0,1,2, • ■■,nx.
i ox

A boundary condition for Ht)  is

Hti = AKh,Q = 0   ifiVO,
(58)

= 1    if i = 0.

Since fiu, x, t) is independent of xu, and t/0(x) = 0, the equation for i = 0

in (57) gives ^0 = 0. Therefore

(59) ^0(i) = 1,       tx ^ t ^ t2.
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The above shows that along a path r0(X) which maximizes the integral

(60) RiK) = f 2{/°(x,M) - K[vix)f\dt
J'i

the control u(£) maximizes the Hamiltonian function at every point.

VII. In the limit of K—» oo. In the subsequent proof, the variables asso-

ciated with each r0(X) need to be clearly designated. The symbols ty it, K),

x(£,X), u{t,K), etc., will be used instead of ty{t), x(£), u(£). Whenever

confusion is not possible, the short forms x, u may be used with (£, K)

understood. The capped functions will be reserved for the limit functions

whenever they exist as K —> œ.

Definitions. The following functions are defined along an optimal path

r0(X) of PiK):

(61) J(t,K) = K(2v(x)v(x)dt,

(62) GAt,K)^ f2ZUt,K)(^)       dt.
Jt       i \dXJ/¡o(K)

Lemma 8. TAe functions J¿(£, K) has uniformly bounded variations on T

for all K, i = 1,2, ...,nx.

Proof. Choose any ordered set £3,t4,---,t2N such that tx = £3 zi £4 z% ■■■

á tin á • - • g & Then

E   \JAt2n-1,K)-JAt2n,K)\

" r''2n "       r'-íií
= Z  K       "" v(x)Vl(x) dtUZK]     "(x)dt < M3

n = 2 «/*2»—1 n=2       Jfa-l

The last inequality sign follows from  (46). Q.E.D.

It follows from Theorem 1 and Lemma 8 that {J¡(t, K)} are equimeas-

urable.

Lemma 9.   The functions ty(t,K) of T0(K) are uniformly hounded inde-

pendent of K).

Proof. Since ty (£2, K) is known, (57) is solved backwards. The homogene-

ous equation (X = 0) gives for £3 < £:

(63) Hh, K) = £ *,(£, K)Ai(t, £3).
y-o

By superposition, the solution of the nonhomogeneous equation is, for i ^ 0,
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(64) Uk, K) = - Z   f2AUt, t3) 2Kvix),y(x) dt

for any given i, A/(í, í3) is the jth component of a contravariant vector

Ajit, t3). By differentiating (63), and eliminating i|/ with the aid of (57),

A{it,t3) is shown to satisfy (35). Using the same steps which lead to (41)

one obtains

(65) |A,(f,t3)| <P4,       i = 0,l,...,n1(

where P4 = sup{ l.e"1'2"'1'}. Thus  (64)  gives

I Hk, K)\â \*\ Kit, t3) 12Kvix) dt < 2B,M3 = P6.

Q.E.D.

Lemma 10. The set of functions Git, K) are equicontinuous.

Lemma 10 follows from the fact the integrand on the right-hand side of

(62) is uniformly bounded.

Lemma 11. The set of functions tyit,K) for all T0iK) is equimeasurable.

Proof. Integrating (57) with respect to t from í to t2 gives

(66) i Atè - Ht, K) + G At, K) = JAt, K).

Since equicontinuous functions are equimeasurable, and the sum or differ-

ence of equimeasurable functions are equimeasurable, Lemma 11 follows.

Q.E.D.
Let J%)(i) denote a vector function with components uit,K), xit,K),

Git,K), Jit,K), )it,K). Let A¿ denote a set of {u>(i0(i) | with K = K0,

K0+ 1, ■ ■ -, œ; where K0 is sufficiently large K so that d <d2 is satisfied

for the optimal path T0iK). Corollary 2 of Theorem 2 states that there is

a subsequence W[K)it) G A, such that u>\K¡it) converges to a limit uniformly

or almost uniformly in all its components

(67) u(i,K)^W),

(68) x(f,K)Mi(i),

(69) G(i,K)oû(0,

(70) J(í,K)[a^Jj(í),

(71) Mí,K)ta^>^(í),

where K means a selected set satisfying u>|K|(i) G {u>(K)(t)}.
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Lemma 12. TAe function x(£) G X for every t on T.

Proof. Since X is closed, the distance

(72) d(x(£3),X)>a>0

for some £3 if Lemma 12 is not true.

Lemma 4 states that there is a finite Mia/2) so that for every K > Mia/2)

d(x(£3,K),X)<a/2

and (68) implies

||x(£3) -x(£3,K)|| <a/2

for every K greater than some finite X(a/2). Thus (72) is contradicted

by choosing a K sufficiently large.

Lemma 13. TAe limit ÙEC and ü and x form an albwed control and

path pair.

The proof is identical with that of Theorem 3.

Extensions of Jit), tyit). Equation (70) implies that J(£,K) converges to

J(£) on a set T — T', where T' is a subset of T having zero measure. Since

J(£) is defined only as a limit of J(£, K), it is not defined on T'.

Since V is a set of no measure, and T is a closed interval, every point

of V is a limit point of T — V. Lemma 8 and (70) assures J(£) to be of

bounded variation. Therefore, one sided limit exists for J at each point of T'.

Definition. For each point £G T', J(£) is defined to be

<!(£) = limJ(£+|e|),       t+\e\ET-T
<—o

with the above definition, J(£) is completely defined on T.

In the limit of K —> co, (66) converges to

(73) tyitj - tyit) + Git) = Jit)

except on a set of zero measure. One may define a tyit) such that

tyit2) -*(£)+G(£) =J(£)

holds everywhere. Since tyit) and tyit) are different only on a set of zero

measure, (71) holds for tyit) also. One then discards tyit) and redesignates

tyit) as tyit). Consequently (73) holds everywhere.

Lemma 14. The function J(£) can be expressed as

(74) J(£) = J\(t'h(x(t'))dt',

f(£) = 0 if x is an interior point of X,
(75)

}t 0 if x is a boundary point of X.
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Proof. Let t3 and t4 be any two points on T — T" with i4 > t3. Then by

definition (61)

J(ia) - J(0 = hm [«/feK) - J(Í4,K)]

= lim |    JO;(x(t,K))i,(x(f,/0)df.

Let

J(í3,r4)=,J(í3)-J(í4).

J(^3, Í4) can be separated into two integrals:

J(í3,í4)   = Jl(í3,Í4)+J2(í3,Í4),

where

(76)

and

Ji&tJ - lim  f4Kí;(x(í,X))T,(x(í))dí

J2(Í3,íJ = lim   fV(x(í,P:)) Mx(í,K)) - u(*(i))]di.

Since di)i/dxJ are bounded for all i, j, ri(x) satisfies a Lipschitz condition:

(UKvixit,K))[\ixit,K)) - n(x(i))] dt
I J'3

^ M3B, sup H ixit, K))-xit)\\,       h^t^ h.

Therefore J2(t3, íj = 0 and

(77) J(Í3,Í4)=Jl(Í3,Í4).

Let J iK) denote

f4/AMx(í,K))n(x(f))dí.
Jt

The interval [í3,í4] is partitioned into segments of no greater than t. Let

these intervals be denoted t¿, and x, denote an arbitrary point of x(i)

with tEri.

Then

(78) J(X)-Ii(« ÍKvixit,K))dt

In the limit of K —» «, (78) becomes

g M8B,||*(f)-*¡| uM3Bßxr.

(79) Ji(t3,íJ ~I>(*i)fr < Msß^iT,
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where f, is some unknown quantity. It is zero if x is an interior point of

X and nonnegative because X„(x(£, K)) is non-negative.

In the limit of t—>0, (79) becomes

(80) JifobO f(£)ti(x)d£.

Equations (77) and (80) are equivalent to (74). Inequality (75) follows

from the condition on ft. Q.E.D.

From (67), (68), (69), and (71) it is obtained

(81) 0,(0= fU^H(ty,x,ù,t')dt',
Jt3   dXj

where the function H is defined in (53).

Lemma 15.

(82) E6/UM) - supX¿,/'(x,M)
i u€U    i

for t ET- T, where n{T'\ = 0.

Proof. From (67) and (71), u{t,K) and ty it, K) converge uniformly to

û(£) and tyit) except on a set T' of zero measure.

Note that U is closed. If (82) is not true then there is a ux{t) such that

tET- T and

(83) ZÎJ'(x,ux,t) -Zhf'ix,ù,t)>a>0

a contradiction can be shown as follows.

As f is continuous in x and u, a sufficiently large K can be found such that

and

Z4>J'ix,uxit),t)-Z*At,K)f'ixit,K),uAt),t)

ZUt,K)f'ixit,K),uit,K),t)-£îif'ix,ù,t)

<\

<!•

The above inequalities and (83) give

(84)      ZiAt,K)r(x(t,K)ux(t),t)>ZtAt,K)f'(x(t,K),u(t,K),t).

But (84) contradicts (54) (the reader is reminded the change of notation

explained at the beginning of the present section), therefore ux(t) cannot

exist. Q.E.D.

It follows from (82) and the definition (53) that
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(85) Hiî, x, û, í) = sup Hi$,3t, u, t)

almost everywhere on T. The set T' on which (85) does not hold has zero

measure.

Let ait) be defined as dit) on T — V and one of the u's satisfying (85)

for every t on T'. Then the Hamiltonian is maximized by ait) everywhere.

Since p[ T' \ = 0, all the previously derived relations for u{t) ((67), Lemma

13, and (81)) are equally valid for uit). They are so replaced, and u is re-

denoted Ù. Thus (85) holds everywhere for the new u.

Substituting (80) and (81) into (73) and differentiating the resulting

equation gives

dt dxJ

VIII. Theorem 8 and Corollary. The results of the preceding sections can

be summarized into a theorem:

Theorem 8. For at least one ùit) among the set of optimal controls with

free end point in a problem defined by equation (8) and conditions (3.1) to

(3.3), and (5.1) to (5.5) there exist f(i) and ¿(i) such that uit), x(í), f(i),

and ij/(i) satisfy equations (58), (75), (85), and (86).

Definition. An allowed control ùit) is said to be an isolated locally

optimal control if for every allowed uAi) with RiuAt)) ^ P(û(i)) a constant

b > 0 and a time t3, tx á í3 ̂  t2 can be found such that

\\xAt3)-xit3)\\ >b,

where kit) is the path resulting from ùit).

Corollary. For every isolated locally optimal control ùit) with free end

point in a problem defined by equation (8) and conditions (3.1) to (3.3),

(5.1) to (5.5), there exists a function f(i) and a function ^(t) such that ûit),

x(r), f(i) and ii it)   satisfy equations (58), (75), (85), and (86).

Proof. A function P(x, i)  is defined by

P(x,i) = 0 if |x-x(t)| <o/2,
(87)

P(x,r) = (|x - x(i)| - b/2)2 otherwise.

The function ±(t) is treated as a given function of t. It is readily verified

that Fix, t) is bounded in the accessible region in x-space, has continuous

and bounded derivatives in x, and is continuous in t. A constructed problem

is defined by adding — KxFix, t) to the /°(x,u,i). With sufficiently large

Kx, ùit) becomes the only optimal control in the constructed problem, and

the Corollary follows from Theorem 8. Q.E.D.
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IX. Proof that the necessary condition is also sufficient for linear systems

with convex allowed region X. The controlled system is called linear if

(88) /'(*, u, £) = £ F)(f) x> + £ Bk(t) uk + C(t).
;'=1 k = l

Let the set û(£), x(£), together with f(£),and ty (£) satisfy equations (8), (58),

(75), (85), and (86). It is readily shown from equations (8), (86), and (88)

that for any other allowed set u(£), x(£)

i Thit) [rit) - x'it)] = Z «Onto [xlit) - x'(£)]

(89)
+ZZ^(Opuo[û*(o-w*(î)].

i      k

Integrating (89) from tx to £2 and making use of (58)

Riù) - R(u) = f2at)ZnAx)[x' - x']dt
Jh i

+ (2T,Y,Ut)Bm[ùh-uk]dt.
Jh    i    k

Due to the convexity of X, and (75)

f(i) T, -»,•(*) [x'-x']^0.
I

Due to (85)

ZZ*.WBiW[û*-u*]èO.'i      *

Therefore

Riù) - Riu) ^ 0.
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