
A PAIR OF UNSYMMETRICAL FOURIER KERNELS

BY

ROOP N. KESARWANK1)

1. Introduction. The functions A(x) and A(x) are said [1, p. 212] to form a

pair of Fourier kernels if the reciprocal equations

*-r.Jo
(1.1) g(x) =      A(xy)/(y) dy,

Jo

f*   CO

(1.10 /(*)= I  Hxy)giy)dy
J 0

are simultaneously satisfied. The kernels are said to be symmetrical if A(x)

= A(x) and unsymmetrical if A(x) ^A(x). In an earlier paper [2, p. 953] I

found a pair of unsymmetrical Fourier kernels in terms of Meijer's G-func-

tions. They are

(1.2) A(x) - 2yx^ll2G^q,m+n(x* K •• •>*»**> ■ ■ ■'bA ,
\        ci> • • '¡Cm,ax, ■ ■ -,an/

(1.20   A(x) = 2yx^1<2Gp«+q,m+n(x*    - b» • • ■' - bf - y ■ ■ ■• - y) ,
\ ~ °i, • • •, — an, — cx, • • •, — cm/

where

p q m n

y > 0, n - p = m - q > 0    and (2)    Zaj + Zbj = ZcJ+Z dj-

I also established in later papers the reciprocity of (1.1) and (1.1') by using

the ordinary convergence methods [ 3, p. 21] and the methods of mean square

convergence [4, p. 275]. The object of the present paper is to obtain a pair

of unsymmetric Fourier kernels of a form more general than the G-functions.

Our kernels will be functions of the Mellin-Barnes type

m n

(1.3) ;r-^ -X   Sds,
¿irl    Jt  q P

H Tibm+j - ßm+Js) n r(a„+J + an+js)
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where the parameters are such that the poles of the integrand are simple

and those of ríe, + ßjs), j = 1, ■ ■ -, m lie on one side of the contour T and

those of r(ûj■ — ctjS), j = 1, ...,/i lie on the other side. This function was

introduced by Fox [5, p. 408]. Except for a special case of this function stud-

ied by Boersma [6, p. 38], this function has not been studied to any great

extent. This function has an advantage that for a suitable contour T, the

Mellin transform of the function in (3.1) is evidently the coefficient of x~s in

the integrand of (1.3). We, in fact, are required in our work to consider func-

tions whose Mellin transforms satisfy a certain functional relation. We there-

fore consider the following functions

! fnr(., + T,(.-j))nr(,,-.,(.-i))

nr(<,-*(.-J))nr(i»+*(.-*))
(1.4)  Hwix) = A f-— -^-—      —-ï^x-'ds,

2-Ki Jt b

i   rÜrld^öL-D) UrL-ßJs-D)
(1.4') #(2>(x) - 2^ J-—-— x-ds,

'   rñr(cJ-7J(S^))nr(aJ + 4-i))

where we make the following simplifying assumptions:

(i) m — q = n — p > 0.

ctj>0,      j=l, ...,p;    ßj>0,      ;'= 1, •••,<?;

7j>0,      j = l, ■■■,m;    ôj>0,      j = l,.-.,».
(ii)

(1.5)

i m q n p

(in) - D = Z Ti-Lft-L«i-Z «>>0.

m q n p

(iv) Zcj-Z °j =Zdj-Z O/-

(v)     All the poles of the integrand in (1.4) and (1.4') are simple.

(vi) The contour T is a straight line parallel to the imaginary

axis in the s-plane and the poles of r(c,•+77-(« — \)) and

Tidj+ôjis- i)) lie on the left of T while those of

r(o, - ctjis - I)) and r(6; - ßjis - ¿)) lie on the right of T.

We shall prove that iiu'(x) and Hwix) play the role of unsymmetrical

Fourier kernels. Let us write (1.4) and (1.4') as

(1.6) Hwix)= -i-r  f §wis)x-sds,
2ti Jt
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(1.60 H^ix)*^  ( §{2As)x°ds,
2x1 Jt

where

Ûr(cj+yA*-l))ÛrU-«A°-l))
(1.7) £ll'(s) =-—-—

Yl*(d,-*j{-\)) nr(*, + ft(.-J))

nr(^+4-^))nr(6,-ft(.-i))

nr(ei-7i(.-5))nr(«,+^(.-^))

(1.70       $w(«) -

Then $U)(s) and $l2,(s) are Mellin transforms of Hwix) and H&)ix), re-

spectively.

In order that the functions A(x) and A(x) may be unsymmetrical Fourier

kernels it is necessary [ 1, p. 214] that their Mellin transforms, k(s) and vis),

respectively, should satisfy the functional relation

(1.8) k(s)„(1-*)«1.

Clearly, £ll,(s) and í>l2,(s) satisfy this functional relation and it is for this

reason that the functions Z/(1'(x) and i/(2,(x) have been chosen in this

fashion. The satisfaction of (1.8) alone by &(1)(s) and §i2,(s) is not sufficient

to ensure the reciprocity

(1.9) *(*)= ( H^ixy)fiy)dy,
Jo

(1.90 /(x) -  f H™ixy)giy) dy.
Jo

More is required to be done. We shall establish the reciprocity (1.9) and

(1.90 by using convergence in mean square methods and also by ordinary

convergence methods. The results are given in Theorems 1 and 2 below.

2. Two reference theorems. To prove Theorem 1 we would require an ex-

tended form of a Watson's Theorem [ 1, p. 221, Theorem 129 extended in

the sense of §8.9 on p. 226]. This theorem in the form in which it is going to

be used here has been reproduced in an earlier paper of the author [4, §2,

pp. 272-273]. In the present paper it will be referred to as Theorem A.

To prove Theorem 2 we shall use another result proved by Hardy and

Titchmarsh [7, p. 141]. This result has also been reproduced in a desired
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form in an earlier paper of the author [3, § 2, p. 20]. In the present paper it

will be referred to as Theorem B.

3. Convergence in mean square. Here we shall use Theorem A to establish

the reciprocity (1.9) and (1.9').

First of all we estimate the asymptotic behaviour of &ll)(s) and í>l2,(s),

s = o 3 it, o and t real, when |í| is large. For large s the asymptotic expan-

sion [8, p. 278] of the Gamma function is given by

(3.1) logr(s+a) = (s + a-01ogs-s + |log(27r) + O(s  :),

where |args| < w. To obtain the behaviour of &ll'(s) and £>l2,(s) for large

|f|, we replace Gamma functions involving — s into those containing + s

with the help of the relation [8, p. 239]

(3.1') r(z) r(l - z) = 7TCosec*z.

Then using (3.1) and the assumptions (1.5), (i) — (iv), we get

(3.2) £%) x"s = |í|^-1/2»exp{¿í(Z)log|í| - logx - B) \{QX+ Oíjíl"1)},

and

(3.2')     £(2,(s)x-s= |í|ü('-1/2,exp{¿í(Z)log|í| - logx - B)\{Q2+Oi\t\~l)\,

for large |f|, where B is a constant and Qx and Q2 are also constants each

having one value for large positive t and another for large negative t.

From (3.2) and (3.2') it follows that if a < \ the integrals (1.6) and (1.6')

are uniformly convergent for all x. We may therefore integrate with respect

to x under the integral sign. Let us denote

H?ix) = f Hwi
Jo

(3.3) HY]ix)=      Hwix)dx,
Jo

(3.3') Hf\x) = \H{2,ix)dx.
Jo

Then

(3.4) Hyx>ix) = — f ^^ xL-°ds,
27T¿Jr   1

(3.4') üT(x) = -±r I   f^M xi-'ds.
2wiJr 1

These have been proved to be valid only when er < {. But in the following

theorem the contour T will be taken along the line a = \ and so it is neces-

sary to have (3.4) and (3.4' ) true for a = \ also.
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We note that on a large circle whose points have polar coordinates (p,0)

the dominant factor in each of ï>li'(s) and &{¿>is) is

(3.5) exp{/)(plogp)cosô}.

Since D > 0 we may close the contour T in (1.6) by a large semicircle on the

left. We can then express //UJ(x) as the sum of the residues of the integrand

£u,(s) x"s at the poles of r(c, + T/s - ±)), ;' = 1, • • -, m. For //u,(x), we thus

obtain m power series, each of which is an entire function.

On multiplying (3.2) by 1/t, we see that the integral (3.4) converges when

a = \. Again (3.5) is the dominant factor for the integrand of (3.4) on a

large circle so that the contour T in (3.4) can be closed by a large semicircle

on the left. The integral in (3.4) is the sum of the residues of

&1As)x1-s/il-s)

at the poles of r(c,- + 7,(s — |)), j = 1, • • -,m. It is easily found that the

residues are the terms of//U)(x) each integrated from 0 to x. Since the power

series in //u,(x) are all entire functions such term by term integration is justi-

fied and so (3.3) and (3.4) are true even when o = \. Similarly (3.3') and

(3.4') are true when o =\ .

On the line a = ¿, it is clear from (3.2) that ip(1)(s) x~s is bounded

for all values of t. Hence on a = \, ip(1,(s)x~7(l — s) belongs to

L2i{ — i co, \ + i <x>) and so the integral in (3.4) converges in the mean

square. Consequently, we may evaluate the integral in (3.4) either by the

ordinary convergence methods or by the mean square convergence methods

and the results must be the same, except for a set of points of measure zero.

It has been seen above that the integral in (3.4) converges in the ordinary

sense to //iw(x) of (3.3). Hence if the integral in (3.4) is evaluated by the

methods of mean square convergence the result will be H[1]ix) of (3.3).

Similarly,

&2As)x-°/il-s)

belongs to Lli\ — ¿<x>, \ + i<x>) and the integral in (3.4') converges in mean

square to//}2,(*) of (3.3').

Theorem 1. //

(i) m — q = n - p > 0,

aj>0,    j=l,...,p; ßj>0,    j=l,...,q;
in)

yj>0,   j=l,---,m;        Ô, > 0,   ;-=l, •••,!»,
i m q n p

(i") i¿d = Zyj-Zßl=Z*1-Z«]>o,
m q n p

(iv) Zcj-Z bj = Zdj~2l ah
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Rl(a,)>0,    ;=l,...,p; Rl(6,)>0,    j=l,...,q;
(v)

Rl(c,)>0,   j=l,...,m;        Rl(d,) > 0,   j=l,...,n,

(vi) fix) belongs to L2(0, oo),

then the formulae

(3.6) £J^Hi1,(xu)/(u)^i = g(1'(x),

(3.6') j   rm2>ixu)fiu)*-u=g™ix),
dxJo u

define almost everywhere functions gwix) andg[2)ix) respectively both belonging

to L2i0, oo). Also the reciprocal formulae

(3.7) 4  rmaixu)gmiu)^ = fix),
axj o u

(3.7') -£- f^ixu)*12^)- = /(*),
ax Jo u

Ao/d almost everywhere. And further

(3.8) f [/(x) ]2dx =   f gw ix)g™ (x) dx.
Jo Jo

In (3.4) and (3.4') which define H[l> ix) and Hi2' (x) in a sense similar to

that in (2.3) and (2.3') of Theorem A, we take a = \ so that the contour T

is the fine from \ — i o° to \ + i °°. The conditions (v) ensure that the poles

of íp(1) is) and §(2) (s) lie on such sides of T as is required for the definition

of Hwix) andii(2)(x).

We will now establish the truth of the requirements of Theorem A. The

first requirement is that Jp(1) ( \ + it) and ipl2) ( | + it) are bounded functions

of t satisfying (1.8) withs = | + it. This is clearly true from (3.2), (3.2') and

(1.7), (1.7'). The second requirement is that H? ix) and Hf (x) are related

with $(1)(s) and £(2)(s), the Mellin transforms of Hw ix) and H™ ix)

respectively, according to (2.3) and (2.3') of Theorem A. This is explained

just before the enunciation of the present theorem. The third requirement

that/(x) belongs to L2(0, °°) is covered by the hypothesis (vi) of the theorem.

Since all the conditions of Theorem A are satisfied, its conclusions follow

and in our case the conclusions are (3.6), (3.6'), (3.7), (3.7')  and (3.8).

4. Convergence in the ordinary sense. As is well known in the theory of

Fourier transform, theorems using the ordinary convergence methods appear

to be much more difficult than those which use convergence in mean square

methods.
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Theorem 2. //

(i) m — q = n — p > 0,

(ii)
a;>0,   ;'=1, ...,p;        ßj>0,   ;'=1, ...,q;

yj>0,   j=l,...,m;       5j>0,   j=l,---,n,

-* m q n p

(üi) 2ö=^^ift=^{j-^^>0'

<iv> Zc]-Zb]=ZdJ-±aJ,

(v)      Rl(ay)>a;/2A   ;=l,...,p;        Rl(6,) > 0,/2£>,   ; = l,...,q;

(vi)    Rl(cJ)è7;/2A   j =!,■■■,m;        R\idJ)^6J/2D,   j=l,...,n,

(vii)    y{i~D)/2Dfiy) belongs to L(0, °°) and fiy) is of bounded variation near

y = x(x>0),

iAen

(4.1)      j Hwixu)| J H™iuy)fiy) dy} du = 1{/(x + 0) + /(x - 0)} .

We first transform (4.1) into a form to which Theorem B can be applied.

For the sake of brevity, let us define a quantity p by

,,9,        ñ fa w n MD)»* _. i j ri t7> n «y]
(4.z;        m — n )

n («;/ ö) a'iD n (ft-/ « */û    ' n «p n ^

Since all the terms on the right-hand side of (4.2) are positive, p is also

positive. We now write

(4.3) x = Xu,   y=YD,   u = iUp)D

in (4.1). By an easy computation and adjustments, it  takes  the  form

(4.4)

J* KW(XU) { ( K«>(Yl/)/*( Y)dy} dU = |i/*(X + 0) + f*(X - 0)} ,

where

(4.5) K°>(X) = Hm{ iXp)ü\iXp.yü-l)'Vl2D,

(4.5') K(2\X) = H<2,{ iXp)ü\iXp)(ü-1)l2pll2D,

(4.6) f*iY) = Yw-1)l2fiYü).
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Our object is to prove (4.1) by proving (4.4) first in which the kernels

are Ka)iX) and Ki2)iX). The reasons for making the above transformations

will appear in §7 below. From (1.4), we have

1    rUr(cJ + y](s-l))ur(aJ-aj(s-l))
(4.7)K(1,(X) = ^7J-——-——:——

XI rnr(d>-4-i))nr(*i+4-|))
.(Xp)-Ds+^1)/2p1/2Dds,

where the contour T' of integration is a straight line parallel to the imaginary

axis in the s-plane separating the poles of r(c;-|-7;(s — \)), j =!,■■•,m

and r(a) - a,is - \)), j = 1, • • -,p.

Making one more transformation

(4.8) -Ds+iD-l)/2= -S,

we get

(4.9) KW(X) = -^t f *W(S) X~sdS,
2ti Jt

where

*("(S)

(4.10) ñr(cJ + yJ(s-\)/D)Ur(aJ-a](s-\)/D)  ^

Üt^-^S-D/d) nr(bJ + ßj(s-\)/D) '

and the contour T is any straight line parallel to the imaginary axis in the

Si= a + it) plane for which 0 < a < |. The corresponding contour V for

(4.7) is easily deduced from this statement by means of the transformation

(4.8). Similarly, we have

(4.11) K(2)(X) = -^  fri)iS)X~sdS,
¿iri Jt

where

Ä(2)(S)

Il r (d; + Sj (s - D/d) Ù r (*, - ß, (s - I)/d)
(4.12) — v_x        L"     '_*____£ll_L ..1/2-s

ñr(«-,(s-í)/l))Úr(, + ̂ -})/í)
ß
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Evidently, *(U(S) and « (2,(S) are the Mellin transforms of KwiX) and

K(2,(X) respectively.

We shall now use Theorem B to establish (4.4). It will be shown that

ÄU,GS) and ft{2AS) satisfy conditions (i), (ii) and (iii) and /*(Y) satisfies

condition (iv) of that theorem.

Let S = o + it. The poles of $U'(S) are at the points

-- Dir + Cj)/yj,       ;=l,...,m,

-+Dir + aj)/aj, ; = l, ...,p,

and those of $l2'(S) are at the points

|-D(r + d,)/ô;, j=l,...,n,

|+D(r + 6,)/0„ ; = l,...,fl,

where r is a positive integer or zero. From conditions (v) of the Theorem 2,

it follows that all the capoles of $wiS) and 6,-poles of #l2)(S) lie on the

right of a = 1. In conditions (vi) if only the inequalities hold then all the

crpoles of $(1) (S) and drpoles of $ * (S) lie on the left of a = 0. If, however,

the equality holds for some of the c/s and d/s in (vi), then there are poles

of #(1,(S) and RKl\S) on the imaginary axis and there can be at the most m

of ®wiS) and n of $t2)(S). Since the only singularities of f (1,(S) and

$(2)(S) are isolated simple poles it follows that <r0 < 0 and ox> 1 can be

found such that $U,(S) and ftwiS) are both regular in the strip er0 < a < ox

except possibly for a finite number of simple poles on the imaginary axis.

To prove that Stw (S) and $l2' (S) also satisfy the second requirement for

being of class A' we shall examine the asymptotic behaviour of Ê U) (S) and

Ä(2,(S) for large positive and negative i.

In the expression for $U,(.S), let the Gamma functions involving — S be

changed into the Gamma functions containing + S by using the formula

(3.1') so that we get

9,„(S) _ ñT(cl + yl{8-\)/D)ÍlT(l-al + ,l(s-\)/p)

(4.13) Ú'(!-%+•»(«-!)/*) ftr(»,+ft(s-i)/D)

Ô *>»(*-«(s-|)/b)

Il su, »(<.,-«,(s-Í)/d)

p-n    1/2-S
ir      ¿t



1965] A PAIR OF UNSYMMETRICAL FOURIER KERNELS 365

To the factors in (4.13) involving Gamma functions only, we now apply

(3.1). On using the conditions (i) through (iv) of the Theorem 2 and (4.2),

we get for large |S| and |argS| zi w — 5, 5 > 0, the contribution to the

asymptotic expansion of $lu (S) due to the factors involving Gamma func-

tions only as

/"1/2exp {(s - \) logS - s} j Ay + BJ S + 0(\S\ ~2) \,

where Ax and Bx are constants independent of S. Using (3.1) again this

expression is equivalent to

(4.14) /~1/2T{S){ A2 + B2/S + Oi\S\ ~2) \,

where A2 and B2 are constants.

Next we consider the contribution to the asymptotic expansion of Äll,(S)

due to the factors involving sin functions. Let S = a + it. Allowing |£| be-

come large it is easily seen that

sin.U-ô/s-i)//))
--.- V        -/- = Ex + Oie-U),

( 1   c    \2tj/D

\C0S2SV

where Ex is a constant such that

Ex = 22i>/D_1exp ! ¿x (dj -1 + Sj/2D ) j  for large positive t

and

Ex = 22J>/D-1exp I - iir ( dj - | -f- 5j/2DJ I    for large negative t.

There are n sin factors in the numerator and p in the denominator of (4.13)

and the total contribution of all the sin factors in (4.13) to the asymptotic

expansion of $(1)(>S) is of the form

(4.15) {£2 + 0(e-"')}oog|ST,

where E2 is a constant having one value for large positive t and the conjugate

value for large negative t.

The asymptotic expansion of $(1)(S) can now be written by taking the

product of (4.14), (4.15) and the factors irn~ppV2~s We thus have finally the

following result. For S = o + it and sufficiently large values of |i| the asymp-

totic expansion of $(1,(S) is given by
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(4.16) f(1'(S) = r(S) cos(|sT)[3li+S9i/S + 0(|s|-2)},

where the constants 811 and 93 x each have one value for large positive t

and another value for large negative t.

In an exactly similar manner it is seen that for large values of |£|,

(4.16')       r2)(S) = r(S) cosQs») \%+%2/S + Oi\s\-2)\,

where tl2 and 93 2 are constants each having one value for large positive t and

another for large negative t.

This establishes that $ll)(S) and $(2'(S) both belong to the class A'.

The third condition of Theorem B is obviously satisfied by $(1)(«S) and

$ (2'(S) if we look at their forms in (4.10) and (4.12).

The fourth condition is that /*(Y) belongs to L(0, œ) and that it is of

bounded variation near Y = X iX > 0). This requires that

( \YiD~1>l2fiYv)\dY
Jo

must exist and the integrand must be of bounded variation near Y = X

(X > 0). On putting Yu = y, it follows that these two requirements are

fulfilled by the enunciation (vii) of the theorem.

All the requirements of Theorem B have thus been shown to be fulfilled.

The conclusion of that theorem must therefore follow and consequently

the equation (4.4) is true. On using the transformation (4.3) in the reverse

sense it follows that (4.1) is true.

5. Discontinuous integrals associated with Hwix) and H{2\x).

Theorem 3. Let ¿fu,(x), #(2,(x) be defined by (1.4), (1.4') and H[u(x),

Hiz,ix) by (3.3), (3.3'). // iAe conditions (i) through (vi) of Theorem 2 hold,

then

0,        x > y > 0,

(5.1) £Hwixu)Hi*iuy) t" = H-       x = y>0,
2'

1,       y>x>0.

In Theorem 2, take fiy) defined by

Í1'
fiy) =

In

y<Y,

0,      y > Y,

so that
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1, 0 < X < Y,

||/(x + 0)+/(x-0)}==||,        x=Y>0,

We have

0,       x>Y>0.

//S2)(uY)
W2Auy)fiy)dy=      Hwiuy)dy = ?Ul

Jo Jo u

(5.1), then, follows from Theorem 2.

6. The asymptotic expansion of Z/W(x) and //l2,(x) for positive real x. In

this section we give a theorem concerning the asymptotic expansion of

//U)(x) and H{2)ix). We are confined to the case when x is real and positive

as the investigation for complex x becomes too involved.

Corresponding to a given w, an asymptotic expansion for Ha\x) and

//t2,(x), when x is large and positive, with an error term 0(x 0, has been

found.

Theorem 4. Assumptions:

(i) m — q = n — p > 0,

aj>0,   j=l,...,p,    ßj>0,   j=l,---,q;

7j>0,   j=l,...,m,    oj>0,   /-I,...,»,
(ii)

(iii) \D-tyj-Í*-Í*j-Z*i>o.
1 m q n p

(iv) 2 L = ^ C; ~ ^ 6; = ^ dj ~ ^ a"

(v) x is real and positive,

(vi) Rl(a,)>0,   7-1.....P,    Rl(6,)>0,   j=l,...,q,

(vii) Rl(c;) > yj/2,   j=l,...,m,    Rlidj) > ôj/2,   j = 1, ■ • -, n,

(viii) given    ¿2 > |,     N    denotes    the    greatest    integer    less    than

{Di¿¡ — i) + 3/2}, Af, denotes the greatest positive integer less than

{ajiu — 5) — Rl(a;) }, 7'— l,...,p and M/ denotes the greatest

positive integer less than j/3/ài — |) — Rl(6;) }, 7' = 1, • ■ • ,q,

(ix) m — q = n — pisan odd positive integer.

Conclusions:
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(6.1) + Z x-w-MiAj + Bjx-U'j + CjX-2'"j + ■■■+ UjX-MJi°j)
p

z

+ 0(x"¿)

D
= n ,

(6.4')

and

9

(6.2) + Z x-w-Wi (A'j + B'j x~ll»i + C'j x-m + ... + U'j x~Mm)
;=i

+ Oix-i,

where

(6.3)

and

(6.4) Vj,v'},       j = 0,l,-..,N,

Aj,Bj, Cj, •••,Ui,        j = 1, • • -,p,

A;,ß;,c;,...,i/;,    j-i,...,í,

are constants which depend on the parameters

a„aj,       j = 1, ■ ■ -,p,        bj,ßp       j = 1, ■ ■ -,q,

Cj, 7>,       j =l,---,m,       dp bj,       j = 1,. • -,n,

but are independent of x.

If m — q = n — p is an even positive integer iinstead of the condition (ix)

above) then in the right hand side of (6.1) and (6.2) we must replace sin by cos.

This theorem has been obtained following the lines of a similar theorem

of Fox [5, p. 417] concerning a symmetrical Fourier kernel. The proof is,

therefore, being omitted. The constants (6.4) are computed by a method

specified in Lemma 6 of Fox's paper [5, p. 423] and the constants (6.4') are

computed by calculating residues as specified in §12 of the same paper [ 5,

p. 427].

7. The asymptotic expansions of Ha\x) and H{2>ix) enable us to explain

the need for the transformations (4.3) which bring forth the new kernels
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Kwix) and Kl2,(x) of (4.5) and (4.5').

The classical Fourier kernels such as sinx, cosx and \/(x)</„(x) all behave

in a very similar manner as x—> <». When x is complex they all tend to infini-

ty with exponential rapidity and when x is real they all oscillate finitely as

x—> oo just like cosx. It is in fact the behaviour of a function on the real

axis which decides whether or not it is a Fourier kernel.

If we look at equations (6.1) and (6.2), then, by the conditions (v) of

Theorem 2, the algebraic terms in the asymptotic expansions of //u,(x) and

//t2'(x) tend to zero as x-> ». But the trigonometric terms contain a factor

xd-D)/2o Hence) when D y¿ íf #u)(x) and Hm,x) cannot 0SCiiiate finitely,

as x-» ». On the other hand, (6.1) and (6.2) show that KwiX) and K^\X),

(4.5) and (4.5'), contain algebraic terms which tend to zero as x approaches

infinity, but that the trigonometric terms are of the type

(7.1) pD/2Z »jX-J sin { (l + \ - j) */2 - x} .

Evidently, the terms in (7.1) for which j è 1 all tend to zero as X tends to
infinity but the term corresponding to j = 0 oscillates finitely as X —> œ.

Hence the kernels KwiX) and K(2\X) behave much like the Fourier kernels

of classical theory and so much of this theory can be applied to them. This

explains the need for the transformations (4.3).
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