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1. Introduction. In a recent paper Heerema [l] has shown that if K* is a

p-adic field, i.e., a field which is complete and unramified with respect to a

discrete rank 1 valuation, with ring of integers R* and natural place H*:

K*—>{k, œ], then for every derivation d:k—>k there exists a derivation P*:

K*^K* such that P(P*) C R* and diH*ia)) = P*(P*(a)) for every a G R*.

It follows from this, for example, that the inertial automorphisms of K*

are Taylor-series-like expressions in powers of p using integral derivations,

i.e., derivations P*: K*^K* such that D*iR*)ER*- The fact that every

derivation on k is induced by one on K* also yields a simple way of con-

structing an example to show that if K is a ramified p-adic field and K* is un-

ramified having the same residue field, then K* is uniquely embedded in K

if and only if k is perfect [4].

In this paper we study ramified p-adic fields K with ring of integers R,

residue field k and natural place H: K —> {k, œ} with the property that for

every derivation d:k—>k there exists a derivation D:K—>K such that P(P)

CÍ2, P(ir) G M for a prime element it of R and aER implies diHia))

= HiDia)). For convenience of discussion we will call this property of p-adic

fields property (H).

We derive several characterizations of p-adic fields with property (H).

These characterizations are essentially of two kinds. The first characteriza

tion gives a condition on the Eisenstein equation of the p-adic field with re-

spect to a given fixed p-adic subfield with the same residue field in the re-

stricted valuation, while the other characterizations are intrinsic and yield

properties this class of p-adic fields must have.

The first characterization mentioned above makes use of the valuation

topology of the fixed p-adic subfield and depends on the "distance" arbitrary

elements can be moved by derivations in the metric generating the valuation

topology. We have found a theoretically simple way of determining this dis-

tance which allows us to assign a numerical value to the Eisenstein poly-

nomial with the property that the given p-adic field has property (H) if and

only if this numerical value is greater than zero.

The other characterizations are in terms of the derivations on the p-adic

field K and automorphisms on this field. We show that K has property (H)
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if and only if every integral derivation on K is an inducing derivation, i.e.,

if and only if DiR) C R implies £((*■)) C Or).

Finally, after establishing some connections between integral derivations

on an arbitrary p-adic field K and inertial automorphisms we are able to

obtain some information on the structure of the pseudo-ramification groups

of K. We are also able to give a third characterization of property (H),

namely, if p is an odd prime and if n ^ (e + p)/ip — 1), where e is the rami-

fication of K, then K has property (H) if and only if for every automorphism

T: X-> X such that Tia) - a E M" for all a E R, it is true that TM - w

E W+1. This third result is a corollary to an extension of a result of

MacLane [2] from the case of D-adic fields to the p-adic field situation.

2. The index of inertia. As in the introduction, we assume that K* is

a p-adic field, R* its valuation ring and k = R*/{p) its residue field. We

assume that H*:K*—,\k, oo} is the natural place. For a ER*, let A(a)

= min { ViD*ia))}, where D* ranges over all integral derivations on K*. The

symbol A(a) is called the index of inertia of a. If we assume V(p) = 1, then

A(a) will have value a non-negative integer. If D*(a) = 0 for all integral

derivations D*, then we will assign A(a) the value <*>. If k0 is the maximum

perfect subfield of A, then R* contains a unique subring R* such that

H*(Ró*) = A0 [2]. It is easily seen that if a G Ro then A(a) = oo. We will

show below that if A(a) = oo, then a E Ro-

For notational convenience we will introduce the symbol a[b] meaning a .

If a G R*, then one can easily show that a G fio* or a = J>LoP[i]a;[p[ra>]]

and for some i, H(a¡) E k\kp. Let J^denote the set of all such subscripts.

Theorem 1. A(a) = m.ini&A.i + nt) if J^ 0, A(a) = œ otherwise.

Proof. Let a ER* and decompose

a = ipi']fl,[py+ ZpL/k

Let n = min,eJ5"(i + n,) = N(a). Let i0 < ix < ■ • • < iq be the collection of in-

dices such that ¿o + n^ = ■ - ■ = iq + niq = n. Let a' = XLoP[i'iJû[p [«>„]]• We

have a = a' + a", where Nia') = Nia) and Nia") ^ Nia) + 1. Thus if Aia)

— Nia), then Aia') = Nia')  and conversely.   Hence, it suffices to show

that A(a') =JV(a').  Now a' =p[i0]a*, where a* is a unit.   Also, H*ia*)

= 7¿o[p["k>]]> where H*iaio) =yk)Ek\kp.  Let \y^,m) be a p-basis for A

Then [tíqIpK)]].'«} is a P-basis for A* = [p[reJKm) and [A:A*] = p[nio]
= p[n¿o] with A = A*(7¿0), where the minimum polynomial of 7¿o is -X[p[»¡o]]

— Tiotpfn^]]. Let m* be a set of representatives in R* of m. Let Km> be

the complete closure of K*im*), where K* is the unique subfield of K*

having residue field A0. Let fím* be its ring of integers and construct R'

= R*.[a*,R*\p[n3]]. Then R' is an integral domain and H*iR') = k*.
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Let K' be the complete closure of the quotient field of R', then K' is the

quotient field of R', since K* is complete and unramified. Now let c be any

representative for y^. Then K* = K'ic) and [K* : K'] = pjftij, since

K* is unramified. Thus the minimum polynomial of c is of the form

(A) X[pK]] + «iX[p[n10]-l]+...=/(X).

Now/(c) = 0 implies H*(Jic)) = fH (7l0) = 0, where

(B) X[p[n¡0]] + P*(«i)X[pKJ - 1] + • • • = f'iX).

Thus X^f/i^.]] — 7^[p[nw]]|/H (X), but since they have the same degree,

riX) = X[p[n¡<l]] - tJpK,]]. Hence

(i) H*ia.)Eip)    forláí'épK]-l,

(ü) H*ifi0)) - 7jp[»JJ.

Now {a*,/n*j is a collection of representatives of a p-basis of ft*. Thus, as

Heerema has shown [l], we determine a unique integral derivation

D-.K'^K' by letting
(i) Dia) = 0,       aGX0*,       a Em*,

(ii) Dia*) = pjftiju,        u some unit in P'.

Now consider the extension of P to K*. By the construction of the fields and

a straightforward argument on the valuation, R* = R'[c]. Hence, if we can

show that V(P(c)) ^ 0, then P: K* —> K* is an integral derivation. We know

that P(c) is uniquely determined and P(c) = —fDic)/f'ic). We observe that

a ER' implies V(P(a)) ^ n^. Thus V(Z)(«¡)) M + n, for all i, 1 £ » á pKJ
- 1 by condition (C), (i). Next observe that /(0) = a* + p ■ v and P(/(0))

= P(a*) + pDiv) = p[n^]u + p ■ pfr^ty* = p[n,J(u + pv*) = p^u*, where

u* is a unit. Thus V(/Ü(c)) = n,,.

Observe that /'(c) has degree ^p^]— 1. Thus from the fact that P*

= P'[e], Vif'ic)) is equal to the minimum of the values of the coefficients.

Now the coefficient ofcfpfn^] - l] in/'(c) is pjn^]. Thus the minimum value

of the coefficients is ^ »*. Thus Vif'ic)) ^ nw Hence V(P(c)) ^ 0. Thus

P: K*->K* is an integral derivation. Now P(a') = P(p[i0]a*) = p[i0]P(a*)

= p[io + n^u and V(P(a')) = i0 + n¡0 = n. Since V(P*(a')) ^ n for all D*,

it follows that A(a') = Nia') = n and thus A(a) = iV(a) = n and the theorem

follows.

3. p-adic fields and property (H). In this section we shall be concerned with

p-adic fields K, with ring of integers R, maximal ideal Or), residue field

k = R/ (*•) and natural place H: K —> j k, œ}. If V is the valuation on K and if

V(ir) = 1, V(p) = e, then K = K*iw), where K* is a p-adicfield in the

restricted valuation V* = V/K*, [K: K*] = e and ir is the root of an Eisen-
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stein polynomial/(X) = Xe + p£U/¡X', fER* = RHK* and/0 G R*\ip),

ip) = R*npR[3]-
It is also true that if H* = H/K*, then H*iR*) = A. Throughout the dis-

cussion we will assume that K is given and that K* and ir have been fixed

once chosen.

Let AK\K. = minj (A(/,) + l)e + i\- Vif' (ir)), where f(X) is the deriva-

tive with respect to X of /(X). Notice that since 0 z%i zie — 1, then by the

properties of V, minj (A(/¿) + l)e + i\ is uniquely determined and equal to

(A^) + l)e + ¿o for some index i0, 0 zi i0 zi e — 1. Hence Ax^. = (A^) + l)e

+ io — V(fW) for some index ¿0. Since V(f'(w)) is fixed, A^ik« depends

only on the coefficients of f(X) once K* and it have been chosen.

Let an integral derivation D on K be an integral,, derivation if D(ir) E U)n.

Theorem 2. X Aas íAe property that every integral derivation is an inbgraln

derivation, n^l, if and only if Ajqie ^ n. If n 3; 1, then it is also true that

for any such D, D((ir)) C (x).

Proof. Suppose AK\k' = n ^ 0. Let D* be an integral derivation on K*.

Then D* has a unique extension D: X—>X which is completely determined

by DU). Now DM = -fu"Or)/f (*)• Hence V(D(tt)) = V<jDi*)) - Vif'i*))
= AK|K. = ra = 0. Thus öfr) G W C R-

Since aE R implies a = gaM, where gaiX) G fi*[X], it follows that Dia)

gai*) + g'ai*)DM C R. Hence D(Ä) C Ä-

Notice that ra = 1 implies D(7rd) = wDia) + aDiir) G i*-) if a ER, hence

D(U)) C M.
Now suppose that D is an integral derivation on K, then a = gaix) implies

Dia) =g?ÍTr)+gáMDÍTr). In particular, if a ER* then Dia) =&%r)

-ÄO>0r). Thus D = D|X* is given by D'id) = g^).

Consider ga,u (X). Since [K:K*] = e, we may choose ga,u (X) of degree at

moste — 1. Hence, if we do this, then

ga.u (X) + gbMiX) = ga+b,uiX)

and

agb,DiX) + bga,oiX) = g^oiX)

for alla, b ER*-

Thus we may write D' = X'-ox'D*, where D*ia) is the coefficient of X'

inga,LriX), and so Df: K* —» X* is an integral derivation on X*. The fact that

the polynomials ga,uiX) are uniquely determined implies that the repre-

sentation D' = Y^S=WD* is unique.

Since Ak|k« = n ^ 0, each derivation D* has a unique extension D, to X

such that D,(Ä) C R, A(x) E (x)" and A((x)) C (») if n = 1. Hence since
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D' has unique extension D to K, it follows that D = fTj_¿ ir'P¿. Thus DM

G M" and fl((i)) C M ifn^l.
Conversely, suppose that every integral derivation P on K is an integral,,

derivation, n ^ 1. Suppose also that Ar\k' = m <n. Suppose àK\K. =

(A(/io) + l)e + h — Vif'iir)) and suppose that P* is an integral derivation

on K* such that V*(P*(/¡0)) = A(/^)e. Then if we extend D* to a derivation

P on K, ViDM) = m<n.
If m ^ 0, then P(P) C P and hence V(P(ir) = n > m, a contradiction.

If m < 0, then «■ mP(P) C P and hence VU~raDM) = 0 è n ^ 1, a contra-

diction. Thus m}£n and the theorem follows.

Corollary. Puery integral derivation D* on K* has an integral extension D

to K if and only if AK\K- ̂ 0.

Theorem 3. K has property (H) ifandonly if &K\k- = 1-

Proof. Suppose Ak\k' = 1- Let d: k—>k be any derivation.

Then there is an integral derivation D* on K* such that a ER* implies

H*iD*ia)) = d(P*(a)) =d(P(a)). Since AK]K. à 1, then D* has a unique

extension D to K which is at least an integra^ derivation. Hence D induces a

derivation on k. Since a ER* implies P(a) = D*{a), it follows that D induces

d: &—>ft. Hence K has property (H).

Conversely, suppose that AK\K. = m í£ 0. Then there is an integral deriva-

tion D* on K* such that if D is the unique extension of P* to K, then

V(P(tt)) = m ^ 0. If Do is any derivation such that D* and D0* induce the

same derivation on k, then Do* = D* + pD* and thus if P0 is the unique ex-

tension of P0* to K, then V(D„(?r)) = V(P(ir)) = m. Now suppose d:ft—>ft

is induced by D*: K* —» K* and suppose that D: P —> X also induces d:k—>k.

Then if D' = D\K*, D' = J^ZWD?, where D*iR*)ER*. For aGñ*,
H*iD*ia)) = HiDia)) = P(P'(a)) = P*(P0*(a)) and thus D0* induces d:k-^k.

Now suppose D, is the unique extension of D* to X, then Vi-it'DM) ^ m

+ t > ViDM) and thus V(£í:¿7r'P,U)) = V(A>M) = m ̂  0. But

i=0

and thus V(P(ir)) = V(D0(7r)) = m g 0. However, D is an inducing deriva-

tion and so V(D(ir)) 2: 1. Hence d:k—>k is not induced by any D:K—>K

and K does not have property (H).

Corollary 1. K has property (H) if and only if every integral derivation

Don K is an inducing derivation.

Corollary 2. If K is a p-adic field of ramification e and if (e,p) = 1, then

K has property (H).
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4. Automorphisms on p-adic fields. In this section we shall be concerned

with establishing a connection between derivations and inertial auto-

morphisms on p-adic fields X. Let G = j T| T is an automorphism on X}; for

»el, let Gn= \T EG\Tia) - a E M" for alla E R};

Gn={TEGn\TM-rEMn+1}.

As in §2, a[b] means a".

Lemma 1. Let n^l and kt TEGn. Then if Z=T-I, Z[g]:fi->
M[qin - 1) + 1].

Proof. Ziab) = Tiab) - ab = aZ{b) + bZia) + Zia)Zib). Thus, in par-

ticular, Zdr[m]) = Z(x • ir[m - 1]) = wZiw[m - 1]) + x[m - l]Z(x) +

Z(x[m-l])Z(x). Hence Z(x[2]) G (x)[ra + 1] and by induction, Z(x[ro])

G(x)[m + n-lJ.
Thus aER implies

Zia) = *[n]ax,

Z[2](a).= Z(7r[n]a!) = a^Orfn]) + x[»]Z(a!)+ Z0r[n])Z(o!) G x[2n - l].

Hence by induction Z[g](a) G (x) [qn — iq — 1) ] and the lemma follows.

Corollary. Ifn^l and TE Gn, then Z[q]: i?—> (x)[gra].

Proof. Since Z(x) G M[n + 1], it follows that Z(x[m]) G (x)[m + ra].

Hence Z[2](a) Gx[2ra] and by induction Z[g](a) G (x)[gra].

Now suppose that n ^ (e + p)/(p — 1), g = 2. Then if g = p[s]t, it follows

that p[s]tin — 1) 3 1 — se ^ n -\- 1. Since g G (x)[se], it follows that Z[q]/q:

R-*Tr[n + l]forallq^2.

Lemma 2. Suppose 1 zi i = p[/i], £/ien

ff]) ej*>]».
Proof. Consider

i(P["]) = l/(i - 1) '• Jp[m](p[m] - 1) • • • (PU] - (i - D) }•

In the expansion we obtain terms of the form

*<¥ )■••(*)•

i è 0, 1 á h < »2 < * • • < k'é i — 1. Since (p[/i]/¿„) G #, the lemma follows.

Theorem 4. Let p be an odd prime and suppose n ^ (e + l)/(p — 1).

Suppose TGG„, or, ¿/ n = 1, TG ¿n- Suppose T= / + x[ra]T'. TAen £Aere
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is a derivation P(P)„ on K such that V - P(T)„: P^ Or). Hence TE Gn if

and only if P(T)„ is an inducing derivation.

Proof. Since T= I + Z, it follows that

T[p[p + 1]]-T[p[p]]

¿=i\\        i       /       \    l   // >-pW+i\       I        /

If i ^ 2, then by Lemma 2 and the fact that Z[i]/t: P—>7r[n + l] we get

T[p[p + 1]] - T[p[p]] = p[m](p - DZ + p[p]Z*, where

(2) Z;:P-,W[n + l].

Let

t^pj-mKtIpU+i]]-^^]])
= (p-i)z + z;= -z + pz + z;.

Now consider T„+1 — T„. This map is given by

Pic) Plc+lJ

Z,gtp[-ß-l]Z[i]+  Z   gip[-n-l]Z\i],
/g\ i = l i=pW+l

p^l    /p[m + 2]
+     IJ     ( )p[-m-1]Z[i],

l'=p[«+lj+l \       l      I

where

.-((*rO-(*«+1V+'>+C«H is,s"w

s! = ((*i+21)-(pI"i+1|)(i + p)).     pW+is.spU+U.

Note that gi = 0. For i ^ 2, we get

& = 1/ii - 1)! {p[M + l]iip[p + 2] - 1) ■ • • (p[M + 2] - Ü - D)

-(p|/» + l]-l)---(pU + l]-(t-l)))
(4)

- p[M + i]((p[M +1] -1)... ip[p +1] - a - D)

-ip[p]-i)-..ip[p]-a-i)))\.
Now suppose we pick p such thatp[/i/3] ^ 2(/t + l)e. Then i ^ p[í¿/3] imphes

Z[i]: P^p[2(/i + 1)]P. Also, if 1 ^ i <p[/t/3], then by Lemma 2, and the

fact that on the right side of (4) the terms involving (i — 1) ! are cancelled,

it follows that p[-p - l]g¡Z[t]:P—>p([m] - [U/3] + l])P, where the inner
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[m/3] denotes the greatest integer function. Hence

T„+1 - T„: R^pi[p] - [[p/3] + 1])R

and

UmT^T^+f  iTi+l-Tù

is a well-defined map.

Since

then by Lemma 2, T[p[m]] - /: Ä—>p[/i]Ä. Thus since

T„iab) - aT¿b) - 6T» = p[-M]{ (TMm + l]](a) - a)(T|pk + l]](b) - b)

- iT[p[p]]ia) - a)iT[p[p]]ib) -b)\       (p * 2)

it follows that for ^ large enough T„ is a derivation modulo p[/i]. Hence

lim,,^«, T„ is a derivation.

Now lim^„ T,= -Z + pZ + lim^„ Z;. Thus if we let D( T)n = -«•[-»]

• lim,_„ T„ then D(T)„ - +T* -pT - x[-n]lim,_„ Z* and V - D(T)„:

fí—> (x), since Z*: fi—> (x)[n + l]. Hence the theorem follows.

Theorem 5. Suppose n^(«+l)/(p-l) and suppose D:K—,Kisan inte-

gral derivation on K. Then Dn= 13 ^r=o*[ni]/il D[i] is an automorphism

on X, Dn E Gn and Dn E Gn if and only if D(x) G (x).

Proof. Observe that V(i\) < ie/(p - 1). Thus ni - V(il) ^ni-ie/ip- 1)

^ (e + l)i/(p - 1) - ie/(p - 1) and lirn,^ V(w[ni]/i\) = œ. Thus Dn is a

well-defined map, Dn(R) E R- Dn is additive since D[i] is additive. Also, by a

straightforward computation Dn(ab) = Dn(a) ■ Dn(b). Since Dn(l) = 1, it

follows that Dn E G.

By a straightforward computation i ^ 2 implies V(x[ni]/¿!) ^ n + 1, if

n^(e+l)/(p-l). Hence D„ = / + *[n](D + *D*), where L\*(Ä) C #•

Hence D„ G Gn and D„ G Gn if and only if D(x) G (x).

_ Theorem 6. Let Q> be the additive group of integral derivations on K and let

S3 be the additive group of derivations on the residue field of K which are induced,

then ifp is odd and n ^ (e + p)/(p — 1), Gn/Gn+X is isomorphic to St/irSt and

ifn ^ (e + p)/(p — 1), Gn/Gn+X is isomorphic to 3.

Proof. Define Hn(TGn+x)_= D(T)n + irL3 and tf*(TGn+1) = d, where d is

induced by D(T)n if TE Gn. Theorem 4 implies Hn and H* are well-defined

since D(T)n:R^M if and only if TGGn+1. Since D(TX • T2)n = T'x+T2
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+ T'xW[n]T'2), it follows that DiTx ■ T2)n = P(Ti)„+P(T2)n (mod*), i.e.,

Hn and H* are homomorphisms. Hn and H* are monomorphisms by The-

orem 4. By Theorem 5, since P(P„) — D: P—> M, they are epimorphisms.

Thus they are isomorphisms and the theorem follows.

Corollary. X has property (H)  if and only if Gn = G„ for all n ^

(e + p)/(p-l).

Proof. Suppose G„ = G„. Then TEGn implies P(P)„ is inducing. Since

DESiï implies D = P(P)„ — irP' for some T and P', every P is inducing.

Thus X has property (H). If X has property (H), then every P(P)n is induc-

ing, which implies T E G„. Hence G„ = G„.

Conjecture. Theorem 6 holds for all n ^ 1.

Notice that if T£G„ (n ^ (e + p)/(p - 1)), we can obtain D(D„. Thus

by Theorem 5, (P(T)„)„ is an automorphism with derivation P((P(P)„)„)

- D(D„G^. Hence P= Pi • HDiT)n)n), where TxEGn+x. Proceeding in

this fashion we obtain

T = TjdDiTj.dn+j-ùn+J-ù ■ ■ ■ HDiT)n)n), P, G Gn+,

and since (1 G„ = /, we obtain

T = lim ((D(T,)n+,W • • • HDiT)n)n),
j-, m

i.e., T has a Taylor-series-like expansion in terms of derivations.

Theorem 6 is an extension of a well-known result of MacLane [2], to p-adic

fields.
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