ON ISOMETRIC IMMERSIONS IN EUCLIDEAN SPACE OF MANIFOLDS WITH NON-NEGATIVE SECTIONAL CURVATURES(1)

BY PHILIP HARTMAN

1. This paper deals with certain isometric immersions S of a complete d-dimensional manifold $M = M^d$ in a Euclidean space $E^{d+\delta}$, $\delta > 0$:

(1.1)
$$\psi: M^d \to E^{d+\delta}, \qquad S = \psi(M^d).$$

One of the main results will be the following:

THEOREM (*). Let $M=M^d$ be a complete Riemann manifold of class C^2 such that all 2-dimensional sections have non-negative curvatures. Let (1.1) be a C^2 isometric immersion of M^d in $E^{d+\delta}$, $\delta > 0$, such that the relative nullity function ν is a positive constant. Then S is ν -cylindrical.

The relative nullity $\nu(m)$, $m \in M^d$ and $0 \le \nu(m) \le d$, is defined by Chern and Kuiper [2] (and for $\delta = 1$ reduces to the nullity of the second fundamental matrix); cf. §3 below.

The immersion (1.1) is said to be ν -cylindrical if M^d , ψ , and $E^{d+\delta}$ can be expressed as products: $M^d = M^{d-\nu} \times E^{\nu}$, $\psi = \overline{\psi} \times 1$, and $E^{d+\delta} = E^{d-\nu+\delta} \times E^{\nu}$, where $M^{d-\nu}$ is a complete Riemann manifold, $\overline{\psi}: M^{d-\nu} \to E^{d-\nu+\delta}$ is an isometric immersion and 1 is the identity map on E^{ν} . $M^{d-\nu}$ and its immersion $\overline{\psi}$ are allowed to be of class C^1 .

Theorem (*) is a consequence of Lemmas 3.1 and 4.1, below.

(*) generalizes a result of O'Neill [5] who supposes that M is flat and makes the superfluous assumption that the "relative curvature of ψ is 0." For the case of hypersurfaces $(\delta = 1)$, (*) is a particular case of a theorem of Sacksteder [6] which does not contain the condition that $\nu(m)$ is constant and which has a stronger conclusion. For the case of a flat M and $\delta = 1$, (*) is also contained in a result of Hartman and Nirenberg [4]. In the latter, the assumptions "M flat" and " $\delta = 1$ " imply that $d-1 \leq \nu(m) \leq d$. It will be clear from the proof that an analogue of (*) is correct if the assumption that " $\nu(m)$ is a positive constant" is replaced by the assumption that " $d-1 \leq \nu(m) \leq d$," in which case M is necessarily flat. Professor Nirenberg has pointed out to me that this analogue can be deduced directly from our result in [4].

The problem of removing the assumption in (*) that $\nu(m)$ is a constant will remain open (when $\delta > 1$).

Received by the editors December 3, 1963.

⁽¹⁾ This research was supported by the Air Force Office of Scientific Research.

The proof of (*) depends in part on a generalization of the implicit function theorem, in the large, for gradient mappings in Lemma 2 of Chern and Lashoff [3] (or, equivalently, Lemma 2 of Hartman and Nirenberg [4]). This generalization involves simultaneous gradient mappings and is given in §2.

An Appendix deals with a further generalization of this implicit function theorem.

2. Let D be an open set in a Euclidean d-dimensional space of points $u = (u^1, \dots, u^d)$. By a ν -dimensional plane section π , of D through a point $u \in D$ is meant the connected component, containing u, of the intersection of D and a ν -dimensional plane through u.

Let $P_p(u) = (P_p^1(u), \dots, P_p^d(u))$, where $p = 1, \dots, \delta$, be a vector function of class C^1 on a domain D such that $u \to P_p(u)$ is a gradient mapping, i.e.,

(2.1)
$$\omega_p = P_p(u) \cdot du = P_p^i(u) \cdot du^i$$

is closed, so that

$$(2.2) d\omega_p = 0, p = 1, \dots, \delta.$$

Let $J_p(u)=(\partial P_p^i/\partial u^i)$, where $i,j=1,\dots,d$, be the $d\times d$ Jacobian matrix of the map $u\to P_p(u)$. Let $P(u)=(P_1,\dots,P_\delta)=(P_1^1,\dots,P_1^d,P_2^1,\dots,P_\delta^d)$ be the $d\delta$ -dimensional vector function and J(u) the Jacobian matrix $(\partial P/\partial u)$ with d columns and δd rows:

$$J = \begin{pmatrix} J_1 \\ \vdots \\ J_z \end{pmatrix}.$$

Let $\rho(u) = \text{rank } J(u)$ and $\rho^*(u_0) = \limsup \rho(u)$ as $u \to u_0$; correspondingly, $\nu(u) = \text{nullity } J(u) = d - \rho(u)$ and $\nu^*(u_0) = d - \rho^*(u_0) = \liminf \nu(u)$ as $u \to u_0$. Finally, let D_r be the open subset of D defined by

$$D_{\nu} = \{u : \nu^*(u) \geq \nu\}.$$

LEMMA 2.1. Let $P_1(u), \dots, P_{\delta}(u)$ be d-dimensional vector functions of class C^1 on D such that (2.1) satisfies (2.2). Let $u_0 \in D$ and $\nu(u_0), \nu^*(u_0)$ have a common value ν . Then $P(u) = (P_1(u), \dots, P_{\delta}(u))$ is constant on a ν -dimensional plane section $\pi_{\nu}(u_0)$ of D, through u_0 . Furthermore, for all points u near u_0 , $P(u) = P(u_0)$ if and only if $u \in \pi_{\nu}(u_0)$. Finally, $\nu(u) = \nu^*(u) = \nu$ for all $u \in \pi_{\nu}(u_0)$.

As in [4], this has the following consequence:

COROLLARY 2.1. If $\nu^*(u_0) = \nu$ at a point $u_0 \in D$, then P(u) is constant on a ν -dimensional plane section $\pi_{\nu}(u_0)$ of D, through u_0 . Also, $u \in \pi$, implies that $\nu^*(u) = \nu$ and that either $\nu(u) = \nu$ or $\nu(u) > \nu$ according as $\nu(u_0) = \nu$ or $\nu(u_0) > \nu$.

While $\pi_{\nu}(u_0)$ is unique in Lemma 2.1, it need not be unique in Corollary 2.1. It is unique in Corollary 2.1 if $\nu^*(u) = d - 1$.

Below, repeated indices indicate summation with the following ranges for the different indices:

$$1 \le h, i, j, k \le d;$$
 $1 \le \alpha, \beta, \gamma \le \rho;$
 $\rho + 1 \le \kappa, \lambda \le d;$ $1 \le p, q, r \le \delta.$

Proof of Lemma 2.1. Let $J_{p\rho}(u)$ denote the $\rho \times \rho$ Jacobian matrix $(\partial P_p^{\alpha}/\partial u^{\beta})$, where $\alpha, \beta = 1, \dots, \rho = d - \nu$, in the upper left corner of J_p and let $J^{\rho}(u)$ denote the matrix

$$J^{\rho} = \begin{pmatrix} J_{1\rho} \\ \vdots \\ J_{h\rho} \end{pmatrix}$$

with ρ columns and $\delta \rho$ rows.

Let the j_1 st, j_2 nd, ..., j,th columns of $J(u_0)$ be linearly independent. Let U be a $d \times d$ permutation (orthogonal) matrix such that the effect of multiplying any $d \times d$ matrix A on the right by U to give AU is to move the j_1 st, ..., j,th columns of A into the 1st, ..., ν th places. Multiplication of A on the left by U^* to give U^*A moves the j_1 st, ..., j,th rows of A into the 1st, ..., ν th positions, respectively.

Let Uu be renamed u and $U^*P_p(Uu)$ be called $P_p(u)$. Then $u \to P_p(u)$ satisfies (2.1), (2.2) and the first ν columns of J(u) are linearly independent at $u=u_0$, hence, for u near u_0 . Since $\rho(u_0)=\rho^*(u_0)=\rho$, the last $\nu=d-\rho$ columns of J(u) are linear combinations of the first ρ columns for u near u_0 . In particular, the last $\nu=d-\rho$ columns of $J_p(u)$ are linear combinations of the first ρ columns of $J_p(u)$ for $p=1,\dots,\delta$. The condition (2.2) implies that the Jacobian matrix $J_p(u)$ is symmetric and so the last ν rows of $J_p(u)$ are linear combinations of the first ρ rows. It follows that the rank of the matrix $J^p(u)$ in (2.3) is ρ .

Thus, $J^{\rho}(u)$ has ρ linearly independent rows, i.e., there exist ρ pairs of indices $(p(\alpha), i(\alpha))$, where $1 \leq p(\alpha) \leq \delta$, $1 \leq i(\alpha) \leq \rho$ and $\alpha = 1, \dots, \rho$, such that $\det(\partial P_{p(\alpha)}^{i(\alpha)}(u)/\partial u^{\beta})_{\alpha,\beta=1,\dots,\rho} \neq 0$ at $u = u_0$. Introduce the mapping $u \to v$, defined by

(2.4)
$$v^{\alpha} = P_{p(\alpha)}^{i(\alpha)}(u)$$
 for $\alpha = 1, \dots, \rho$ and $v^{\kappa} = u^{\kappa}$ for $\kappa = \rho + 1, \dots, d$,

so that the Jacobian $\det(\partial v/\partial u) \neq 0$ at $u = u_0$. Let v_0 correspond to u_0 and let u = u(v) be the local inverse of the map (2.4).

The above description of the linear dependence of the rows of $J_p(u)$ and the assumption $\rho(u) = \rho^*(u) = \rho$ for u near u_0 imply that $P_p^i(u(v))$, for $p = 1, \dots, \delta$ and $i = 1, \dots, d$, is a function, say $\overline{P}_p^i(v)$, of (v^1, \dots, v^r) . For

$$\partial \overline{P}_{p}^{i}/\partial v^{\kappa} = (\partial P_{p}^{i}/\partial u^{j})(\partial u^{j}/\partial v^{\kappa})$$

and if $\lambda > \rho$ and u (or v) is fixed, there are numbers $c_{\lambda\beta}$, $\beta = 1, \dots, \rho$, such that

$$\partial P_p^i/\partial u^\lambda = c_{\lambda\beta}\partial P_p^i/\partial u^\beta$$
 for $i=1,\dots,d$.

Hence $\partial u^{\lambda}/\partial v^{\kappa} = \delta_{\kappa}^{\lambda}$ implies that

$$\partial \overline{P}_{p}^{i}/\partial v^{\kappa} = (\partial P_{p}^{i}/\partial u^{\beta})(\partial u^{\beta}/\partial v^{\kappa} + c_{\kappa\beta}).$$

The choice $(p,i)=(p(\alpha),i(\alpha))$ for $\alpha=1,\dots,\rho$, makes the left side zero and hence, $\frac{\partial u^{\beta}}{\partial v^{\kappa}}+c_{\kappa\beta}=0$ for $\beta=1,\dots,\rho$ and $\kappa=\rho+1,\dots,d$. Consequently $\frac{\partial P_{p}^{i}}{\partial v^{\kappa}}=0$ for $p=1,\dots,\delta$; $i=1,\dots,d$; and $\kappa=\rho+1,\dots,d$.

Since the Pfaffian (2.1) is closed, it follows that the Pfaffian

$$\omega_{p0} = u^i dP_p^i(u) = d(u^i P_p^i) - \omega_p$$

is also closed. Introducing v as independent variable leaves ω_{p0} closed and shows that ω_{p0} is of the form

$$\omega_{p0} = (u^i \partial \overline{P}_p^i / \partial v^\alpha) dv^\alpha.$$

Corresponding to v near v_0 , there is a scalar function $f_p(v^1, \dots, v^p)$ of class C^1 such that $\omega_{p0} = df_p$. Hence

(2.5)
$$u^i \partial \bar{P}_p^i(v) / \partial v^\alpha = b_{p\alpha}(v^1, \dots, v^\rho)$$
 for $p = 1, \dots, \delta$ and $\alpha = 1, \dots, \rho$

where $b_{p\alpha} = \partial f_p / \partial v^{\alpha}$ is continuous.

It will be verified that the $\delta\rho$ equations (2.5) contain a set of ρ equations such that the matrix of coefficients of u^1, \dots, u^{ρ} is nonsingular and that the remaining equations of (2.5) are consequences of these. If this is granted for a moment, these ρ equations can be solved for u^1, \dots, u^{ρ} to give a result of the form

(2.6)
$$u^{\alpha} = a^{\alpha\kappa}(v^{1}, \dots, v^{\rho})v^{\kappa} + b^{\alpha}(v^{1}, \dots, v^{\rho}) \quad \text{for } \alpha = 1, \dots, \rho,$$
$$u^{\kappa} = v^{\kappa} \quad \text{for } \kappa = \rho + 1, \dots, d.$$

Since (2.6) is the inverse of (2.4), it follows that the functions $a^{\alpha\kappa}$, b^{α} are of class C^1 .

In order to see that (2.5) can be solved to give (2.6), write $\partial \overline{P}_p^i/\partial v^\alpha$ as the sum $(\partial P_p^i/\partial u^\beta)(\partial u^\beta/\partial v^\alpha)$. Thus, if (2.5) is multiplied by $\partial v^\alpha/\partial u^\gamma$ and the result summed for $\alpha=1,\dots,\rho$, it follows that (2.5) is equivalent to

(2.7)
$$u^{\alpha} \partial P_{p}^{\gamma} / \partial u^{\alpha} + u^{\kappa} \partial P_{p}^{\kappa} / \partial u^{\gamma} = b_{p\alpha} \partial v^{\alpha} / \partial u^{\gamma}$$

for $p=1,\dots,\delta$ and $\gamma=1,\dots,\rho$, where α is a summation index over 1, ..., ρ and κ over 1, ..., ν and $\partial P_p^{\gamma}/\partial u^{\alpha}=\partial P_p^{\alpha}/\partial u^{\gamma}$.

The normalization of J(u) shows that the $\delta\rho$ equations (2.7) are equivalent to the ρ equations corresponding to $(p,\gamma)=(p(\beta),i(\beta))$ for $\beta=1,\ldots,\rho$. The matrix of coefficients of u^1,\ldots,u^ρ in these ρ equations is $(\partial P_{p(\beta)}^{i(\beta)}/\partial u^\alpha)_{\alpha,\beta=1,\ldots,\rho}$, which is nonsingular.

Since $P_p^i(u) = \overline{P}_p^i(v)$ is a function of (v^1, \dots, v^p) , the relations (2.6) imply the "local" part of Lemma 2.1; namely, that there exists a ν -plane π , through u_0 such that u near u_0 is on π , if and only if $P(u) = P(u_0)$.

The proof of the remainder of Lemma 2.1 is similar to that of Lemma 2 in [4] and will only be indicated. Substitution of (2.6) into the first part of (2.4) and differentiation with respect to v^{β} gives

$$\delta_{\alpha\beta} = (\partial P_{p(\alpha)}^{i(\alpha)}/\partial u^{\gamma})(v^{\kappa}\partial a^{\gamma\kappa}/\partial v^{\beta} + \partial b^{\gamma}/\partial v^{\beta})$$

for $\alpha, \beta = 1, \dots, \rho$; hence

$$1 = \det(\partial P_{p(a)}^{i(a)}/\partial u^{\gamma})\det(v^{\kappa}\partial a^{\gamma\kappa}/\partial v^{\beta} + \partial b^{\gamma}/\partial v^{\beta}).$$

This shows that as $u \in D$, moves continuously from u_0 on the ν -plane (2.6), where v^{α} is constant, one cannot reach a first point u where

$$\det(\partial P_{n(\alpha)}^{i(\alpha)}/\partial u^{\beta})=0.$$

Thus the arguments above give Lemma 2.1.

REMARK. If $P_p(u)$ is of class C^t , $t \ge 1$, then the change of coordinates $u \to v$ in the above proof is of class C^t .

3. Consider a piece of d-dimensional surface S: X = X(u) of class C^2 in a $(d + \delta)$ -dimensional Euclidean space $E^{d+\delta}$ where $u = (u^1, \dots, u^d)$, $X = (X^1, \dots, X^{d+\delta})$, and X(u) is of class C^2 on an open connected u-set D such that rank $(\partial X^r/\partial u^i)$ is d.

Let $X_i = \partial X/\partial u^i, X_{ij} = \partial^2 X/\partial u^i \partial u^j$, etc. If N is a normal vector to S at a point u (i.e., X(u)), there is an associated $d \times d$ second fundamental matrix $(h_{ij}(u;N))$, where $h_{ij}(u;N)$ is the Euclidean scalar product $X_{ij}(u) \cdot N$. Let $\pi(u;N)$ denote the null space of $(h_{ij}(u;N))$, i.e., the set of vectors $y = (y^i, \dots, y^d)$ satisfying $h_{ij}y^j = 0$ for $i = 1, \dots, d$. Let $\pi(u) = \bigcap \pi(u;N)$ where the intersection is taken over all normals or, equivalently, $\pi(u) = \bigcap \pi(u;N_p)$ where the intersection is taken over a set of δ linearly independent normal vectors N_1, \dots, N_δ . The integer $\nu(u) = \dim \pi(u)$ is called the relative nullity of S at $\nu(u) = 0$ in $\nu(u) = 0$ in $\nu(u) = 0$ will be said to be in a trivial asymptotic direction at $\nu(u) = 0$

Let $\nu^*(u_0) = \liminf \nu(u)$, $u \to u_0$. The subset $D_{\tau} = \{u : \nu^*(u) \ge \tau\}$ of D is open.

LEMMA 3.1. Let $M=M^d$ be a d-dimensional Riemann manifold of class C^2 and $S=\psi(M)$, where $\psi:M\to E^{d+\delta}$ is a C^2 isometric immersion of M in the Euclidean space $E^{d+\delta}$. For a point $m\in M$, let $\nu(m)$ be the relative nullity of S at m (i.e., at $\psi(m)$); $\nu^*(m_0)=\liminf_{\nu}\nu(m)$, $m\to m_0$; and $M(\tau)$ the submanifold of M consisting of points $\{m:\nu^*(m)\geq \tau\}$.

(i) Then, for any point $m_0 \in M$, there is a (not necessarily unique) maximal, totally geodesic submanifold $M^{*^{*(m_0)}}$ of $M(\nu^*(m_0))$ containing m_0 , of dimension $\nu^*(m_0)$, which ψ maps isometrically onto a subset of a $\nu^*(m_0)$ -plane

 π in $E^{d+\delta}$.

- (ii) The space of normal vectors to S at a point $\psi(m) \in \pi$, $m \in M^{r^*(m_0)}$, is independent of m.
 - (iii) If $m \in M^{\nu^*(m_0)}$, then $\nu^*(m) \ge \nu(m)$ according as $\nu^*(m_0) \ge \nu(m_0)$.
- (iv) If $\nu(m_0) = \nu^*(m_0)$, then $M^{\nu^*(m_0)}$ is unique and m near m_0 is on $M^{\nu^*(m_0)}$ if and only if the space of normal vectors at $\psi(m)$ is the same as that at $\psi(m_0)$.
- (v) Finally, if M is complete and $\nu(m_0) = \min \nu(m)$ for $m \in M$ (so that $M(\nu(m_0)) = M$), then $M^{\prime(m_0)}$ is complete and $\pi = \psi(M^{\prime(m_0)})$ is a $\nu(m_0)$ -dimensional plane in $E^{d+\delta}$.

The case $\delta = 1$ is contained in [4]. For arbitrary $\delta > 0$, under the additional assumption that M is flat, the last part of Lemma 3.1 is contained in [5]. For a flat M, $d - \delta \le \nu(m) \le d$ holds [2]; so that, in this case, $\delta < d$ implies that $\nu(m) > 0$ and Lemma 3.1 is not trivially true.

Proof. On introducing suitable local coordinates $u = (u^1, \dots, u^d)$ on M at m_0 and a suitable choice of rectangular coordinates $X = (u, x) = (u^1, \dots, u^d, x^1, \dots, x^b)$ in E^{d+b} , the immersion ψ , for m near m_0 , can be represented in the form

(3.1)
$$x^p = \phi_p(u) \quad \text{for } p = 1, \dots, \delta,$$

where ϕ_p is a real-valued C^2 function of $u=(u^1,\dots,u^d)$. Let $P_p(u)=(\partial\phi_p/\partial u^1,\dots,\partial\phi_p/\partial u^d)$, i.e., $P_p^i=\partial\phi_p/\partial u^i$. Then a normal vector at u is $N_p=(P_p^1,\dots,P_p^d,0,\dots,0,1,0,\dots,0)$, where the 1 is the (d+p)th coordinate of N_p . The vectors N_1,\dots,N_δ are linearly independent. This makes it clear that if $P=(P_1,\dots,P_d)$, $J=(\partial P/\partial u)$, and $\rho(u)=\operatorname{rank} J(u)$, then the relative nullity $\nu(u)$ is $d-\rho(u)$.

Suppose, first, that $u_0 = \psi(m_0)$ and that $\nu(u_0) = \nu^*(u_0) = \nu$. Suppose that (3.1) is defined on a u-domain D containing u_0 . Then, there is a ν -plane section π , of D, through u_0 satisfying the conclusion of Lemma 2.1. Let π , be the intersection of D, and the ν -plane (2.6) on which $v = (v^1, \dots, v^{\rho})$ is a constant, $\rho = d - \nu$.

In (3.1), consider the C^1 change of local coordinates $u \rightarrow v$ on M given by (2.6). Then

$$\partial x^p/\partial v^x = (\partial \phi_p/\partial u^\alpha)(a^{\alpha x}) + \partial \phi_p/\partial v^x.$$

Note that, by the proof of Lemma 2.1, $\partial \phi_p/\partial u^{\alpha}$, $\partial \phi_p/\partial v^{\alpha}$ are functions of v^1, \dots, v^{ρ} . Hence the function x^p is of the form

(3.2)
$$x^{p} = a^{d+p,\kappa}(v^{1}, \dots, v^{p})v^{\kappa} + b^{d+p}(v^{1}, \dots, v^{p}) \quad \text{for } p = 1, \dots, \delta,$$

and so, (3.1) can be written as

$$(3.3) X = A_{\epsilon}(v^1, \dots, v^{\rho})v^{\epsilon} + B(v^1, \dots, v^{\rho}),$$

$$X = (X^1, \dots, X^{d+\delta})$$
 and

$$(3.4) B = (b^1, \dots, b^{\rho}, 0, \dots, 0, b^{d+1}, \dots, b^{d+\delta}),$$

$$(3.5) A_{\kappa} = (a^{1\kappa}, \dots, a^{\rho\kappa}, 0, \dots, 0, 1, 0, \dots, 0, a^{d+1,\kappa}, \dots, a^{d+\delta,\kappa}).$$

The "1" is the κ th component of A_{κ} . The vector functions A_{κ} and B are of class C^{1} .

The argument up to this point shows that (3.3) is valid in a neighborhood of the ν -plane section π_{ν} of D_{ν} . By the isometric property of the immersion ψ , the pre-image under ψ of a line segment in the X-space of the form: $(v^{\alpha} = \text{const}, v^{\epsilon} = \text{linear function of } t)$ is a geodesic. Hence a pre-image of π_{ν} is a totally geodesic submanifold M^{ν} of $M(\nu)$.

If π_r [and/or M^r] has a limit point $u_1 \in D_r$ [and/or $m_1 = \psi^{-1}(u_1) \in M(\nu)$], then the normal space at u_1 is the same as that at u_0 . Hence ψ is given locally in the form (3.1). Also $\nu(u_1) = \nu^*(u_1) = \nu$ by Lemma 2.1.

This shows that M^{ν} has a (maximal) extension so that its boundary points, if any, are not in $M(\nu)$. This implies the lemma for the case $\nu(m_0) = \nu^*(m_0) = \nu$.

If $\nu^*(m_0) = \nu^*$ but $\nu(m_0) > \nu^*$, then there exist points m_1, m_2, \cdots of M such that $m_n \to m_0$ as $n \to \infty$ and $\nu(m_n) = \nu^*(m_n) = \nu^*$. After a selection of a subsequence, if necessary, it can be supposed that the ν^* -plane section $\pi_{\nu^*}(m_n)$ of $S(\nu) = \psi(M(\nu))$ passing through $\psi(m_n)$ tends to a limiting position (in a suitable sense) and has the desired properties.

REMARK. If $M = M^d$ and its immersion ψ are of class C^{t+1} , $t \ge 1$, then, in the local coordinates v, the immersion ψ given by (3.3) is of class C^t .

4. Of particular interest is the question as to whether or not the planes $\pi(m)$ above are parallel in $E^{d+\delta}$. A sufficient condition is given in the next lemma for the case that $\nu^*(m)$ is constant (near m_0) and $M^{\nu^*(m)}$ is complete, so that $\psi(M^{\nu^*(m)})$ is an entire $\nu^*(m)$ -plane.

In this situation, the problem is reduced to the consideration of a d-dimensional surface S: X = X(v) in an $E^{d+\delta}$ space of points

$$X=(X^1,\cdots,X^{d+\delta}),$$

where X(v) is of the form (3.3) for small $|v^1|, \dots, |v^{\rho}|$ and for arbitrary $v^{\rho+1}, \dots, v^d$. In (3.3), B and $A_{\rho+1}, \dots, A_d$ are $(d+\delta)$ -dimensional vectors and $\partial X/\partial v^1, \dots, \partial X/\partial v^d$ are linearly independent. The problem is to give sufficient conditions to assure that, after a suitable change of coordinates leaving the form of (3.3) unchanged, the vectors $A_s(v^1, \dots, v^{\rho})$ are constant.

LEMMA 4.1. Let $0 < \nu < d$ and $\nu + \rho = d$. Let S be a d-dimensional surface in $E^{d+\delta}$ of class C^2 having a C^1 parametric representation

$$(4.1) S: X = A_{\kappa}(v^1, \dots, v^{\rho})v^{\kappa} + B(v^1, \dots, v^{\rho})$$

for small $|v^1|, \dots, |v^{\rho}|$ and arbitrary v^{ϵ} , $\kappa = \rho + 1, \dots, d$, such that the relative nullity $\nu(v)$ of S at v is the constant $\nu(v) = d - \rho$ and that all vectors

 $y = (0, \dots, 0, y^{\rho+1}, \dots, y^d)$ are in trivial asymptotic directions at ν (so that the normal space of S is independent of $v^{\rho+1}, \dots, v^d$; cf. Lemma 3.1). In addition, suppose that all 2-dimensional sections of S have non-negative curvatures. Then there exists a C^1 nonsingular linear change of the v^{ϵ} variables depending on (v^1, \dots, v^{ρ}) ,

$$(4.2) v^{\kappa} = a_{\lambda}^{\kappa}(v^1, \dots, v^{\rho})w^{\lambda} + c^{\kappa}(v^1, \dots, v^{\rho}).$$

such that (4.1) becomes

$$(4.3) S: X = C_{\bullet} w^{\bullet} + D(v^1, \dots, v^{\rho}),$$

where C_{o+1}, \dots, C_d are constant vectors.

Proof. Let $A_{\kappa} = (A_{\kappa}^{1}, \dots, A_{\kappa}^{d+\delta})$. Since $\partial X/\partial v^{\kappa} = A_{\kappa}$, the vectors $A_{\rho+1}, \dots, A_{d}$ are linearly independent. After a rotation of the X-space, if necessary, it can be supposed that the ν vectors with ν components given by $(A_{\kappa}^{\rho+1}, \dots, A_{\kappa}^{d})$ are linearly independent at $v^{\alpha} = 0$, hence for small $|v^{\alpha}|$. Choose the function $a_{\lambda}^{\kappa}(v^{1}, \dots, v^{\rho})$ of class C^{1} , so that

$$A^{\tau}(v^1,\ldots,v^{\rho})a^{\kappa}_{\lambda}(v^1,\ldots,v^{\rho})\equiv\delta^{\tau}_{\lambda}.$$

Thus, after the change of variables $v' = a_{\lambda}^{\kappa} w^{\lambda}$ and the renaming of w^{λ} back to v^{λ} , (4.1) has the same form, where

$$(4.4) A_s = (A_s^1, \dots, A_s^p, 0, \dots, 0, 1, 0, \dots, A_s^{d+1}, \dots, A_s^{d+\delta})$$

and the "1" is the κ th component of A_{κ} , $\kappa = \rho + 1, \dots, d$. If, in (4.1), v^{κ} is replaced by $v^{\kappa} + c^{\kappa}(v^{1}, \dots, v^{\rho})$, then (4.1) takes the form $A_{\kappa}v^{\kappa} + (B - A_{\kappa}c^{\kappa})$. Thus, in view of (4.4), the functions $c^{\kappa}(v^{1}, \dots, v^{\rho})$ can be chosen of class C^{1} , so that the κ th coordinate of $B - A_{\kappa}c^{\kappa}$ is 0 for $\kappa = \rho + 1, \dots, d$. Thus, if $B - A_{\kappa}c^{\kappa}$ is called B again, it can be supposed that

(4.5)
$$B = (B^1, \dots, B^{\rho}, 0, \dots, 0, B^{d+1}, \dots, B^{d+\delta}).$$

After this normalization, it will be shown that A_x is a constant vector by virtue of the fact that v^x is arbitrary in (4.1).

Note that

$$(4.6) X_{c} = A_{c}, X_{a} = A_{ca}v^{c} + B_{a},$$

where $A_{\kappa\alpha} = \partial A_{\kappa}/\partial v^{\alpha}$, $\alpha = 1, \dots, \rho$, and $\kappa = \rho + 1, \dots, d$. The vectors

$$(4.7) B_1, \dots, B_s \text{ and } A_{s+1}, \dots, A_d$$

are linearly independent. The vectors $A_{\kappa\alpha}$ are in the span of (4.7) since the normal space of S does not depend on v^{κ} . In view of the normalizations (4.4) and (4.5), it is clear that $A_{\kappa\alpha}$ is in the span of the set of vectors B_1, \dots, B_{ρ} . Hence, the analogue of the Gauss equations give

$$(4.8) A_{\kappa\alpha} = \Gamma^{\beta}_{\kappa\alpha} B_{\beta}.$$

In view of the low differentiability of the parametrization of S involved,

it is best to consider the equations (4.8) as defining the continuous functions $\Gamma^{\beta}_{sa}(v^1,\dots,v^{\rho})$, so that

$$\Gamma^{\beta}_{\kappa\alpha} = g^{\beta\gamma} A_{\kappa\alpha} \cdot B_{\gamma},$$

where $(g^{\theta\gamma}) = (g_{\beta\gamma})^{-1}$ and $g_{\beta\gamma} = B_{\beta} \cdot B_{\gamma}$. It has to be verified that

(4.10)
$$\Gamma_{\alpha}^{\beta} = 0$$
, i.e., A_{α} is constant.

Since S has local C^2 parametrizations, there exists a C^1 orthonormal basis $N^1(v^1, \dots, v^\rho), \dots, N^\delta(v^1, \dots, v^\rho)$ for the normal space to S at X(v). The second fundamental matrix (h_{ij}^p) corresponding to N^p is given by $h_{ij}^p = -X_i \cdot N_j^p = -X_j \cdot N_i^p$, which is consistent with the tensor character of (h_{ij}^p) . The functions h_{ij}^p will be considered as functions of v^α alone (with $v^i = 0$).

Since all vectors $y = (0, \dots, 0, y^{\rho+1}, \dots, y^d)$ are in trivial asymptotic directions, so that $0 = h_{ij}^p y^j = h_{ik}^p y^k$, it follows that $h_{ik}^p = 0$ for $p = 1, \dots, \delta$, $i = 1, \dots, d$, and $\kappa = \rho + 1, \dots, d$.

It will be shown that if Γ_{κ} , H^p denote the matrices $\Gamma_{\kappa} = (\Gamma_{\kappa\alpha}^{\beta})$, $H^p = (h_{\alpha\beta}^p)$, where $\alpha, \beta = 1, \dots, \rho$, then

$$(4.11) \qquad \qquad \Gamma_{\iota}H^{p} = (\Gamma_{\iota}H^{p})^{*} = H^{p}\Gamma_{\iota}^{*},$$

if Γ_{κ}^{*} is the transpose of Γ_{κ} . If the parametrization (4.1) of S is sufficiently smooth, (4.11) is a consequence of the Codazzi equations but can be deduced more simply and directly as follows: Since $N_{\alpha}^{p} = \partial N^{p}/\partial v^{\alpha}$ is a linear combination of the vectors B_{1}, \dots, B_{ρ} and N^{1}, \dots, N^{δ} , it is easy to see that the following analogue of the derivation formulae of Weingarten hold

$$N_{\beta}^{p} = -g^{\alpha\gamma}h_{\alpha\beta}^{p}B_{\gamma} + d_{\beta\alpha}^{p}N^{q},$$

where $0 = h_{\kappa\beta}^p = -N_{\beta}^p \cdot A_{\kappa}$ and these derivation formulae define $d_{\beta q}^p$. Multiplying these relations scalarly by $A_{\kappa\alpha}$ and using (4.9) gives

$$A_{ra} \cdot N_{\beta}^{p} = -\Gamma_{ra}^{\gamma} h_{\gamma\beta}^{p}$$

The left side is symmetric in the indices α, β ; in fact, the relations $-h_{\alpha\beta}^p = X_{\alpha} \cdot N_{\beta}^p = X_{\beta} \cdot N_{\alpha}^p$ give the identity

$$A_{\kappa\alpha}\cdot N^p_{\beta}v^{\kappa}+B_{\alpha}\cdot N^p_{\beta}\equiv A_{\kappa\beta}\cdot N^p_{\alpha}v^{\kappa}+B_{\beta}\cdot N^p_{\alpha}$$

so that $A_{\kappa\alpha} \cdot N_{\beta}^p \equiv A_{\kappa\beta} \cdot N_{\alpha}^p$. This is equivalent to (4.11).

The fact that the relative nullity of S is identically ν implies that if $x = (x^1, \dots, x^{\rho})$ is a ρ -dimensional vector, then

(4.12)
$$H^{p}x = 0 \quad \text{for } p = 1, \dots, \delta \text{ implies that } x = 0.$$

The condition on the curvatures of 2-sections of S is equivalent to

$$(4.13) \qquad \sum_{p=1}^{\delta} \left[(H^p x \cdot x)(H^p y \cdot y) - (H^p x \cdot y)(H^p y \cdot x) \right] \ge 0$$

for all real vectors $x = (x^1, \dots, x^\rho), y = (y^1, \dots, y^\rho).$

In order to prove (4.10), it will first be shown that (4.11)—(4.13) has the following implications for $\Gamma = \Gamma_{\kappa}$, fixed $\kappa = \rho + 1, \dots, d$:

(4.14) the eigenvalues of Γ^* are real;

if c = 0 is an eigenvalue of Γ^* , then the

(4.15) corresponding elementary divisors of Γ^* are simple.

On (4.14). Let $\Gamma^*x = cx$ for some $x \neq 0$. Then $H^p\Gamma^*x = cH^px$, so that $H^p\Gamma^*x \cdot x = cH^px \cdot x$. Since $H^p\Gamma^*$ and H^p are symmetric matrices, it follows that c is real if $H^px \cdot x \neq 0$ for some p. Note that (4.13) is assumed for real vectors x, y but is then valid for real vectors y and complex vectors x. Thus if $H^px \cdot x = 0$ for $p = 1, \dots, \delta$, it follows from (4.13) that $H^px \cdot y = 0$ for $p = 1, \dots, \delta$ and for all real y (hence, for all complex y). Consequently, $H^px = 0$ for $p = 1, \dots, \delta$. By (4.12), this implies that x = 0 and gives a contradiction. Thus $H^px \cdot x \neq 0$ for some p and, consequently, c is real. This proves (4.14).

On (4.15). Let c=0 be an eigenvalue of Γ^* and suppose that there is a corresponding multiple elementary divisor. Then there is a vector x such that

$$\Gamma^* x = z \neq 0, \qquad \Gamma^* z = 0.$$

Then $H^p\Gamma^*z=0$, so that $\Gamma H^pz=0$. Hence $H^pz\cdot\Gamma^*y=0$ for all y and $p=1,\dots,\delta$. Choosing y=x gives $H^pz\cdot z=0$ for $p=1,\dots,\delta$. As above, this implies that $H^pz=0$ for $p=1,\dots,\delta$ and hence z=0. This contradiction proves (4.15).

On (4.10). Suppose that $\Gamma = \Gamma_{\kappa}$ is not 0 for some κ at some point (v^1, \dots, v^{ρ}) . Then by (4.14)—(4.15), Γ^* has a nonzero, real eigenvalue, say, $-1/c \neq 0$, and an eigenvector $(c^1, \dots, c^{\rho}) \neq 0$, i.e.,

$$c^{\alpha}(c\Gamma_{\kappa\alpha}^{b}+\delta_{\alpha\beta})=0$$
 for $\beta=1,\ldots,\rho$.

In the second part of (4.6), choose $v^{\lambda} = 0$ if $\lambda \neq \kappa$ (κ fixed) and $v^{\kappa} = c$, so that

$$c^{\alpha}X_{\alpha}=c^{\alpha}(cA_{\alpha}+B_{\alpha});$$

by (4.8),

$$c^{\alpha}X_{\alpha}=c^{\alpha}(c\Gamma_{\kappa\alpha}^{\beta}+\delta_{\alpha\beta})B_{\beta}=0.$$

This contradicts the linear independence of X_1, \dots, X_ρ and shows that $\Gamma_{\kappa} \equiv 0$. This completes the proof of Lemma 4.1.

APPENDIX

5. In view of the uses of Lemma 2 in [4] and of its generalization Lemma 2.1 above, it seems of interest to generalize it further. This appendix

deals with a generalization in which "gradient maps" are replaced by "involutory systems."

Let $x = (x^1, \dots, x^d)$, $w = (w^1, \dots, w^d)$ denote d-tuples of real numbers. The Poisson bracket (F, G) of two real-valued functions F(x, w), G(x, w) of class C^1 is defined to be

(5.1)
$$(F,G) = \sum_{k=1}^{d} \left[(\partial F/\partial x^{k}) (\partial G/\partial w^{k}) - (\partial F/\partial w^{k}) (\partial G/\partial x^{k}) \right]$$
$$= \sum_{k=1}^{d} \partial (F,G)/\partial (x^{k},w^{k}).$$

A set $X = (X^1(x, w), \dots, X^d(x, w))$ of d real-valued functions of class C^1 will be said to be an involutory system if the following two conditions hold:

(5.2)
$$(X^{i}, X^{j}) \equiv 0 \text{ for } i, j = 1, \dots, d,$$

(5.3)
$$\operatorname{rank}(\partial X^{i}/\partial x^{j}, \partial X^{i}/\partial w^{k}) = d;$$

cf. [1, Chapter 6]. In (5.3), $(\partial X^i/\partial x^j, \partial X^i/\partial w^k)$ is a matrix with d rows $(i=1,\dots,d)$ and 2d columns $(j=1,\dots,d)$ and $k=1,\dots,d)$.

The result to follow concerns δ involutory systems

$$X_p = (X_p^1(x, y_p), \dots, X_p^d(x, y_p)),$$

where $p=1,\dots,\delta$. For a fixed $p,X_p^i(x,y_p)$ is a function of 2d real variables $(x,y_p)=(x^1,\dots,x^d,y_p^1,\dots,y_p^d)$; but in dealing with different values of $p,y=(y_1,\dots,y_\delta)=(y_1^1,\dots,y_1^d,y_2^1,\dots,y_\delta^d)$ is considered as a set of $d\delta$ variables. For example, Lemma 2.1 concerns the δ involutory systems $X_p=(X_p^1,\dots,X_p^d)$, where

(5.4)
$$X_p^i(x, y_p) = P_p^i(x) - y_p^i$$
 for $i = 1, \dots, d$ and $p = 1, \dots, \delta$.

Let D be an open set in the $(d+d\delta)$ -dimensional $(x,y)=(x^1,\cdots,x^d,y_1^1,\cdots,y_b^d)$ -space; $X=(X_1,\cdots,X_b)=(X_1^1,\cdots,X_b^d)$ a set of $d\delta$ functions $X_p^i(x,y_p)$ of class C^1 such that each function depends only on 2d variables (x,y_p) and, for a fixed $p=1,\cdots,\delta$, the set $X_p=(X_p^1(x,y_p),\cdots,X_p^d(x,y_p))$ is an involutory system.

Let $J_p(x, y_p)$ be the $d \times d$ Jacobian matrix $J_p = (\partial X_p^i/\partial x^j)$, where $i, j = 1, \dots, d$, and J(x, y) the Jacobian matrix $J = (\partial X/\partial x)$, where $X = (X_1, \dots, X_b) = (X_1^1, \dots, X_{1}^d, X_2^1, \dots, X_b^d)$,

$$J = \begin{pmatrix} J_1 \\ \vdots \\ J_{\delta} \end{pmatrix}$$
,

so that J has d columns and $d\delta$ rows. For $(x, y) \in D$, let

$$\rho(x, y) = \operatorname{rank} J(x, y)$$
 and $\rho^*(x_0, y_0) = \lim \sup \rho(x, y)$

as $(x, y) \rightarrow (x_0, y_0)$. For a given integer k, let S_k be the open subset of D defined by

$$S_k = \{(x, y) \in D : \rho^*(x, y) \leq k\}$$

and $S_k(y)$ the open set in x-space given by

$$S_k(y) = \{x : (x, y) \in S_k\}.$$

LEMMA 5.1. Let $X_p^j(x,y_p)$ be $d\delta$ real-valued functions of class C^1 on an (x,y)-domain D such that $X_p^j(x,y_p)$ depends only on 2d real variables and $X_p = (X_p^1(x,y_p), \cdots, X_p^d(x,y_p))$ is an involutory system for $p = 1, \cdots, \delta$. Let $(x_0,y_0) \in D$ have the property that $\rho(x_0,y_0)$, $\rho^*(x_0,y_0)$ have a common value $\rho = d - \nu$. Then

$$(5.5) X(x, y_0) = X(x_0, y_0)$$

on a unique ν -dimensional plane section $\pi_{\nu}(x_0)$ of $S_{\rho}(y_0)$ through x_0 ; for points x near x_0 , (5.5) holds if and only if $x \in \pi_{\nu}(x_0)$; finally, $\rho(x, y_0) = \rho^*(x, y_0)$ for all $x \in \pi_{\nu}(x_0)$.

A "local" analogue of this lemma is known for the case $\delta = 1$ (under slightly stronger differentiability conditions); cf. [1, pp. 95-96].

Proof. Let $\rho = \rho(x_0, y_0) = \rho^*(x_0, y_0)$. Without loss of generality, it can be supposed that the first ρ columns of J are linearly independent (so that each of the remaining $d - \rho$ columns of J are linear combinations of the first ρ columns) for (x, y) near (x_0, y_0) . It will be shown that

(†) there exists a ν -plane

(5.6)
$$\pi: x^{\alpha} = \sum_{\kappa=\alpha+1}^{d} a^{\alpha\kappa} x^{\kappa} + b^{\alpha}, \qquad \alpha = 1, \dots, \rho,$$

where $a^{\alpha x}$, b^{α} are constants, such that π passes through x_0 and that (5.5) holds on the connected component of $\pi \cap S_{\rho}(y_0)$ containing x_0 ; furthermore, for x near x_0 , (5.5) holds if and only if $x \in \pi$.

The local part of (†) will be deduced from Lemma 2.1 for arbitrary $\delta \ge 1$ and some (essentially) known results on involutory systems.

Consider first one involutory system $X^1(x, w), \dots, X^d(x, w)$ of class C^1 in a vicinity of a point $(x, w) = (x_0, w_0)$. Put

(5.7)
$$z' = X(x, w) \text{ and } z'_0 = X(x_0, w_0).$$

(a) Suppose that

(5.8)
$$\det(\partial X^i/\partial w^i) \neq 0 \quad \text{at } (x_0, w_0);$$

then (5.7) has a unique solution for w of class C^1 ,

(5.9)
$$w = W(x,z') = (W^1, \dots, W^d),$$

for (x, z') near (x_0, z'_0) and there exists a function f(x, z') of class C^1 such that

(5.10)
$$W^{i} = \partial f/\partial x^{i} \quad \text{for } i = 1, \dots, d.$$

(It follows that $\partial f/\partial x^i$ is of class C^1 , but $\partial f/\partial z'^i$ may only be continuous.) The proof of this is a considerably simplified version of the arguments of [1, pp. 90-91]. In order to prove (a), it is sufficient to verify that

(5.11)
$$\partial W^{i}/\partial x^{j} = \partial W^{j}/\partial x^{i} \quad \text{for } i, j = 1, \dots, d.$$

To this end, substitute (5.9) into (5.7) and differentiate X^i with respect to x^j to obtain

$$0 = \partial X^{i}/\partial x^{j} + \sum_{k=1}^{d} (\partial X^{i}/\partial w^{k})(\partial W^{k}/\partial x^{j}).$$

Multiply this relation by $\partial X^m/\partial w^j$ and add for $j=1,\dots,d$,

$$\sum_{j=1}^{d} \sum_{k=1}^{d} (\partial X^{i}/\partial w^{k}) (\partial W^{k}/\partial x^{j}) (\partial X^{m}/\partial w^{j})$$

$$= -\sum_{i=1}^{d} (\partial X^{i}/\partial x^{j}) (\partial X^{m}/\partial w^{j}) = -\sum_{i=1}^{d} (\partial X^{i}/\partial w^{j}) (\partial X^{m}/\partial x^{j}),$$

$$j=1$$
 $j=1$ $j=1$ $j=1$

where the last equality is a consequence of the fact that X^1, \dots, X^d is an involutory system. Let T, S denote the matrices

$$T = (\partial X^i/\partial w^j), \quad S = (\partial W^i/\partial x^j).$$

Then the expression on the left is the (i, m)th element of the matrix product TST^* . It follows that TST^* is a symmetric matrix. Since T is non-singular, it is seen that S is symmetric, i.e., that (5.11) holds. This proves (a).

(b) Let $X = (X^1(x, w), \dots, X^d(x, w))$ be an involutory system as in step (a) and let

$$r = \operatorname{rank} \left(\partial X^i / \partial x^j \right) \quad \operatorname{at} \left(x_0, w_0 \right)$$

and let the columns $\partial X/\partial x^i$ be linearly independent for $i=1,\dots,r$. Then

$$\det (\partial X/\partial x^1, \dots, \partial X/\partial x^r, \partial X/\partial w^{r+1}, \dots, \partial X/\partial w^d) \neq 0 \quad \text{at } (x_0, w_0)$$

and $\Xi(\xi,\eta) = X(x,w)$, where

$$\xi^{\alpha} = x^{\alpha}, \quad \xi^{\kappa} = -w^{\kappa} \quad \text{and} \quad \eta^{\alpha} = w^{\alpha}, \quad \eta^{\kappa} = x^{\kappa}$$

$$\text{for } \alpha = 1, \dots, r, \ \kappa = r + 1, \dots, d$$

is an involutory system, i.e.,

$$\sum_{k=1}^{d} \partial(\Xi^{i}, \Xi^{m}) / \partial(\xi^{k}, \eta^{k}) = 0 \quad \text{for } i, m = 1, \dots, d.$$

This follows from considerations of [1, pp. 85-87].

Combining (a) and (b) gives:

(c) Let X(x, w), z', x_0 , w_0 , r be as in (a), (b). Then there exists a C^1 real-valued function $f(x^{r+1}, \dots, x^d, w^1, \dots, w^r, z')$ of 2d real variables such that (5.7) has a unique solution of class C^1 given by

(5.12)
$$x^{\alpha} = g^{\alpha}(x^{r+1}, \dots, x^{d}, w^{1}, \dots, w^{r}, z') \quad \text{for } \alpha = 1, \dots, r,$$

$$w^{\kappa} = h^{\kappa}(x^{r+1}, \dots, x^{d}, w^{1}, \dots, w^{r}, z') \quad \text{for } \kappa = r + 1, \dots, d,$$

and

$$(5.13) g^{\alpha} = \partial f/\partial w^{\alpha}, h^{\kappa} = -\partial f/\partial x^{\kappa}.$$

Thus, if

$$(5.14) w'^{i} = \partial f(x^{\kappa}, w^{\alpha}, z') / \partial z'^{i},$$

then

$$\sum_{i=1}^{d} w^{\prime i} dz^{\prime i} + \sum_{\alpha=1}^{r} x^{\alpha} dw^{\alpha} - \sum_{\alpha} w^{\alpha} dx^{\alpha} = df.$$

REMARK. It can be mentioned that if w' is made a function of (x, w) by inserting (5.7) into (5.14), say,

$$(5.15) w' = (W^1, \dots, W^d), \text{where } W^i = \partial f/\partial z'^i \text{ at } z' = X(x, w),$$

then

$$z' = X(x, w), \quad w' = W(x, w)$$

is a canonical transformation in the sense that

$$w' \cdot dz' - w \cdot dx$$
 is closed

(i.e., is locally a total differential of a function of class C^1). Note, however, that W(x, w) in (5.15) may only be continuous. (This is a variant of the standard deduction of a C^1 canonical transformation from an involutory system of class C^2 .)

(d) Let X, z', x_0, w_0, r and f be as in (c) and put

(5.16)
$$F(x,w) = \sum_{\beta=1}^{n} x^{\beta} w^{\beta} + \frac{1}{2} \sum_{\lambda=r+1}^{d} (w^{\lambda})^{2} - f(x^{\lambda}, w^{\alpha}, z_{0}^{\prime}),$$

then F(x, w) is of class C^2 and the equation

(5.17)
$$X(x, w_0) = z'_0 \quad [= X(x_0, w_0)]$$

is equivalent to

$$(5.18) \qquad \nabla F(x,w) = \nabla F(x_0,w_0),$$

where

$$\nabla F = (\partial F/\partial x^1, \dots, \partial F/\partial x^d, \partial F/\partial w^1, \dots, \partial F/\partial w^d).$$

Actually, $F(x, w) = F(x, w; z'_0)$ and F is a function of class C^1 in (x, w, z'_0) . Assertion (d) is clear from the fact that (5.7) and (5.12) are equivalent and that (5.13), (5.16) give

(5.19)
$$\frac{\partial F/\partial x^{\beta} = w^{\beta}, \ \partial F/\partial w^{\beta} = x^{\beta} - g^{\beta}(x^{\kappa}, w^{\alpha}, z_{0}') \quad \text{for } \beta = 1, \dots, r, \\ \partial F/\partial x^{\lambda} = h^{\lambda}(x^{\kappa}, w^{\alpha}, z_{0}'), \ \partial F/\partial w^{\lambda} = w^{\lambda} \quad \text{for } \lambda = r + 1, \dots, d.$$

- (e) Note that, at (x_0, w_0) , rank $(\partial(\nabla F)/\partial w) = d$ and that rank $(\partial(\nabla F)/\partial x) = r$. In fact the $2d \times d$ Jacobian matrix $(\partial(\nabla F)/\partial x)$ consists of a $d \times d$ zero matrix and a $d \times d$ matrix obtained by multiplying $(\partial X/\partial x)$ by a nonsingular matrix.
- (f) Proof of the local part of (†). Define $x' = (x'_1, \dots, x'_{\delta})$ by $x'_p = X(x, y_p)$. Then, by (d), there exists a function $F_p(x, y_p)$ of class C^2 such that for (x, y_p) near (x_0, y_{p0}) ,

(5.20)
$$X_p(x, y_p) = x'_{p0} [= X_p(x_0, y_{p0})]$$

is equivalent to

$$(5.21) \nabla F_p(x,y_p) = \nabla F_p(x_0,y_{p0}).$$

Also, $F_p(x, y_p) = F_p(x, y_p; x'_{p0})$ is of class C^1 .

Consider $F_p(x, y_p) = F_p(x, y)$ to be a function of $d + d\delta$ variables (x, y). Let $K_p(x, y)$ be the $(d + d\delta) \times (d + d\delta)$ matrix which is the Jacobian matrix $\partial(\nabla F_p)/\partial(x, y)$, where ∇F_p is the gradient of $F_p(x, y)$. Then, if

$$\rho_0(x,y) = \operatorname{rank} K(x,y), \text{ where } K(x,y) = \begin{pmatrix} K_1(x,y) \\ \vdots \\ K_k(x,y) \end{pmatrix}$$

and $\rho_0^*(x_0, y_0) = \limsup \rho_0(x, y)$ as $(x, y) \to (x_0, y_0)$, it follows that $\rho_0(x_0, y_0) = \rho_0^*(x_0, y_0) = \rho + d\delta$. In fact, if the first column of K(x, y) is obtained by differentiating $(\nabla F_1, \nabla F_2, \dots, \nabla F_p)$ with respect to x^1 , the second with x^2, \dots and the last with y_δ^d , then the first ρ and last $d\delta$ columns of K(x, y) are linearly independent. For the construction of F in (d) shows that any linear homogeneous relation between the first d columns of K(x, y) is a consequence of the same relation between the columns of J(x, y).

Thus, Lemma 2.1 implies that there exist constants $a^{\alpha k}$, b^{α} such that (5.5) holds for x near x_0 if and only if x is on the ν -plane π in (5.6). Furthermore, $a^{\alpha k}$, b^{α} are C^1 functions of (y_0, x'_0) .

(g) Completion of proof. It remains to prove the "in the large" assertion of Lemma 5.1. To this end, note that the analogue of condition (5.3) implies that the set of $d\delta$ variables $y = (y_1^1, \dots, y_{\delta}^d)$ can be divided into two sets $v = (v^1, \dots, v^{d\delta-\rho})$ and $u = (u^1, \dots, u^{\delta})$ such that, at $(x, y) = (x_0, y_0)$,

$$\det \left(\frac{\partial X}{\partial x^1}, \dots, \frac{\partial X}{\partial x^{\rho}}, \frac{\partial X}{\partial v^1}, \dots, \frac{\partial X}{\partial v^{d\delta - \rho}} \right) \neq 0.$$

Hence, the equations x' = X(x, y) can be solved locally for x^1, \dots, x^{ρ} and v in terms of $x', x^{\rho+1}, \dots, x^d$, and u:

$$x^{\alpha} = g^{\alpha}(x^{\rho+1}, \dots, x^d, u, x') \qquad \text{for } \alpha = 1, \dots, \rho,$$

$$v^{\sigma} = h^{\sigma}(x^{\rho+1}, \dots, x^d, u, x') \qquad \text{for } \sigma = 1, \dots, d\delta - \rho,$$

where g^{α} , h^{σ} are of class C^{1} .

The fact that $\rho(x_0, y_0) = \rho^*(x_0, y_0)$ implies that $h^{\sigma} = h^{\sigma}(u, x')$ does not depend on $x^{\rho+1}, \dots, x^d$. Also, the local part of (\dagger) implies that g^{α} is linear in $x^{\rho+1}, \dots, x^d$:

(5.22)
$$x^{\alpha} = \sum_{\kappa=\rho+1}^{d} a^{\alpha\kappa}(u, x') x^{\kappa} + b^{\alpha}(u, x') \quad \text{for } \alpha = 1, \dots, \rho,$$
$$v^{\sigma} = h^{\sigma}(u, x') \quad \text{for } \sigma = 1, \dots, d\delta - \rho,$$

where $a^{\alpha x}$, b^{α} and h^{σ} are of class C^1 . Since (5.22) is the inverse of x' = X(x, y) for fixed $x^{\rho+1}, \dots, x^d$ and u,

$$1 = \det \left(\frac{\partial X}{\partial x^{\alpha}}, \frac{\partial X}{\partial v^{\sigma}} \right) \cdot \det \left(\frac{\partial (x^{\alpha}, v^{\sigma})}{\partial x^{\prime}} \right)$$

in obvious notation. It is clear from (5.22) that the second factor is bounded if $y = y_0$ (hence u) and $x' = x'_0$ are fixed and x is bounded. Consequently, the completion of the proof of Lemma 5.1 is similar to that of Lemma 2.1 (or of Lemma 2 in [4]).

REFERENCES

- 1. C. Carathéodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig, 1935.
- 2. S. S. Chern and N. H. Kuiper, Some theorems on the isometric embeddings of compact Riemann manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422-430.
- 3. S. S. Chern and R. K. Lashoff, The total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 308-318.
- 4. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
- 5. B. O'Neill, Isometric immersion of flat Riemann manifolds in Euclidean space, Michigan Math. J. 9 (1962), 199-205.
- 6. R. Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. 82 (1960), 609-630.

JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND