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CURVATURES ()

BY

PHILIP HARTMAN

1. This paper deals with certain isometric immersions S of a complete

d-dimensional manifold M = Md in a Euclidean space Ed+>, ô > 0:

(1.1) * : Md^Ed+s,       S = iHAf).

One of the main results will be the following:

Theorem (*). Let M — Md be a complete Riemann manifold of class C2

such that all 2-dimensional sections have non-negative curvatures. Let (1.1)

be a C2 isometric immersion of Md in £d+i, 8 > 0, such that the relative nullity

function v is a positive constant. Then S is v-cylindrical.

The relative nullity vim), m E Md and 0 i vim) i d, is defined by Chern

and Kuiper [2] (and for 5 = 1 reduces to the nullity of the second funda-

mental matrix); cf. §3 below.

The immersion (1.1) is said to be v-cylindricaHf Afd, ^, and Ed+i can

be expressed as products: Md=Md-"XE", i = ¿xl, and Ed+> = Ed-"+i

X E", where Md~" is a complete Riemann manifold, ¿: Md-"^Ed'"+i is an

isometric immersion and 1 is the identity map on E". Md~" and its immersion

f are allowed to be of class C1.

Theorem (*) is a consequence of Lemmas 3.1 and 4.1, below.

(*) generalizes a result of O'Neill [5] who supposes that M is flat and

makes the superfluous assumption that the "relative curvature of \f/ is 0."

For the case of hypersurfaces (5 = 1),(*) is a particular case of a theorem

of Sacksteder [6] which does not contain the condition that vim) is con-

stant and which "has a stronger conclusion. For the case of a flat M and

b = 1, ■(*) is also contained in a result of Hartman and Nirenberg [4].

In the latter, the assumptions "M flat" and "5 = 1" imply that d — 1

i vim) id. It will be clear from the proof that an analogue of (*) is

correct if the assumption that "vim) is a positive constant" is replaced

by the assumption that "d — 1 i vim) i d," in which case M is necessarily

flat. Professor Nirenberg has pointed out to me that this analogue can be

deduced directly from our result in [4].

The problem of removing the assumption in (*) that vim) is a constant

will remain open (when 8 > 1).
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The proof of (*) depends in part on a generalization of the implicit

function theorem, in the large, for gradient mappings in Lemma 2 of

Chern and Lashoff [3] (or, equivalently, Lemma 2 of Hartman and Niren-

berg [4]). This generalization involves simultaneous gradient mappings

and is given in §2.

An Appendix deals with a further generalization of this implicit function

theorem.

2. Let D be an open set in a Euclidean d-dimensional space of points

u = (re1, •■-,u'i). By a v-dimensional plane section ir„ of D through a point

uED is meant the connected component, containing u, of the intersection

of D and a ^-dimensional plane through u.

Let Pp(u) = (Pp(u), ■--,Pdp(u)), where p = 1, -..,0, be a vector function

of class C1 on a domain D such that u—*Pp(u) is a gradient mapping, i.e.,

(2.1) «p = PAÚ) ■ du = Pp(u) ■ du'

is closed, so that

(2.2) do,p = 0,       p = l,...,0.

Let Jp(u) = (dP'p/duJ), where i,j = 1, • • -,d, be the dxd Jacobian matrix

of the map u^Pp(u). Let P(u) = (Px, -.-,PS) = (P\, ...,Pi,Pi, ---,Pt)

be the dô-dimensional vector function and J(u) the Jacobian matrix

(dP/du) with d columns and bd rows:

JA

Let p(u) = rank J(u) and p*(u0) = limsupp(u) as u—>re0; correspond-

ingly, v(u) = nullity J(u) = d — p(u) and v*(u0) = d — p*(u0) = liminfi>(u)

as re —* u0. Finally, let D, be the open subset of D defined by

D,= [u:v*(u) ^v}.

Lemma 2.1. Let Px(u), -■ -,PAu) be d-dimensional vector functions of

class C1 on D such that (2.1) satisfies (2.2). Let u0ED and v(u0), v*(u0)

have a common value v. Then P(u) = (Px(u), ---.PAu)) is constant on a

v-dimensional plane section ir,(u0) of D, through u0. Furthermore, for all

points u near u0, P(u) = P(u0) if and only if u E nAu-o)- Finally, v(u) = v*(u)

= v for all u E *■„("<)).

As in [4], this has the following consequence:

Corollary 2.1. // v*(u0) = v at a point u0ED, then P(u) is constant

on a v-dimensional plane section x,("o) of D, through u0. Also, uE*, implies

that v*(u) = v and that either v(u) = v or v(u) > v according as v(u0) = v

or v(u0) > v.
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While ir„(u0) is unique in Lemma 2.1, it need not be unique in Corollary

2.1. It is unique in Corollary 2.1 if v*iu) = d — 1.

Below, repeated indices indicate summation with the following ranges

for the different indices:

lih,i,j,kid;        lia,ß,yiP;

P+liK,Xid;        lip,q,rib.

Proof of Lemma 2.1. Let JPfiu) denote the pX p Jacobian matrix

idPp/du^, where a,ß = 1, • • -,p = d — v, in the upper left corner of Jp

and let J"iu)  denote the matrix

IM
(2.3) J'=    :

\ £ /

with p columns and. ôp rows.

Let the jxst, j2nd,---,j,th columns of J(u0) be linearly independent.

Let U be a dxd permutation (orthogonal) matrix such that the effect

of multiplying any dxd matrix A on the right by U to give A U is to

move the ;'ist, —,;,th columns of A into the 1st, •,i'th places. Multipli-

cation of A on the left by U* to give U* A moves the jist, • • -,j,th rows of

A into the 1st, •••.j'th positions, respectively.

Let Uu be renamed u and U*PpiUu) be called Ppiu). Then u—>Pp(re)

satisfies (2.1), (2.2) and the first v columns of J(u) are linearly independent

at u = u0, hence, for u near u0. Since p(u0) = p*(w0) = p, the last v = d — p

columns of Jiu) are linear combinations of the first p columns for u near

u0. In particular, the last v = d — p columns of Jpiu) are linear combi-

nations of the first p columns of Jpiu) for p = 1, ■ • -,6. The condition

(2.2) implies that the Jacobian matrix Jpiu) is symmetric and so the

last v rows of Jpiu) are linear combinations of the first p rows. It follows

that the rank of the matrix J"(u) in (2.3) is p.

Thus, J"iu) has p linearly independent rows, i.e., there exist p pairs of

indices (p(a), ¿(a)), where 1 i pia) ib, 1 i ¿(a) i p and a = 1, • • • ,p,

suchthat det(ôPp'(°)(u)/ôaO«,a=i,...,p ^ 0 at u = u0. Introduce the mapping

u—>v, defined by

(2.4) V = P;£)(")    for a = 1, • • -,p   and v'=W      for k - p + 1, •• -,d,

so that the Jacobian detidiVdu) ^ 0 at u = u0. Let ü0 correspond to u0 and

let u = uiv) be the local inverse of the map (2.4).

The above description of the linear dependence of the rows of Jpiu) and

the assumption piu) = p*(w) = p for u near u0 imply that Pp\uiv)), for

p = l,--.,<5 and i = 1, ■■■,d, is a function, say P'piv), of (o1, •••,»*). For

dPp/dv' = idPp/duj)iduj/dv')
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and if X > p and u (or v) is fixed, there are numbers cxß, ß= 1, • • -,p, such

that

dPp/dux = CygdPp/du6   for i = 1, • • -,d.

Hence dux/dv" = á* implies that

dPp/dv' = (dPip/duß)(duß/dif + CKß).

The choice (p,i) = (p(a),i(a)) for a = l,---,p, makes the left side zero

and   hence, _öi//du" + cKß — 0   for  ß = 1, - - -,p   and  k = p + 1, •• -,d. Con-

sequently dP'p/dv" = 0  for p = 1, •--,5;   i = 1, ■ • -,d; and  k = p+I,---,d.

Since the Pfaffian (2.1) is closed, it follows that the Pfaffian

wpo = u'dPibt) = d(ulPp) - o>p

is also closed.  Introducing v as independent variable leaves Wpo closed and

shows that copo is of the form

ojpo = (uidPp/dva)dva.

Corresponding to v near v0, there is a scalar function fp(vl, - - ■, v") of class

C1 such that wpo = dfp. Hence

(2.5)    uidPip(v)/dva = bpAv1, ■■-,V)    forp = 1, ...,5anda= 1, ...,p

where 6,*, = dfp/dv" is continuous.

It will be verified that the 5p equations (2.5) contain a set of p equations

such that the matrix of coefficients of re1, • • -, u" is nonsingular and that the

remaining equations of (2.5) are consequences of these. If this is granted

for a moment, these p equations can be solved for re1, • • -, u" to give a result

of the form

ua = aa"(v1,---,V)v' + ba(vl,---,V)    fora= l,---,p,

(2.6)
u" = v'   for k = p + 1, • • •, d.

Since (2.6) is the inverse of (2.4),,it follows that the functions aa", b" are

of class Cl.

In order to see that (2.5) can be solved to give (2.6), write dPp/dva as

the sum (dPip/duit)(duß/dva). Thus, if (2.5) is multiplied by dva/duy and

the result summed for a — l,---,p, it follows that (2.5) is equivalent to

(2.7) u^Pl/du" + u'dPp/duy = bpadv"/duy

for p = 1, ...,ô and y = 1, - ■ -,p, where a is a summation index over 1,

• •-,p and k over 1, ---,v and dPl/du" = dP^/duy.

The normalization of J(u) shows that the áp equations (2.7) are equiv-

alent to the p equations corresponding to (p,y) = (p(ß),i(ß)) for 0=1,

■■-,p. The matrix of coefficients of u\ •••,«' in these p equations is

(3Pp^)/ôu°)aii=li...iP, which  is  nonsingular.
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Since P'piu) = P'piv) is a function of iv1, ••-,vp), the relations (2.6) imply

the "local" part of Lemma 2.1; namely, that there exists a p-plane w,

through u0 such that u near u0 is on ir, if and only if P(u) = Piu0).

The proof of the remainder of Lemma 2.1 is similar to that of Lemma 2

in [4] and will only be indicated. Substitution of (2.6) into the first part

of (2.4) and differentiation with respect to i^ gives

*4= idP^/du")iv'da-"/dtf+ dbydif)

for a,ß = 1, ...,p; hence

1 = detidPpi{$/duy)detiv"day'/dif + dby/dif).

This shows that as uED, moves continuously from u0 on the p-plane

(2.6), where V is constant, one cannot reach a first point u where

detid P^/du") = 0.

Thus the arguments above give Lemma 2.1.

Remark. If Ppiu) is of class C, t^l, then the change of coordinates

u —> v in the above proof is of class C.

3. Consider a piece of d-dimensional surface S:X = Xiu) of class C2

in a (d + 6)-dimensional Euclidean space Ed+i where u = (u1, • • •,ud),

X= iX1, • • •, Xd+i), and Xiu) is of class C2 on an open connected u-set

D such that rank idXT/dul) is d.

Let Xi= dX/du\Xij= d2X/dulduJ, etc. If AT is a normal vector to S

at a point u (i.e., Xiu)), there is an associated dxd second fundamental

matrix (Ay(u; N)), where Av(u; N) is the Euclidean scalar product Xy(u) • N.

Let Ttiu;N) denote the null space of (rey(u;A0), i.e., the set of vectors

y - (y, • • -.y*) satisfying A¡,y = 0 for i = 1, • • •, d. Let ir(re) = fï tt(u; AT)

where the intersection is taken over all normals or, equivalently, ir(re)

= (]wiu;Np) where the intersection is taken over a set of b linearly in-

dependent normal vectors NX,---,NS. The integer viu) = dimwiu) is

called the relative nullity of S at u [ 2]. A vector y ^ 0 in ir(u) will be said

to be in a trivial asymptotic direction at u.

Let v*iu0) = liminfi/(ii), u-+u0. The subset D, = \u:v*iu) ^ t) of D

is open.

Lemma 3.1. Let M = Md be a d-dimensional Riemann manifold of class

C2 and S = tiM), where \¡/:M—>Ed+i is a C2 isometric immersion of M

in the Euclidean space Ed+>. For a point m EM, let vim) be the relative

nullity of S at m (i.e., at ^(/n)); v*im0) = liminfv(m), m^>m0;andMir)

the submanifold of M consisting of points {m: v*im) äT).

(i) Then, for any point m0E M, there is a (reoi necessarily unique) maximal,

totally geodesic submanifold M"*1""0' of Miv*im0)) containing m0, of dimen-

sion v*im0), which \p maps isometrically onto a subset of a  v*im0)-plane
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ir ire Ed+S.

(ii) The space of normal vectors to S at a point \p(m) E^.mE M"*(mo), is

independent ofm.

(iii)   //   mGM"*(mo),   then   v*(m) ^ v(m)   according   as   v*(m0) ^ v(m0).

(iv) // v(m0) = v*(m0), then M"'(md is unique and m near m0 is on M"'{m^

if and only if the space of normal vectors at 4>(m) is the same as that at i(m0).

(v) Finally, if M is complete and v(m0) = minv(m) for m EM (so that

M(v(m0)) = M), then M"{mo) is complete and * = ^(M"(mo)) is a v(m0)-dimen-

sional plane in Ed+6.

The case b = 1 is contained in [4]. For arbitrary b > 0, under the addi-

tional assumption that M is flat, the last part of Lemma 3.1 is contained

in [5]. For a flat M, d — b ^ v(m) ^ d holds [2]; so that, in this case,

b < d implies that v(m) > 0 and Lemma 3.1 is not trivially true.

Proof. On introducing suitable local coordinates u = (re1, •--,ud) on M

at /re0 and a suitable choice of rectangular coordinates X = (u, x) = (u1,

■ ■ -,ud,x1, • • -,x6) in Ed+S, the immersion ^, for m near m0, can be represented

in the form

(3.1) xp=<bp(u)    forp = l,-..,5,

where <bp is a real-valued C2 function of u = (ul, ■ ■-,ui). Let Pp(u)

= (dcbp/du1, ■■■,d<bp/dud), i.e., Plp= d<bp/du'. Then a normal vector at u is

Np= (Pp,---.Pp'.O,---,0,1,0,---,0), where the 1 is the (d + p)th coordi-

nate of Np. The vectors Nx, - ■ •, Ns are linearly independent. This makes

it clear that if P= (Px,---,Pd), J= (dP/du), and p(u) = rank J(u), then

the relative nullity v(u) is d — p(u).

Suppose, first, that re0 = ^(reio) and that v(u0) = v*(uQ) = v. Suppose

that (3.1) is defined on a re-domain D containing re0. Then, there is a

v-plane section *„ of D„ through u0 satisfying the conclusion of Lemma 2.1.

Let it, be the intersection of D, and the v-plane (2.6) on which v = (i/1, ••-,V)

is a constant, p = d — v.

In (3.1), consider the C1 change of local coordinates u—>v on M given

by (2.6). Then

dxp/dV = (d<bp/du°)(aa') + d<t>p/dV.

Note that, by the proof of Lemma 2.1, d(bp/dua, d<j>p/dv" are functions of

v1, • - •,vp. Hence the function xp is of the form

(3.2) x" = ad+p'(v\ ■■-,W)v' + bd+p(v\ ...,»')    forp = 1, ---,b,

and so, (3.1) can be written as

(3.3) X = AAv\ ---,V)v<+ B(v\ ...,v>),

X= (X\---,Xd+i)and
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(3.4) B=ib\...,V,0,.--,0,bd+1,---,bd+i),

(3.5) A, = (a1', - - .,a",0, • • -,0,1,0, • ■-,0,ad+1'\ • ■ .,ad+i").

The "1" is the /cth component of A,.  The vector functions A. and B are

of class C1.

The argument up to this point shows that (3.3) is valid in a neighbor-

hood of the p-plane section w, of D,. By the isometric property of the

immersion ^, the pre-image under i of a line segment in the X-space of

the form: (u° = const, v" = linear function of t) is a geodesic. Hence a pre-

image of ir„ is a totally geodesic submanifold M" of M iv).

If*-„ [and/or Af"] has a limit point uxG D, [and/orreii = iA_I("i) GAf(j>)],

then the normal space at ux is the same as that at uQ. Hence \¡/ is given

locally in the form (3.1).  Also viux) = v*iux) = k by Lemma 2.1.

This shows that M" has a (maximal) extension so that its boundary

points, if any, are not in Miv). This implies the lemma for the case vim0)

= v*im0) = v.

If v*im0) = v* but vim0)>v*, then there exist points mx,m2, ■ • • of

M such that mn—>m0 as re—> œ and vimn) = v*imn) = v*. After a selection

of a subsequence, if necessary, it can be supposed that the v*-plane section

ir„.(m„) of Siv) = ^(M(c)) passing through i/-(/re„) tends to a limiting posi-

tion (in a suitable sense) and has the desired properties.

Remark. If Af = Md and its immersion ^ are of class C*+1, t è 1, then,

in the local coordinates u, the immersion ^ given by (3.3) is of class C.

4. Of particular interest is the question as to whether or not the planes

■Kim) above are parallel in Ed+S. A sufficient condition is given in the

next lemma for the case that v*im) is constant (near m0) and Af"*(m) is

complete, so that ^(M"*(m)) is an entire v*im)-plane.

In this situation, the problem is reduced to the consideration of a d-

dimensional surface S : X = Xiv) in an Ed+i space of points

X= iX\---,Xd+i),

where Xiv) is of'the form (3.3) for small \v1\, ■ • -,|i;p| and for arbitrary

vf+1, ••-,vd. In (3.3), B and A,+1, • • •,Ad are (d + b)-dimensional vectors

and dX/dv1, • ■ • ,dX/dvdare linearly independent. The problem is to give

sufficient conditions to assure that, after a suitable change of coordinates

leaving the form of (3.3) unchanged, the vectors A.iv1, ■■■,v") are constant.

Lemma 4.1. Let 0 < v < d and v + p = d. Let S be a d-dimensional sur-

face in Ed+S of class C2 having a C1 parametric representation

(4.1) S : X = AAv1,.. -,iñtf+ Biv1, •■■,v')

for small Iv1], • • -,\v'\ and arbitrary v", k = p + 1, • • -,d, such that the rel-

ative nullity viv)   of S at v is the constant viv) = d — p and that all vectors
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y = (0, •••,0,yp+1, • ••,/*) are in trivial asymptotic directions at v (so that

the normal space of S is independent of if+1, ---,vd; cf. Lemma 3.1). In addi-

tion, suppose that all 2-dimensional sections of S have non-negative curvatures.

Then there exists a Cl nonsingular linear change of the if variables depending

on (/, ■--,*),

(4.2) v" = oi<ir\ • • •, v") wx + cAv1, ■■■,V),

such that (4.1) becomes

(4.3) S:X=CKw'+D(v\ ---,v>),

where Cp+X, • • -, C¿ are constant vectors.

Proof.   Let  A, = (A1, • • -, Ad+i).   Since  dX/dv" = AK,   the   vectors Ap+X,

• ••, Adare linearly independent. After a rotation of the X-space, if neces-

sary, it can be supposed that the v vectors with v components given by

(A"K+1, ■■-,Ad) are linearly independent at v" = 0, hence for small \v"\.

Choose the function aAv1, • ■ -, V) of class C1, so that

AAv1,---,V)a'Av\---,v') = bl

Thus, after the change of variables v" = a"xwx and the renaming of wx back

to i>\ (4.1) has the same form, where

(4.4) A, = (Al, ...,A:,0,...,0,1,0, ■ -.,Ad+\ - --,Ad+i)

and the "1" is the /rth component of A„K = p+ l,---,d. If, in (4.1), if

is replaced by if + cAv1, • • -,i/), then (4.1) takes the form AKif + (B — A,c").

Thus, in view of (4.4), the functions cAv1, - - -¡v") can be chosen of class

C1, so that the xth coordinate of B — AKc* is 0 for k = p + 1, • • -,d. Thus,

if B — AKc" is called B again, it can be supposed that

(4.5) B=(B\-..,B\0,...,0,Bd+\...,Bd+s).

After this normalization, it will be shown that A, is a constant vector

by virtue of the fact that v" is arbitrary in (4.1).

Note that

(4.6) X. = A„       Xa = A,av' + Ba,

where   A,„ = dAjdv",    a — 1, ■■■,p,    and    k = p + 1, ••■,d.     The vectors

(4.7) BX,--,B„   and   Af+1,---,Ad

are linearly independent. The vectors Ara are in the span of (4.7) since

the normal space of S does not depend on if. In view of the normalizations

(4.4) and (4.5), it is clear that Am is in the span of the set of vectors Bx,

• ••,BP. Hence, the analogue of the Gauss equations give

(4.8) A,a = TLB,.

In view of the low differentiability of the parametrization of S involved,
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it is best to consider the equations (4.8) as defining the continuous func-

tions Tiiv1, ■ • -, v'), so that

(4.9) It = ¿»Au ■ By,

where ig"y) = igßy)'1 and gßy = Bß- By. It has to be verified that

(4.10) rf0 = 0,       i.e., A, is constant.

Since S has local C2 parametrizations, there exists a C1 orthonormal

basisN'iv1, • • •,v*), • • •,N*ivl, ••■,V) for the normal space to S at Xiv).

The second fundamental matrix (Af)-) corresponding to N" is given by

hPtj= —Xi-Nj^ —Xj- JV?, which is consistent with the tensor character

of ihfj). The functions A?, will be considered as functions of v" alone (with

V = 0).

Since all vectors y = (0, •••,0,y+1, • • •,yd) are in trivial asymptotic

directions, so that 0 = Ajjy = A£y", it follows that A£ = 0 for p = 1, • • -,b,

i = 1, • • -,d, and k = p + 1, • • • ,d.

It will be shown that if TK,H" denote the matrices r, = irßJ,H" = ihpaß),

where a,ß = 1, • • -,p, then

(4.11) r.iF = iT.H") * = HT:,

if r* is the transpose of r,. If the parametrization (4.1) of S is sufficiently

smooth, (4.11) is a consequence of the Codazzi equations but can be de-

duced more simply and directly as follows: Since N? = dNp/dva is a linear

combination of the vectors Bx, • ■ •,B„ and N1, •■-,Ns, it is easy to see

that the following analogue of the derivation formulae of Weingarten hold

A^= -^h^B. + d^N",

where 0 = h% — —Npß- A, and these derivation formulae define a\. Multi-

plying these relations scalarly by A,a and using (4.9) gives

AKa ■ Nß = — r,ahyß.

The left side is symmetric in the indices a,ß; in fact, the relations — A^

= Xa ■ N*, = Xß • Npa give the identity

A,„ • Npßv' + Ba ■ Npß = A.ß ■ NpaV + Bß ■ Np,

so that AM • Npß m AKß ■ Np. This is equivalent to (4.11).

The fact that the relative nullity of S is identically v implies that if

x = (x1, • • -, x") is a p-dimensional vector, then

(4.12) H»x = 0   forp = l,..-,5 implies that x = 0.

The condition on the curvatures of 2-sections of S is equivalent to

(4.13) ¿ [ iH"x - x) iHpy ■ y) - iHpx . y) iH»y . x)] è 0
P-i
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for all real vectors x = (x1, • • ■,x"),   y = (y1, • • -,y').

In order to prove (4.10), it will first be shown that (4.11)—(4.13) has

the following implications for r = r«, fixed k = p + 1, • • -,d:

(4.14) the eigenvalues of r* are real;

if c = 0 is an eigenvalue of r*, then the
(4.15)

corresponding elementary divisors of r* are simple.

On (4.14). Let r*x = ex for some x^O. Then HpT*x = cH"x, so that

HpT*x ■ x = cHpx ■ x. Since HPT* and Hp are symmetric matrices, it

follows that c is real if Hpx ■ x ¿¿0 for some p. Note that (4.13) is assumed

for real vectors x, y but is then valid for real vectors y and complex vectors

x. Thus if Hpx • x = 0 for p = 1, • ■ -,b, it follows from (4.13) that Wx ■ y

= 0 for p = 1, • • -,b and for all real y (hence, for all complex y). Conse-

quently, Hpx=0 for p = 1, ••-,5. By (4.12), this implies that x = 0 and

gives a contradiction. Thus Hpx • x ^ 0 for some p and, consequently, c

is real. This proves (4.14).

On (4.15). Let c = 0 be an eigenvalue of r* and suppose that there

is a corresponding multiple elementary divisor. Then there is a vector x

such that

r*x = 2^0,       r*2 = 0.

Then HpT*z = 0, so that THpz = 0. Hence H"z ■ T*y = 0 for all y and

p = 1, • • -,b. Choosing y = x gives Hpz • z = 0 for p = 1, • • -,b. As above,

this implies that Hpz = 0 for p = 1, • • -,b and hence 2 = 0. This contradic-

tion proves (4.15).

On (4.10). Suppose that T = F, is not 0 for some k at some point (v1, •■■,v").

Then by (4.14)—(4.15), r* has a nonzero, real eigenvalue, say, — l/c^0,

and an eigenvector (c1, • ••,&) ¿¿0, i.e.,

C(cit + b J = 0    for 0=1,...,p.

In the second part of (4.6), choose if = 0 if X ̂  k (k fixed) and v" = c, so that

c°Xa = c"(cAAa + Ba);

by (4.8),

c"Xa = c°(cri + bJBß=0.

This contradicts the linear independence of XX,---,X„ and shows that

r, = 0. This completes the proof of Lemma 4.1.

Appendix

5. In view of the uses of Lemma 2 in [4] and of its generalization Lemma

2.1 above, it seems of interest to generalize it further.   This appendix
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deals with a generalization in which "gradient maps" are replaced by

"involutory systems."

Let x = (x1, ■■•,xd), w = (w1, ■■■,wd) denote d-tuples of real numbers.

The Poisson bracket (F,G) of two real-valued functions F(x,w), G(x,w)

of class C1 is defined to be

d

(F,G) = X[(9F/dxk)(dG/dwk) - (dF/dwk)(dG/dxk)]

(5.1)

= 'ZàiF,G)/dixk,wk).
k=i

A set X = iX1ix,w), ••■,Xdix,w)) of d real-valued functions of class C1

will be said to be an involutory system if the following two conditions hold:

(5.2) (X',X)=0    for¿,; = l,-..,d,

(5.3) rank(dXi/dxi, dXi/dwk) = d;

cf. [1, Chapter 6].  In (5.3), (dXi/dxj,dXi/dwk) is a matrix with d rows

(i = 1, • • -,d) and 2d columns (j' — 1, ■ • -,d and k = 1, • • -,d).

The result to follow concerns b involutory systems

Xp=iXpix,yp),...,Xdpix,yp)),

where p— 1, •••,!. For a fixed p,XP(x,yp) is a function of 2d real vari-

ables ix, yp) = (x1, • • •, xd, yP, • • •, yp) ; but in dealing with different values of

P,y= iyi,---,y¡) = iy\,--',ytyi'-',yf) is considered as a set of db vari-

ables. For example, Lemma 2.1 concerns the 5 involutory systems Xp

= (Xp, ■■■,XP), where

(5.4) Xp(x,yp) = Pp(x) -yP   for i = 1, ...,dandp = 1, • ••,«.

Let D be an open set in the (d-f d5)-dimensional (x,y) = (x1, •■■,xd,

y\, • • ■,yt)-space; X = (Xb ■ • -,Xä) = (X\, ■ • -,Xf) a set of db functions

Xp(x,yp) of class C1 such that each function depends only on 2d variables

(x,yp) and, for a fixed p = l, •••,«, the set Xp = (XP(x,yp), • • •,Xp(x,yp))

is an involutory system.

Let Jp(x,yp) be the o¡X(¡ Jacobian matrix Jp = (dXp/dx1), where i,j

= 1, ...,d, and s/(x,y) the Jacobian matrix J=(dX/dx), where X

= (Xi, • • •, Xj) = (Xi, • • •, Xi, X2, • • •, Xf),

l JA

\jj
so that J has d columns and db rows. For (x, y) G A let

p(x,y) = rank J(x,y)   and    p*(x0,y0) = lim sup p(x,y)
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as (x, y) —» (x0, y0). For a given integer k, let Sk be the open subset of D

defined by

Sk=[(x,y)ED:p*(x,y)^k]

and Sk(y) the open set in x-space given by

Sk(y) = [x:(x,y)ESk].

Lemma 5.1. Let X'Ax,yp) be db real-valued functions of class C1 on an

(x,y)-domain D such that Xp(x,yp) depends only on 2d real variables and Xp

= (Xp(x,yp), ■■■,Xdp(x,yp)) is an involutory system for p = 1, ••-,!. Let

(x0,yo)ED have the property that p(x0,y0), p*(x0,y0) have a common value

p = d — v. Then

(5.5) X(x,y0) = X(xo,yo)

ore a unique v-dimensional plane section 7r„(x0) of S Ayo) through x0; for points

x near x0, (5.5) holds if and only if ¡cGir,(x0); finally, p(x,y0) =p*(x,y0)

for all x E ir„(x0).

A "local" analogue of this lemma is known for the case 5 = 1 (under

slightly stronger differentiability conditions); cf. [l, pp. 95-96].

Proof. Let p = p(x0,y0) = p*(x0,y0). Without loss of generality, it can

be supposed that the first p columns of J are linearly independent (so that

each of the remaining d — p columns of J are linear combinations of the

first p columns) for (x,y) near (x0,y0). It will be shown that

(t) there exists a p-plane

d

(5.6) 7r:x"=  Z aa'x' + ba,       a=l,---,P,
«=p+i

where a", b" are constants, such that x passes through x0 and that (5.5)

holds on the connected component of t fl S Ayo) containing x0; further-

more, for x near x0, (5.5) holds if and only if x E *■

The local part of (f) will be deduced from Lemma 2.1 for arbitrary

5^1 and some (essentially) known results on involutory systems.

Consider first one involutory system X1(x,w), ■ ■-,Xd(x,w) of class C1

in a vicinity of a point (x, w) = (x0, w0). Put

(5.7) z'= X(x, w)    and   z'0= X(x0, w0).

(a) Suppose that

(5.8) det(dXi/dwi) ¿¿0      at(x0,w0);

then (5.7) has a unique solution for w of class C1,

(5.9) w=W(x,z') = (W\...,Wd),
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for (x,z') near (x0,zó) and there exists a function f(x,z') of class C1 such

that

(5.10) W = df/dx*     for i = 1, • • •, d.

(It follows that df/dx' is of class C1, but df/dz" may only be continuous.)

The proof of this is a considerably simplified version of the arguments

of [ 1, pp. 90-91]. In order to prove (a), it is sufficient to verify that

(5.11) dWi/dxi = dW^dx1      for i,j =l,...,d.

To this end, substitute (5.9) into (5.7) and differentiate X' with respect

to x/ to obtain

d

0 = dXi/dxj+Yi (dXi/dw")(dWk/dx).
*=1

Multiply this relation by dXm/dwJ and add for ; = 1, • • -,d,

d        d

X  Z(^i/dwk)(dWk/dxJ)(dXn/dwi)

d d

= - £ (ax'/axó(oX73u/) = - Z idxi/dwi)idxm/dx?),
;=i ;=i

where the last equality is a consequence of the fact that X1, • • •, X is an

involutory system.  Let T,S denote the matrices

T = idX'/duf),   S=id Wi/dxi).

Then the expression on the left is the (i,m)th element of the matrix prod-

uct TST*. It follows that TST* is a symmetric matrix. Since T is non-

singular, it is seen that S is symmetric, i.e., that (5.11) holds. This

proves (a).

(b)  Let  X= (XHx,«;), .--.X^x, w))   be   an   involutory   system   as   in

step (a) and let

r = rank idX'/dx')    at (x0, w0)

and let the columns dX/dx' be linearly independent for i = 1, •-.,r. Then

detidX/dx1, ■ -.,dX/dxr,dX/dwr+1, ■ ■■,dX/dwd) ̂ 0   at (x0,w0)

and E(£,j;) = Xix,w), where

£° = xa,   f - - af   and   v" = w",   v = xK

fora = l,---,r, k = r + 1, ...,d

is an involutory  system,  i.e.,

d

Z dia,Sra)/d(£*,,*) =0    for i,m = 1, • • ■ ,d.
4=1
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This follows from considerations of [l, pp. 85-87].

Combining (a) and (b) gives:

(c) Let X(x,w), z',x0,w0,r be as in (a), (b). Then there exists a C1

real-valued function f(xr+1, ■■-,xd, wl,---,uf,z') of 2d real variables such

that (5.7) has a unique solution of class C1 given by

x" = g°(xr+1, ■ ■ .,xd, w\ ■ ■ .,wr,z')    for a = 1, • • -,r,

w* = ft"(xr+1, • • -,xd, w\ ■ ■ -,uf,z')    for k = r + 1, • • -,d,

and

(5.13) g" = df/dwa,       ft" = - df/dx'.

Thus, if

(5.14) u/i-df(x*,uf',z')/dz'i,

then

d r

Z w'^z" + Z x"dW - Z w'dx" = df-
¡=1 a=l «

Remark. It can be mentioned that if w' is made a function of (x, w)

by inserting (5.7) into (5.14), say,

(5.15) w' = (W\---,W),    where W1 = df/dz"atz' = X(x,w),

then

z' = X(x,w),      w'=W(x,w)

is a canonical transformation in the sense that

w' • dz' — w • dx    is closed

(i.e., is locally a total differential of a function of class C1). Note, however,

that W(x, w) in (5.15) may only be continuous. (This is a variant of the

standard deduction of a C1 canonical transformation from an involutory

system of class C2.)

(d) Let X,z',xQ,w0,r and / be as in (c) and put

(5.16) F(x, w) = Zx0w* + l-Z  W)2 - /(*", ">°. 20.
0-1 ^  X=r+1

then F(x, w) is of class C2 and the equation

(5.17) X(x,re>o)=zo     [ = X(x0,u;o)]

is equivalent to

(5.18) VF(x,w) = VF(x0,w0),

where
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VF = idF/dx\ ■ ■■,dF/dxd,dF/dw\ • ■■,dF/dwd).

Actually, Fix,w) = Fix, w;z'0) and F is a function of class C1 in (x, w,z'0).

Assertion (d) is clear from the fact that (5.7) and (5.12) are equivalent

and that (5.13), (5.16) give

dF/dxß = uf, dF/duf = xß - gßix\ w", z'o)    for ß = 1, • • •, r,
(5.19)

dF/dxx = h\x', w", z'o), dF/dwx=wx   for X = r + 1, • • •, d.

(e) Note that, at (x0, w0), rank(d(V F)/dw) = d and that rank (ô(VF)/ôx)

= r. In fact the 2d X d Jacobian matrix (d(VF)/dx) consists of a dxd

zero matrix and a d X d matrix obtained by multiplying (dX/dx) by a

nonsingular matrix.

(f) Proof of the local part of (f). Define x' = (xi, • • -, x¡) by xp = X(x,yp).

Then, by (d), there exists a function Fpix,yp) of class C2 such that for

(x,yp) near (x0,ypo),

(5.20) Xp(x,yp) = xp0      [ = Xp(x0, y,*,) ]

is equivalent to

(5.21) VFp(x,yp) = VFpixo,yp0).

Also, Fpix,yp) = Fp(x, yp; Xpo)  is of class C1.

Consider Fpix,yp) = Fpix,y) to be a function of d + db variables (x,y).

Let Xp(x, y) be the (d -f- db) X (d + dô) matrix which is the Jacobian

matrix d(VFp)/d(x,y), where VFP is the gradient of Fpix,y).   Then, if

/X!(x,y)\
Poix,y) = rankX(x,y), where X(x,y) =     :

vXjix.y),

and pb*ix0,yo) = lim sup p0(x, y) as (x, y ) -> (x0, y0), it follows that p0(x0,y0)

= p*(^o,yo) = p + db. In fact, if the first column of X(x,y) is obtained

by differentiating (VF1( VF2, • •-, VFP) with respect to x1, the second

with x2, • • • and the last with yf, then the first p and last db columns of

X(x,y) are linearly independent. For the construction of F in (d) shows

that any linear homogeneous relation between the first d columns of X(x,y)

is a consequence of the same relation between the columns of Jix,y).

Thus, Lemma 2.1 implies that there exist constants aak, ba such that (5.5)

holds for x near x0 if and only if x is on the i>-plane ■* in (5.6). Further-

more, a°", b" are C1 functions of (y0, xó).

(g) Completion of proof. It remains to prove the "in the large" assertion

of Lemma 5.1. To this end, note that the analogue of condition (5.3)

implies that the set of db variables y = (y], • • •, yf) can be divided into

two sets v = iv1, • ■■,vdd~1') and u = (u1, • • ̂ u") such that, at (x,y) — (x0,y0),
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det (dX/dx\ ■ ■ .,dX/dx>, dX/dv1, ■ ■ ., 3X/3ir*_') jt 0.

Hence, the equations x' = X(x,y) can be solved locally for x1, ••■,xp and

v in terms of x',xp+1, ■ • -,xd, and re:

xa = ga(x"+\ ...,xd,u,x')        fora=l,-..,p,

v° = hAx'+1,---,xd,u,x')        for (7= l,---,db-P,

where g°, h° are of class C1.

The fact that p(x0,y0) = p*(x0,y0) implies that ft" = ft"(re, x') does not

depend on xp+1, •••,xd. Also, the local part of (|) implies that g" is linear

inxp+1, ■■■,xd:

d

x"=   Z a"'(u,x')x"+ b"(u,x')    for« = l,---,p,

(5.22) .-H-i

if = h°(u, x')    for a = 1, ■■-,db - p,

where aa\ ba and ft* are of class C1. Since (5.22) is the inverse of x' = X(x,y)

for fixed xp+1, ■■■,xd and u,

1 = det (dX/dxa, dX/dv') ■ det (d(xa, v')/dx')

in obvious notation. It is clear from (5.22) that the second factor is

bounded if y = y0 (hence u) and x' = x'0 are fixed and x is bounded. Con-

sequently, the completion of the proof of Lemma 5.1 is similar to that

of Lemma 2.1 (or of Lemma 2 in [4]).
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