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1. This paper presents generalizations of the theory of Lie groups by

weakening the associativity axiom of such algebraic structures. The

algebraic- topological structures under investigation are, for the most

part, connected, locally euclidean topological loops with a right invariant

uniformity and a left invariant uniformity (loops to which we will refer

in this introduction as u-loops). The first portion of the paper presents

partial solutions to a generalized "Hilbert's Fifth Problem," i.e., the prob-

lem of introducing analytic structures on u-loops so that multiplication,

as well as the associated inverse binary compositions, are analytic func-

tions. The last part of this paper assumes the existence of such analytic

structures; then the familiar theorems of Lie group theory relating the

analytic structures of a Lie group to the algebraic-topological structures

of its subgroups and its continuous homomorphisms are shown to hold

for Lie loops having various uniformities.

Hilbert's Fifth Problem for locally euclidean groups was first solved

in the compact and commutative cases (by von Neumann and Pontrjagin

respectively); it was not until techniques reaching deeper into the theory

could the general conjecture be verified. In a similar view, we prove the

following theorem: A u-loop is a Lie loop if it is either compact or commuta-

tive isee Corollary 3.4). Since a topological group has a right invariant

uniformity and a left invariant uniformity, this theorem is a generalization

of the theorem of von Neumann and Pontrjagin mentioned above. Al-

though in reality we give a somewhat more general result in the body of

the paper, the conjecture that a u-loop is a Lie loop remains open in gener-

al. In the author's opinion, a deeper analysis than given here will be re-

quired to solve the problem. Small progress is made in the diassociative

case (Theorem 3.6). Included in the results of the latter portion of the

paper are the following: If iL,A), iL,B), and iM,C) are Lie loops with

respect to the analytic structures A,B, and C, respectively, if each of L

and M has a right invariant uniformity, if TV is a closed connected subloop

of M, and if / is a continuous homomorphism from L to M, then A is ana-

lytically equivalent to B, f is an analytic mapping with respect to B and

C, N is an analytic submanifold of M and also a Lie loop in the natural
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relative analytic structure, and there is a neighborhood U of the identity

of L having "unique nth roots" and no subloops other than the identity.

The assumption of various invariant uniformities for the loops con-

sidered in the paper is important and necessary to obtain the desired con-

clusions; this remark may be verified by easily constructed examples.

The theorems and techniques used are those of Lie groups and Lie trans-

formation group theory. These techniques are applied to certain "groups

of translates" which arise from the loops with their various uniformities.

Classical theorems in transformation group theory of Montgomery and

Bochner, Pontrjagin, and Myers and Steenrod provide the foundations

for the strongest results. On one hand, the proofs of our theorems give no

new techniques for Lie group theory, and, in fact, the proofs of many of

the theorems lean heavily on the validity of the theorem in question for

the associative (i.e., the group) case. On the other hand, some of the

theorems show that the algebraic assumption of associativity is not as

important as it might seem to be.

Most of this paper, along with [6], form the main body of the author's

dissertation presented to the Department of Mathematics of the Graduate

School of Tulane University in April 1963 under the supervision of Pro-

fessors Paul S. Mostert and Karl Heinrich Hofmann, to whom the author

is most grateful for their suggestions and advice. The author is also grate-

ful for comments from Professor P. T. Church and Dr. Wu Ta-sun.

2. This section is devoted to a brief discussion and review of definitions,

terminolgy, and basic theory to be used in the later sections. These con-

cepts may be found in [4], [6], [7], [9]. A topological loop (L, •) is

a Hausdorff space with a binary operation • (x,y) = xy so that (a) there

is an element 1 G L with lx = xl = x for all xEL, (b) for each x and y

in L, there are unique solutions a and b to the equations ax = y and xb = y

(a and b are denoted by yx,_1) and x(_1)y, respectively), and (c) the follow-

ing three functions of L X L onto L are continuous: (x, y) —» xy, (x, y)

—>xy(_1), and (x,y) —>xl_1)y. If there is a uniformity ^ on L compatible

with its topology having a base 3è of entourages of % so that for all B

E 38, (x, y) G B if and only if (xa, yd) E B for all a EL, then L is said to

have a right invariant uniformity %. Similarly one may define a left in-

variant uniformity and an invariant (both right and left invariant) uni-

formity. This terminology is consistent with that for topological groups.

As in the case of topological groups, if a topological loop L having a right

invariant uniformity is metrizable, then L has a metric satisfying d{x,y)

= dixa,ya) for all x,y, and a in L (of course d is consistent with the to-

pology for L). For each a in a loop L the mapping x—>xa, denoted by Ra

and called the right translate by a, is a homeomorphism of L onto itself.
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Definition 2.1. The group G generated, by all the right (respectively

left, right and left) translates of a loop L in the group of all homeomor-

phisms of L onto itself is called the group generated by the right (respec-

tively left, all) translates. If L is locally compact, there is a natural to-

pology which we define for these three groups, namely, the g-topology

(as given by R. Arens). In this case, all of these groups are topological

transformation groups of L and, furthermore, act transitively and effec-

tively on L. If L has a right invariant (respectively left invariant, in-

variant) uniformity ^, then the group generated by the right (respec-

tively left, all) translates of L is a uniformly equicontinuous collection of

homeomorphisms of L with respect to °fc.

If G is any transformation group acting on a loop, Gx will denote the

isotropy, or stability, group of G at the identity 1 of L, i.e.,

Gx=\gEG:gil) = l\.

Proposition 2.2. // L is a locally compact, connected loop with a right

invariant uniformity, then the closure G~ of the group G generated by the right

translates in the group of all homeomorphisms of L onto itself endowed with

the g-topology is a locally compact topological transformation group of homeo-

morphisms acting effectively and transitively on L. The mapping x—>fix is a

homeomorphism of L into G and G . G and G~ are connected. Arcwise con-

nectedness of L implies arcwise connectedness of G.

Proof. Verification of the major portion of this proposition may be

found in [6, p. 183]. Since the function CR mapping x onto Rx is one-to-

one and continuous, and since the mapping taking Rx onto RAl) is con-

tinuous, it follows that CR is a homeomorphism. Thus CRiL) and G are

arcwise connected if L is arcwise connected.

Definition 2.3. The group G of Proposition 2.2 is called the group of

right translates of L ( contrasted with the group G generated by the right

translates of L).

Remark. There are obvious analogues to Proposition 2.2 in the case

that L has, instead of a right invariant uniformity, a left invariant uni-

formity, or an invariant uniformity. Hence two more definitions may be

made, namely, the group of left translates, and the group of all translates

of L. This remark is applicable to many of the remaining definitions and

propositions of the paper. We will not give these analogous statements,

since they may be obtained by obvious changes and substitutions of

phrases.

Proposition 2.4. If L is a locally compact, connected loop with a right

invariant uniformity, if G is the group generated by the right translates of L

and G~ is its group of right translates, then Gx   is compact.   The mapping
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gGx —>Rg(X) of the coset space G /Gx into G and G is a iglobaï) cross-

section. Also G~/Gx~ is homeomorphic with L through the canonical map-

ping gGx~■-» gil).

This Proposition 2.4 may be found in [7].

Proposition 2.5. If L is a locally compact, connected, locally connected,

finite-dimensional loop with a left invariant uniformity, then the group G~

of left translates of L is a connected Lie group acting effectively and trans-

itively on L.

Proof. G~ is a locally compact, transitive, effective transformation

group acting on L and G~ /Gx is homeomorphic to L, according to the

previous two propositions. Using the paragraph preceding Theorem 9 of

[10, pp. 68, 69], as well as the proof of Theorem 9 itself and its Corollary

3, it follows that G~ is a Lie group. (The important step is to show that

Gx  is a Lie group.)

3. The theorems in this section are motivated by the question of which

loops can be given an analytic structure so that they become Lie loops.

Definition 3.1. A Lie loop iL,A) is a connected topological loop which

is a manifold and which has an analytic structure A so that the following

functions from the product manifold LxL into L are analytic:

(x,y)—>xy,

ix,y)-*xyl~1\

(x,y)—>xl~lfy       forx,yGL.

Analytic structure is to be taken in the equivalent usual senses of Chev-

alley [l] or Pontrjagin [13] for Lie groups. If L is a group, then the defi-

nition agrees with that of Lie groups.

As mentioned in the introduction, a generalization of the established

results in topological group theory would be  the  following:

Conjecture. If L is a connected, locally connected, locally compact,

finite-dimensional loop having a right invariant uniformity and also a

left invariant uniformity, then L is a Lie loop. In this section we prove

that such a loop, if it is additionally either commutative or compact, is

a Lie loop. If the loop is additionally diassociative, then we can show that

there is a neighborhood of the identity uniquely covered by one-parameter

subgroups.

Proposition 3.2. Let L be a topological loop such that (a) £Ae group G~

of the translates of L is a Lie group and (¿>) the mappings CR: x—>RX and

CL: x—,Lx of L into G~ and the mapping F: (g, x)—>g(x) of G X L into

L are analytic mappings with respect to G~ and the natural quotient analytic

structure A on LçnG~/Gx   obtained from G".   Then iL,A)  is a Lie loop.
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Proof. Let id denote the identity function of L onto itself and / the

function of G~ onto itself mapping g onto g~\ The following three func-

tion diagrams, which are composed entirely of analytic mappings, com-

plete the proof:

CL X id                F
ix, y)->iLx,y)->LAy) = xy,

CLXid           IXid      ,          F
(x,y)-ALx,y)-► iLx\y)->LxAy) = x^'y,

CRXid           /Xid                  F
ix,y)->iR„y)-> iRx\y)->R^iy) =yx{~i).

Theorem 3.3. Let L have an invariant uniformity, and let L be connected,

locally connected, locally compact, and finite-dimensional. Then L is a Lie

loop.

Proof. It is shown that the hypotheses of the previous proposition are

satisfied. By Proposition 2.5 (that is, by the invariant-uniformity version

of Proposition 2.5), the group of all translates of L, G~, is a connected

Lie group.  Proposition 2.4 yields the fact that Gx~ is compact.

However compactness of Gx implies that L may be given a Riemannian

metric invariant under the action of G~ [9, p. 215], that is, the elements

of G~ are isometries with respect to this metric. The analytic structure

for this Riemannian metric is the structure A of the previous proposition.

It is known that when L has the analytic structure A the mapping F of

the previous proposition is analytic [ 13, p. 292, Princeton edition].

To show that the mappings CR and CL of the previous theorem are

analytic, we now use techniques introduced by Myers and Steenrod [ 12].

There exist elements p, of L, 1 ^ i ^ s, such that if an isometry g in G~

leaves all p¡ fixed, then g is the identity isometry. The integer s is one

more than the dimension of the Riemannian manifold L. If g EG~, then

there corresponds to g the element igipx), ---.giPs)), which belongs to the

product analytic manifold Ls. If we denote this mapping by T, then T is an

analytic mapping because F is analytic. Furthermore Myers and Steenrod

show that T is a homeomorphism [ 12, p. 413], and the image of T is a

regular submanifold of class C1 of Ls so that the induced multiplication

obtained from G~ is also of class C1 in T(G") [ 12, p. 415]. It is now shown

that the Jacobian matrix of the transformation T at an arbitrary point

of G has nonzero determinant. There exists a transformation T' of TiG~)

into canonical coordinates A' of the first kind so that the transformation

V is of class C1 [ 13, Princeton edition, Theorem 47]. But canonical co-

ordinates of the first kind are analytic coordinates. From the uniqueness

theorem for analytic structures on Lie groups it follows that iT'°T) l

is an analytic transformation. The Jacobian matrix of the transformation
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(7" o T)-1o T'o T is the identity matrix and T must have a nonsingular

Jacobian matrix, at any point of G~. With the aid of T we can now show

that CR and CL are analytic. We have first that x—> ipxx, ■■ -,psx) = x~~

is analytic, because LPi is analytic for each i ^ s. But T'1 restricted to

TiG~) is analytic and T-1(*~) = RXEG~. Consequently, CR is analytic.

In a dual manner one shows that CL is analytic. Having satisfied the

hypotheses of the previous theorem, the proof is completed.

Corollary 3.4. Let L be a connected, locally connected, locally compact,

finite-dimensional loop. Let L have a right invariant uniformity and left

invariant uniformity. If L is either compact or commutative, then L is a

Lie bop.

Proof. With the above hypotheses, L has an invariant uniformity (it is

either compact or commutative) ; so the previous theorem may be applied.

It is interesting that no associativity is required in this theorem and

this corollary.

Corollary 3.5 (to the proof of Theorem 3.3). Let L be a locally

compact, locally connected, connected, finite-dimensional loop with a right

invariant uniformity. If the dimension of L is q, then G~, the group of right

translates of L, has dimension less than or equal to qiq + 1).

Proof. Using the fact that Gx is compact, introducing a Riemannian

metric on L, and introducing a homeomorphism of G~ into L,+1 the same

as the one constructed in Theorem 3.3, one sees immediately that dirnG"

= dimL«+1.

We now give a theorem which indicates that perhaps the invariant

uniformity condition of the previous theorem may be weakened in the

diassociative case to the condition of having two uniformities, a right

invariant one and a left one.

Theorem 3.6. Let L be a diassociative loop with a right invariant uni-

formity. Let L be connected, locally connected, locally compact, and finite-

dimensional. Then there exists a neighborhood U of the identity such that

every element of U lies on a unique local one-parameter subgroup of L and

every pair of elements of U is contained in a connected Lie subgroup of L.

Proof. The group G~ of right translates of L is a connected Lie group.

Recall that CR:L—,G~ mapping x onto Rx is a homeomorphism. Let V

be an open neighborhood of the identity in G~ so that (a) V" is compact

(" —" means closure), (b) both V~ and V~2 are uniquely ruled by one-

parameter subgroups of G~, and (c) if x G V~, then the square root of x

belongs to V. Let U denote the identity component of [xEL: RXE V\.

Then U is a connected neighborhood of 1 in L. It will be shown that U

has the desired properties. Let s be the mapping of U~ into L defined by
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six) = x2. If xj£y for x and y in U~, then Rx¿¿Ry; and we have that

x^y2, when one recalls that (1) x,yEU~ imply that Rx, Ry, iRx)2, and

(fiy)2all belong to V"2, and (2) (PJ2 = ÄI2 and iRy)2 = Ry2 by disassoci-

ativity. Hence x^y implies x2 ¿¿ y2, and s is one-to-one as well as con-

tinuous. Thus s is a homeomorphism. We will show that U is contained

in siU). The set W = s(L0 Pi U is open in £/, and W is nonempty. Let

XiE W so that x,—»xG Í/. There exist y¿G U so that y2 = x¿. Since each

y¿ is contained in the compact set U~, we may suppose that yi—>yEL.

Thus y2 = x and yEU~. However xEU implies RXEV (by choice of

U). Thus RyE V because iRy)2 = Rx and condition (c) holds. The follow-

ing facts imply that y EU: yEU~; yE{xEL: RXE V\; L is locally
connected. But y EU implies that x G W. Hence W is open and closed

in the connected set U. Hence W = U and UEsiU)- Thus U has unique

square roots which are also in U. For x£i/we may choose elements x¡

E U so that xx = x and x2+1 = x¿. The element Cfi(x¿) belongs to the one-

parameter subgroup containing Cfi(x) = Rx. Convergence of CA(x¿) = RXl

to the identity of G~ in the one-parameter subgroup containing Rx implies

that the closure of the group generated by {x¡: i è 1} is a connected group

containing x iuid yields a one-parameter subgroup.

The following special case of a standard and more general argument

shows that every pair of elements of U lie in a connected subgroup of L.

Let x,yEL and Px and Py be one-parameter subgroups containing x and

y, respectively. Let a and b be elements of Px and let c G Py. It will be

shown that (1') (a6)c = a(6c). For any integers p and q it is true that

{aaplq)c = aiap"lc) because allq and c he in a subgroup. Since \aplq:p,q are

integers} is dense in P„ il') follows. By symmetry, (1') holds for any a, b,

and c in Px (J Py. It follows that Px and Py are together contained in a

connected group.

The author had thought that certain loops with a right invariant uni-

formity might have a neighborhood of the identity covered by local one-

parameter subloops which were not groups. But this situation cannot

happen, as the following theorem indicates.

Theorem 3.7. Let L be a locally compact, locally connected, connected,

one-dimensional loop with a right invariant uniformity. Then L is a Lie

group.

Proof. It suffices to show that L is a group. The group G~ of right trans-

lates of L is a Lie group having dimension smaller than three (by Corol-

lary 3.5). Since such groups have been classified, one of the following

situations must occur: (1) G~ is abelian, or (2) G~ is nonabelian, is (topo-

logically) euclidean two-dimensional space, and has for compact sub-

groups only the identity subgroup.  In case (1), Gx~ is abelian, implying
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that it contains only the identity element. This implies that RxRyRxy is

the identity; in other words, ((2x)y)(xy)(_1) = z and (zx)y = zixy). Case

(2) cannot occur since Gx  is compact and L is one-dimensional.

There is a commutative, diassociative loop which is topologically eu-

clidean 3-space but not a Lie loop. This loop was constructed by Hofmann

[4, p. 152]. It is easy to construct a loop on the euclidean 1-sphere which

is not a Lie loop. Consider first the loop on the complex numbers of norm

one defined by

gW 0 giU _ gÜa+e+ÍM+fW-fa+l»)

where fix) = (sin(x — ir/2) + l)/4. This is a Lie loop, without an invari-

ant uniformity. This loop was given incorrectly by the author in [6, p.

190]. By modifying / slightly so that it is no longer real analytic, one

obtains a loop on the 1-sphere which is not a Lie loop.

4. It is shown in this section that Lie loops with right invariant uni-

formities have some of the same analytic and algebraic properties as Lie

groups.

Let iL,A) be a Lie loop with a right invariant uniformity. As previ-

ously defined, let G and G~ be the group generated by the right trans-

lates and the group of right translates, respectively. By the right-handed

version of Proposition 2.5 G~ is a Lie group. G is arcwise connected in

G~ (Proposition 2.2), and G is therefore an analytic subgroup of G~ [14].

Since L is a manifold, the compact-open and the g-topologies are the same for

G". The topology of G as an analytic subgroup of G" is the associated

locally arcwise connected topology [2] (abbreviated as the alac topology).

This topology is also described in [15]. With this topology G is a con-

nected Lie group acting effectively and transitively on L.

Definition 4.1. Let (L,A) be a Lie loop with a right invariant uni-

formity. Then G, the algebraic group generated by the right translates

with the alac topology, is called the modified group of right translates of L.

The following lemma shows how G acts analytically on L. A theorem of

Bochner and Montgomery [9] and a classical result found in Pontrjagin

[ 13, German edition] on Lie transformation groups will be used.

Lemma 4.2. Let iL,A) be a Lie loop with a right invariant uniformity

and let G be the modified group of right translates of L. Then G acts analy-

tically on L, and G/G¡ {with its natural quotient analytic structure obtained

from G) is analytically isomorphic with iL,A).

Proof. We have shown that G is a Lie group of homeomorphisms acting

effectively and transitively on L. Each element of G is a composition of

right translates and their inverses, which are all analytic transformations.

The function F: G X L—,L defined by ig, x) —*gix) is analytic in its second
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variable x for a fixed g EG. The theorem of Bochner and Montgomery

[9, p. 212] concludes that F is analytic in both of its variables. Thus G

acts analytically on L. We may now apply the following theorem in Lie

transformation group theory [13, German edition, Satz 66]: If G is a

Lie group acting effectively, transitively, and analytically on an analytic

manifold iM,A), then the canonical homeomorphism from G/Gx, for

1 G M, onto M is an analytic isomorphism, where the analytic structure

on G/Gi is the natural quotient analytic structure of the coset space. In

view of this theorem we have that the analytic structure A is equivalent

to the natural analytic structure of the coset space G/Gx.

We now apply this lemma to closed subloops and homomorphisms of

Lie loops with right invariant uniformities.

Theorem 4.3. Let iL,A) be a Lie loop with a right invariant uniformity

and let M be a closed subloop of L. Then M is a regular analytic submani-

fold of L and consequently the identity component of M is a Lie subloop.

Proof. Let H be the closure in G (the modified group of right trans-

lates of L) of the group generated by all Rx for xEM. Then H is a closed

Lie subgroup of G with the relative analytic structure. Hil) is a regular

analytic submanifold of L with the quotient analytic structure. But this

structure on L is analytically equivalent to A. Since Hil) = M, M is a

regular analytic submanifold of (L,A).

Theorem 4.4. Let iL,A) and iL',B) be Lie loops with right invariant

uniformities, and let f be a continuous homomorphism from L into L'. Then

f is analytic {relative to A and B).

Proof. By Theorem 4.3 fiL)~, the closure of /(L), is a Lie loop in L', so

that we may assume that /(L) = U without loss of generality. Let G

and H denote the modified group of right translates of L and L', respec-

tively. For x G L define <f>iRx) = R¡(x), and extend the domain of <p to all

of G by the requirement that <b be a (algebraic) homomorphism from G

into/7.

It will first be shown that <f> is continuous with respect to the compact-

open topologies on G and H. To accomplish this, it it sufficient to show <f>

continuous with respect to the pointwise convergence topologies, since G

and H are equicontinuous collections of homeomorphisms as a result of

the right invariant uniformities of L and L' [8, pp. 230 and 232]. Let

[gi\ be a sequence in G converging to g EG. If yEfiL), then y = fix)

for some xEL. Then <bgiiy) = (bgiifix)) = figiix)), the last equality hold-

ing by definition of <b. Since / is continuous, figiix)) converges to figix)).

But figix)) = (bgifix)) = <bgiy). If however yEfiL)~, then there isa

sequence jy,} converging to y with each y¿EfiL). We may assume that

there is a metric b on L' which is invariant under the action of H.  Let
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€ > 0. We wish to show that there is an integer N such that n> N implies

that 5i<t>gAy),<t>giy)) <(■ There is an TV such that n and i both greater

than N implies that ¿(«^„(y,), <¿g(y¿)) < t/3 (because y.G/i.L)) and also

¡>i<f>giyù,4>giy)) - àiy,y) = 6i4g*iy),*gniyd) < */3

(because y, converges to y).   We then have

si<t>gniy), <t>giy)) < ôicbgAy), <pgAyè)

+ Higniyù, 4g<yd) + «(#(y¡), 4>giy))-

The quantity on the right is less than e. Hence <b is continuous with respect

to the pointwise convergence and the compact-open topologies of G and

H. To show that <f> is continuous with respect to the alac topologies of G

and H, it is sufficient to show that if V is an open set in the compact-open

topology in H and C is an arc-component of V, then <f>~\C) is open in the

alac topology for G. If V and C are such sets, then (f>~liV) is open in the

compact-open topology for G because <b is continuous with respect to this

topology. If xE<t>~\C), then xE<P~\V); and the arc component D of

<¡>~AV) containing x is open in G with the alac topology. Furthermore,

4>iD) E C, because D and hence 4>iD) are connected in the compact-open

topologies. Hence <f> is continuous with respect to the alac topologies for

G and H.  From Lie group theory we know that <f> is also analytic.

There exists a local analytic cross section * from UEG/GX into G [1].

Recall that G/Gx and L may be identified both topologically and ana-

lytically. Next we show that for xEU, P'i>ir(x), 1) =/(x), where F' is

the analytic mapping of//X/-/—>L' defined by (ft.y) —>fl(y). For xEL,

ir(x) is a composition of a finite number n of right translates and their

inverses.   Suppose

x(x) = R\R% ...Rt

for some a,EL, where each t¡■= ± 1, j ^ n.  Then we have

x=(...(la>)).--)aill).

Then

POM*), 1) = ( • • • (l/(aB)w) • • • )/(ai)(ll) = A*),

as claimed. It is now obvious that / is analytic, because it is locally ana-

lytic, and F and <f> are analytic.

The proof of this theorem comes as a corollary to a later theorem (The-

orem 4.6); however, the above techniques may prove useful in the future

and are, for this reason, used to prove the theorem.

Similar to Lie group theory, we now obtain the following obvious corol-

lary.
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Corollary 4.5. Let L be a Lie loop with respect to two analytic struc-

tures A and B. Let L have a right invariant uniformity. Then A is ana-

lytically equivalent to B.

A crucial step in the proof of Theorem 3.3, i.e., in the introduction of

an analytic structure on the loop of Theorem 3.3, was the establishment

of the analyticity of the mapping x —> Rx from L into the group of all

translates of L. The following theorem shows that for Lie loops with a

right invariant uniformity this mapping is always analytic.

Theorem 4.6. Let iL,A) be a Lie loop with a right invariant uniformity.

Then the mapping CR: iL,A)-*G~ defined by C«(x) = Rx is an analytic

mapping; and, if B denotes the natural coset-space analytic structure on L

obtained from G /Gx, then the identity mapping from iL,A) to (L, B) is an

analytic isomorphism.

Proof. The proof uses techniques similar to those of Theorem 3.3. In

the following diagram

. G—^(G/Gi,Ai)—*^iL,A)
1 1

G-^iG~/Gx-,B)^-^iL,B)

the modified group G of right translates of L and the group G" of right

translates are Lie groups (see Definition 4.1 and Theorem 2.5), a and ß

are the natural projections and analytic mappings onto the coset spaces

G/Giwith the natural quotient analytic structure Ai and G~/Gx with the

natural quotient analytic structure B, respectively. The canonical map-

pings rx and ir2 are analytic isomorphisms, wx by Lemma 4.2. The map-

pings a and ß, as well as the identity mapping ¿: G^>G~, are all analytic

mappings. We next propose to show that the identity mapping j: iL,A)

—» (L, B) is an analytic function. Because there is a local analytic cross

sectionp: iG/Gx,AX)—>G [1, p. 110], there is a neighborhood U of 1 in L

such that pirxx restricted to U is an analytic mapping from the submani-

fold U into G. Furthermore, for each xEU, there is an A G Gi so that

prx~Ax) = Rxh. Hence w2ßipirrAx) = Tr2ßiRxh) = x, that is, Tc2ßipwxx agrees

with; on U. Thus j is locally analytic at 1 G L, since the mapping ir^ip-ir^1

restricted to U is analytic. For any xEL, the set Ux= RxiU) is an open

set about x, and the mapping Rx jRxx from iL,A) onto (L, B) is an ana-

lytic mapping locally on Ux, since R^1 is an analytic isomorphism of iL,A),

since j is locally analytic at 1 G L, and since Rx is an analytic isomorphism

of iL,B). Hence j is locally analytic at each element of (L, A), that is, j

is an analytic mapping.

In this paragraph we will show that the Jacobian matrix of ; at each
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point of L is nonsingular, thereby proving that j is an analytic isomor-

phism; and in the next paragraph we will show that CR is an analytic

mapping. We may assume that there are coordinate systems Yx and Y2

both at the identity of G, coordinate systems Zx and Z2 at the identity of

G", and a neighborhood of 1 G L, such that the following is true: (1) r, s,

and t are integers with r ^ s ^t, (2) for x G V with coordinates (xi, • • -, xr)

in the coordinate system A, pwx~Ax) has coordinates (xl7 • •-,xr,0, • •-,0)

in Yx, the last s-r coordinates being zero, (3) pitx~Ax) has coordinates

(yi, • • •, ys) in Y2 and the function tx mapping (x1( • • •, xr, 0, • • •, 0) onto

(yi, • ■ •, ys) is an analytic mapping with nonsingular Jacobian matrix

M2, (4) ipirxAx) has coordinates iyx, •■•,ys,0, • --,0) in Zx, the last t-s

coordinates being zero, (5) ipitxAx) has coordinates izx,---,zt) in Z2 and

the function t2 mapping (yi, •••,ys,0, •••,0) onto izx, •••,zt) is an ana-

lytic mapping with nonsingular Jacobian matrix M4, and finally (6)

w2ßipwx~Ax) has coordinates (z1; •••,z¡) in the coordinate system B. Such

coordinate systems exist in Lie groups, their analytic subgroups, and their

coset spaces. Let Mi denote the s X r matrix (s rows and r columns) such

that the first r rows form an r X r identity matrix and all other entries are

zero, M3 denote the t X s matrix such that the first s rows form an s X s

identity matrix and all other entries are zero, and Mb denote the rXs

matrix such that the first r columns form an r X r identity matrix and all

other entries are zero. Since ; is locally ■K2ßipitxi at 1 GL, the Jacobian

matrix of j at 1 is M&M4M3M2MX. It is easily verified that this product

yields an r X r nonsingular matrix. Using Rx and Rî1 as above, it follows

that the Jacobian matrix of ; at any point of L is nonsingular.

As in the proof of Theorem 3.3, we introduce a Riemannian metric on

(L, B) so that the elements of G~ are isometries of L iGx is compact) and

choose elements px,---,pr in some neighborhood of 1GL so that two

elements of G~ are equal if and only if they agree for all p¿. We next intro-

duce the following diagram:

Tx                       T2 T3iL,A) —-> iLn,An)-> iL",B") G~.

It is understood that if (M, Q is a manifold with analytic structure C,

then (M", C") means the topological manifold Mn with the natural ana-

lytic product structure C obtained from C. In this diagram Tx is defined

by Txix) = (piX, •••,p„x); it is an analytic mapping since LPi is an ana-

lytic mapping on iL,A). The mapping T2 is defined as the identity map-

ping; it is an analytic isomorphism since j is one. The mapping T3 is

defined by T3ig) = igipù, ••■,gipn))- As in the case of Theorem 3.3, it

follows that T3 is a homeomorphism and is analytic. It can also be shown

that T3 has a nonsingular Jacobian matrix at each point of G" in a manner

the same as that of Theorem 3.3. Hence TiG~) is a regular analytic sub-
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manifold of iLn,Bn). Letting T4 denote T¡T1 restricted to the analytic sub-

manifold TAG~), the composite mapping T4T2TX is analytic; further-

more T4T2Ti(x) = Rx= CÄ(x). With this conclusion the proof is finished.

The next theorem will provide a neighborhood of the identity of certain

loops having unique "nth roots." If these loops are monassociative, then

one-parameter semigroups may be constructed in the neighborhood. The

following lemmas play an important role in the determination of this

neighborhood. In the second lemma sn: G—>G is a mapping defined on a

Lie group G by s„(g) =g", gEGin is a natural number).

Lemma 4.7. Let f: U—> V be a mapping from U into V, where both U and

V are neighborhoods of the origin o in euclidean n-space. Suppose that f is

of class 1 in U and fio) = o. If the Jacobian matrix of f at o is rln, where r

is an integer at least two and In is the in X n)-identity matrix, then for any

neighborhood U' of o there is a neighborhood W of o, with W EU(~)U' such

that (1) WEfiW) and /(W) is a neighborhood of o, (2) for any xEfiW)

there is one and only one yEfiW) with fiy) = x, (3) x and fix) in /(W)

imply that a\\x\\ g||/(x)||, where a= (3/4)(r - 1/8).

Proof. Only an outline of the proof of this lemma is given. There is a

neighborhood Wx of o such that fif{Wx)) C V. There is also a neighbor-

hood of o such that / is one-to-one on this neighborhood. Finally we will

show that ||/(x)||/||x|| converges to r as x converges to o. By the mean

value theorem /¿(x) — /¿(o) = (x — o) • V /,(£,x), where 0 = £¿ zi 1, /¿(x) is

defined by fix) = (/i(x), ■••,fnix)), and V/¿(£¿x) is the ¿th row of the

Jacobian matrix of / at £¿x.   Thus

|/(x)|2-¿/¿(x)2-¿(x.V/i(í,x))2
¿=i ¿=i

= ¿Ml V/,(ii*) ||2cosV, = ||x||2¿|| V/,(£,x) || W<fc,
i=i ¿=i

where <£¡ is the angle between x and V/¿(£¿x). As x converges to o, £¿x con-

verges to o, and || V/¿(£¿x) ||2 converges to r2. Also ^"=icos20, converges

toi.

Lemma 4.8. Let G be a Lie group with a closed subgroup H, and let a be

the natural mapping from G onto H. Let p: U—,G be a local differentiable

cross-section at xE G/H, where U is a neighborhood of x and p(x) = e, the

identity of G. If n is the dimension of G/H then the Jacobian matrix of asrp

at xE G/H is rln, where In is the in X n)-identity matrix.

Proof. By differentiable we mean the existence of continuous first partial

derivatives for p with respect to the natural quotient analytic structure
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on G/H and the analytic structure of G. Let Dx be a coordinate system

in G on a neighborhood W of the identity e of G such that, if g E W

and g has coordinates (x1( •••,x„,xn+1, •••,xJk), then aig)EU and a(g)

has coordinates (x^-.-.Xn) in the natural coordinate system D in the

neighborhood a{W) of x (see [l, p. 110]). Also let D2 be a coordinate

system on a neighborhood W of e with W C W, so that the coordinates

of elements of W are canonical of the first kind [l, p. 118], and so that

the identity mapping i: iW',Dx) —» iW',D^) is an analytic isomorphism

with nonsingular Jacobian matrix J2{w) at each point w of W. Finally

let y be a neighborhood of x in G/H such that p(V) (JsrpiV) C W'.

The purpose of introducing canonical coordinates D2 of the first kind in

the neighborhood W is so that the mapping sr: (p(V),/72) —» W' given in

the lemma and restricted to p( V) will have as its Jacobian matrix at each

point of piV) the matrix rlk, where Ik is the ik X k) -identity matrix, and

k is the dimension of G. Finally let JAv) and JApiv)) denote the Jacobian

matrices of p and a, respectively, at vE V and piv) E W', respectively.

Since ap is the identity mapping, JApiv)) JAv) is the (n X n)-identity

matrix /„. Then the composite mapping asrp = ai~1srip has as Jacobian

matrix at vEV the matrix

(*) JAasrpiv))iJAsrpiv))) -lrIkJApiv))JAv),

which is a nonsingular matrix. We have actually proved more than re-

quired in the lemma; the conclusion of the lemma follows by letting v

= x in (*).

Theorem 4.9. Let iL,A) be a Lie loop with a right invariant uniformity,

and let r be an integer at least two. Then for any neighborhood V of 1 there

is a neighborhood U of 1, with UC V, such that for each xEU there is one

and only one y in U with Rryil) =x. Define for x E U, xx to be x. If x¿EU

has been defined, define xi+x = y EU, where Ryil) = x¡. Then the sequence

\xi\ converges to 1EU. The neighborhood U may be so chosen that it has a

coordinate system D with respect to A and that x and RAÍ) in U imply that

a||x|| ^ \Rfx{l) ||, where a = (3/4)(r — 1/8) and the norm is taken with respect

toD.

Proof. Letting G", the group of right translates of L, be the Lie group in

Lemma 4.8, and Gx be the closed subgroup H, letting x = Gx and letting

p = CRTt, where w is the canonical mapping of G~/Gx onto L and CR the

mapping defined by CÄ(x) = RXE G~, then it follows that the mapping

f: L—+L which maps x onto P*(l) has Jacobin matrix r/„ at 1 G L, for L

of dimension n. If U and V are coordinate neighborhoods of 1 so that

fiU) C V, then the conclusion follows from Lemma 4.7.

Corollary 4.10. // iL,A) is a Lie bop with a right invariant uniformity,
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then there is a neighborhood U of 1 such that U contains no subloops other

than\l\.

Proof. Choose r, D, a, and compact U as in Theorem 4.9. Let x ^ 1 be

in U. Let 2 = max) ||y | : yE U\. There is an integer p such that ap > z.

Let g be defined by RrAl) = gix), and let gJ be the jth composite of g with

itself. Then gAx) (£ U for some integer j satisfying 2 z%j zip. Conse-

quently, no subloop is contained in U except {1}.

Recall that a one-parameter semigroup in a loop L is a set tr([0, l]),

where a: [0,l]—>L is a one-to-one function such that a(0) = 1EL and

that <r(a + b) = a{a)aib) for all a and b in the compact interval of real

numbers [0,1] for which a + b E [0, l] (see [11]). Also recall that a mon-

associative loop is one in which each of its elements lies in a subsemigroup.

Theorem 4.11. Let (L, A) be a monassociative Lie bop with a right in-

variant uniformity. Then there is a neighborhood U of 1 in L such that every

element of U lies on a unique local one-parameter semigroup in L.

Proof. Choose U compact and with the properties of the conclusions

of Theorem 4.9 and Corollary 4.10. Let xEU, and define XiEU as in

Theorem 4.9 for r = 2. Also define xp/2' = xf, for natural numbers p and i

with p/2l = 1. The product xf is well-defined by monassociativity. Let

J= ¡xp/2: p/2l z% 1\. Standard one-parameter techniques (see, e.g., [3]

and [5]) show that J~ is a local one-parameter semigroup containing 1

and x. One uses the following line of argument: (1) J~ is a local com-

mutative, locally compact semigroup containing 1 and x; (2) if {£,} is a

sequence of dyadic rational numbers with 0 = £¿ zí 1 converging to zero

such that lim¿x'' = z, then 2=1; (3) if s is a real number, and js¿) and

{£¿} are two sequences of dyadic rational numbers converging to s with

0 á «i = 1 and 0 = tj = 1, then lim.x1' and lim,xs' exist and are equal; (4)

with s and s, as in (3), define Xs = lim.x^, hence, the function £: [0,1]—>L

given by £(s) = Xs is well-defined; (5) £ is continuous, a homomorphism,

one-to-one, and £(0) = 1, £(1) = x.

We remark that, if L is not only monassociative but powerassociative,

then the one-parameter semigroups can be extended to one-parameter

subgroups. Recall that a compact, monassociative loop is powerassociative.
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