
THE DISTRIBUTION OF IRREDUCIBLES IN GF^1)

BY

DAVID R. HAYES

1. Introduction. In 1924 Artin [1, pp. 242-246] proved for the ring of poly-

nomials over a finite field the following analog of the prime number theorem for

arithmetic progressions :

Theorem 1.1 (Artin). Let H be a polynomial over a finite field of q elements,

and let A be a polynomial prime to H. Ifn(r;H, A) denotes the number of primary

irreducibles of degree r which are congruent to A modulo H, then

<u> «**o-to"Í+0(£)
for some v < 1.

A primary polynomial is one whose first coefficient is 1, and <£(//) is the number

of polynomials in a reduced residue system modulo H.

Let M denote the multiplicative semigroup consisting of the primary poly-

nomials in the ring GF[c7,x] of polynomials over the finite field of q elements, q

being a prime power. An equivalence relation on M is said to be a congruence

relation if it is compatible with the semigroup structure of M. If 2%H denotes the

restriction to M of the relation "congruence modulo H" on GF[q,x], then it is

clear that MH is a congruence relation on M for every H in GF[c7,x]. Our aim in

this paper is to establish a result similar to Theorem 1.1 for a wider class of con-

gruence relations on M than those of the special form â$H. To this end, we have

extracted the relevant properties of the relations ¿%H and used these properties

to define a class of congruence relations on M which we call the arithmetically

distributed relations. The precise definition is given in §8. Theorem 8.1 ofthat

section states a result for arithmetically distributed relations which is analogous

to that stated in Theorem 1.1 for the relations MH. It includes Theorem 1.1 as a

special case. The proof given for Theorem 8.1 is similar to that given by Artin for

Theorem 1.1 in that certain analytic functions, the L-functions, are introduced

and in that the crucial step of the proof lies in showing that these L-functions do not

vanish on the line Real(z) = 1. However, the proof differs from that of Artin in
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several respects and might be thought to be somewhat more natural. The most

radical departures involve the use of Theorems 6.2 and 9.2.

Among the corollaries of Theorem 8.1 is Theorem 1.2 below which can be

thought of as an extension of Theorem 1.1. Before stating this theorem, we require

a definition.

Definition 1.1. Let/3 = xm + ßxxm~1 + ••• + ßmbe a polynomialin M and let

s and t be positive integers. The field elements ßx,---,ßs are called the first s co-

efficients of B, it being understood that /?; = 0 if i > m. The field elements

/?m_r+1, ßm-,+2,---,ßm are called the last t coefficients of B, it being understood

that ß0 = 1 and that ßx = 0 if i < 0.

Theorem 1.2. Let s be a non-negative integer, and let a sequence of s field

elements be given. Let H be a polynomial in GF[g,x], and let Abe a polynomial

prime to H. If n(r) denotes the number of primary irreducibles in GF\_q,x~\ of

degree r which (1) are congruent to A modulo H and (2) have as first s coefficients

the given field elements, then

(1.2) M 1 qT,    n(qrv\
Ttir) = ■: •-1-0 -

qsC^iH)    r \  r )

for some v < 1.

In a later paper it will be shown that if xq — x does not divide H, then (1.2) is

valid with v = \. If in Theorem 1.2 we take H = x \ t being a positive integer,

then we obtain the following improvement of a theorem of Uchiyama.

Theorem 1.3. Let s first coefficients and t last coefficients be given, and let

nir;s,t) be the number of primary irreducibles in GF[(/,x] of degree r with

these first s and last t coefficients. Then if the last coefficient is not zero,

<u> «'■■•■<> -,-4 -i)'T+0vf)
for some v < 1.

This theorem was proved by Uchiyama in [7] with the added hypothesis that

p > max{s,f — 1}, p being the prime characteristic of the underlying finite field.

We note what appears to be a slight error in Uchiyama's asymptotic formula for

nir;s,t). He gives q~(5+,\qr/r) instead of iqsJrt~\q - l))_1(«7r) as the major

term. Previous to Uchiyama's work Carlitz [2] considered the case s = t = 1 and

proved (falling into the same error as Uchiyama in his statement of the major

term) that

(1-4> *<r:U>=w1nrT+0(Ç)-
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Carlitz's proof involves the introduction of certain L-functions. In §6, we show

how (1.4) can be derived in an elementary manner.

§§2-7 introduce the basic definitions and some of the machinery necessary to

define arithmetically distributed relations and to prove Theorem 8.1. The defi-

nition and some examples of arithmetically distributed relations are given in §8.

The remaining sections complete the proof of Theorem 8.1.

2. Preliminaries. We begin by recalling several well-known facts concerning

the relationship between the finite field of q elements GF(q) and the finite

field of qr elements GF(qr), r being a positive integer. Lower case Greek letters

are used for field elements and capital Roman letters for polynomials.

The finite field GF(cjr) contains one and only one subfield which is isomorphic

with GF(cj), this subfield being defined as the set of all elements a in

GF(c/) such that aq - a = 0. If GF(cj) is identified with this suhfield, then GF(cjr)

becomes a Galois extension field of GF(cj) of degree r. The Galois group of GF(<?r)

relative to GF(cj) is cyclic and is generated by the automorphism a: a-*a9. The

trace t(r)(a) and the norm n(r,(a) relative to GF(q) of an element a in GF(<jO

may be defined, therefore, by

(2.1) t(r)(a) = Í al(a)
¡ = i

and

(2.2) n(»=lM«).
i = l

respectively. Both of the functions i(r) and n(r) are onto GF(q).

Since GF(cj) is a subfield of GF(cjp), the ring GF[c7,x] is a subring of the ring

GF[cjr,x], and the semigroup M is a subsemigroup of M(r), the semigroup of all

primary polynomials in GF[<jr,x]. Every irreducible A in GF[c,r,x] divides a

unique primary irreducible in GF[q,x~\, the division taking place within the

structure of the ring GF[<jr,x]. Furthermore [4, p. 33],

Theorem 2.1. A primary irreducible P in GF[cj,x] is the product of g

distinct primary irreducibles Q in GF[^r,x], where g = (r,degP). The degree

of each such irreducible Q is deg P/g.

Definition 2.1. The automorphism o of GF(cjr) may be extended to an auto-

morphism of the ring GF[cjr,x] by defining for A = ct0xm + a1xm_1H— + am

(2.3) o(A) = <r(a0)xm + o(oLx)xm-l + - + a(otm).

For every A in GF[cjr,x], the polynomial
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(2.4) JV<'^) = fi   ¿(A)
i = l

is called the norm of A relative to GF[<2,x].

Theorem 2.2.   For every A and B in GF[qr, x], we have:

Io. N{r\A) is a polynomial in GF[q,x].

2°. Nir\AB) = Nir\A) • JV(r)(B).

3°. Nir\A) = ArifA is in GF[«,x].

4°. If A is irreducible, then N(r)(A) = n(r)(a) • Pf, where a is the leading

coefficient of A, P is the unique primary irreducible in GF[g,x] which A di-

vides, and f= r/ir,deg P).

Proof. The proofs of l°-3° are straightforward. For the proof of 4°, let

P = A ■ R. Then for every integer i,

P = a\P) = a\A ■ R) = oXA) ■ o\R),

which shows that o\A) divides P in GF[^r,x]. It follows that N(r)(A) = ßPf

for some positive integer/ and some field element ß. It is clear from the definitions

that j5 = n(r)(a), where a is the leading coefficient of A. Since deg N(r)(A) = r deg A

and since by Theorem 2.1 deg ,4 = degP/(r,degP), we see that/= r/(r,degP).

This completes the proof.

Theorem 2.3. As a runs through the elements of the field G¥(qr), N(r)(x + a)

runs through all those polynomials in M of the form Pr,d, where d is a positive

integer dividing r and P is an irreducible in M of degree d. Further, for every

irreducible P in M of degree d dividing r, there are exactly d elements a of the

field GF(qr)for which N(r,(x + a) =Prld.

Proof. Given a in GF(qr), let P be the unique primary irreducible in GF[g,x]

which x + a divides. Let deg P = d. Since a root of P generates a subfield of

GF(#r) of degree d over GF(q), d divides r and so (r,deg P) = d. By part 4° of

Theorem 2.2, it follows that N(r)(x + a) =Pr,i.

Given an irreducible P in M of degree d dividing r, let —a be a root of P in

GF(qr). Then by part 4° of Theorem 2.2, N(r)(x + a) = P"d. The distinct field

elements

(2.5) -aqi      (0z^i<d)

are all roots of P in GF(qr) so that also iV(r)(x + a"') = Pr/d for these d values of i.

Now if N(r\x + ß) = Prli, then x + ß divides P in GF[qr, x], and therefore - ß

must be one of the elements (2.5). This completes the proof.

A character ¥ of the multiplicative group GF(q)* of the field GF(<?) may be

extended as a multiplicative function to the whole field by defining ¥(0) = 0.
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Such a multiplicative function is called a multiplicative character of GF(q).

If *P is a multiplicative character of GF(c?) and if A is a character of the additive

group of GF(cj), then the sum

tÇ¥,X) =      E     Y(a)A(a)
« eGF(q)

is called a Gauss sum on GF(cj). If both *P and X are principal, then clearly

xif¥,X) = q — l.lf one of *P and 1 is not principal, then we have the well-known

elementary bound [3, p. 152]

(2.6) \zi*¥,X)\Sq112.

3. Congruence relations on M. If two polynomials A and B in M fall in the

same equivalence class of a congruence relation 0t on M, then we say that A and B

are congruent modulo Si and write A = B (mod Si). In this notation, the defining

property of a congruence relation becomes: If A = B (mod SI) then ^4C s BC

(mod ^) for every C in M.

Definition 3.1. A polynomial A in M is said to be invertible modulo a con-

gruence relation Si if there is a polynomial B in M such that AB=1 (mod ^).

The following properties of invertible polynomials are easily established :

(3.1) If A is invertible modulo^and if.4 = B (mod Si), then B is invertible

modulo Si.

(3.2) The product of two invertible polynomials is invertible.

(3.3) If one of A and D is not invertible, then AD is not invertible.

lfA = xm + axxm~1-\-1-am is a polynomial in M, then a, and am are called,

respectively, the first coefficient and the last coefficient of A. When deg ,4 = 0,

the first coefficient of A is defined to be zero. When deg A = 1, the first and last

coefficients of A coincide. We define an equivalence relation ^ on M as follows:

Two polynomials A and B fall in the same equivalence class of # if and only if A

and B both have the same first and the same last coefficient. We shall show that

*€ is a congruence relation and that the invertible polynomials modulo ^ are just

those with nonzero last coefficient. Let A, B and C be three polynomials in M

with first coefficients a, ß, and y and last coefficients a', ß' and y', respectively.

The first coefficient of AC is a + y and that of BC is ß + y, and the last coefficient

of AC is d'y' while that of BC is ß'y'. When a = ß and a' = ß', therefore, the

first and last coefficients of AC and BC are the same. It follows that whenever

A = B (mod ^) then also AC a BC (mod %¡). This shows that # is a congruence

relation.

To determine the invertible polynomials modulo e€, we observe first that the

equivalence class of 1 consists of all those polynomials in M with first coefficient 0

and last coefficient 1. Let A have first coefficient a and last coefficient ß. If ß ^ 0

and if B = x2 - ax + ß~1, then AB = 1 (mod ^), which shows that A is invertible
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modulo I!. If ß = 0, then the last coefficient of AB is zero for every polynomial B,

so that A cannot be invertible modulo *&. This shows that the invertible polyno-

mials modulo "^ are just those with nonzero last coefficient.

If á? is a congruence relation on M, then a composition can be defined on

M/ Si, the set of equivalence classes of Si, in the familiar way making M/'Si a

commutative semigroup having as identity element the equivalence class of the

polynomial 1. The set G(0t) of equivalence classes of the invertible polynomials

modulo M is by (3.1) and (3.2) a subsemigroup of Mf Si. Since, as is evident from

the definitions, every element of G(Si) is invertible for the composition induced

from M/ Si, we see that G(S¥) is a commutative group.

Definition 3.2. When G(St) is finite, we denote its order by g(Si).

Definition 3.3. A congruence relation which partitions M into a finite number

of equivalence classes is called a finite congruence relation.

The group G(Si) associated with a finite congruence relation is finite also.

We shall show in §6 that when Si is finite, then the characters of G(Si) enable us to

write down a useful formula for the number of irreducibles of a given degree in a

given equivalence class of Si.

The relation "% defined above is finite. In fact, since there are exactly q2 ways

of choosing a first and last coefficient for a polynomial, *& partitions M into

exactly q2 equivalence classes. The group G(fë) associated with ^ is easily seen

to be isomorphic with the group consisting of all ordered pairs (a,/?) with ß # 0

of elements of GF(q) under the composition (oc,ß)(y,ö) = (a + y,ßo). Since the

order of G(^) is q(q - 1), we write glfë) = qiq - 1).

4. Characters. Throughout this section, the reader is assumed to be familiar

with the theory of the characters of a finite commutative group. An account of

this theory may be found, for example, in [5, pp. 33-38].

Definition 4.1. Let a? be a finite congruence relation on M. For every character

X of GiSV), we define /T with domain M as follows : If A is invertible modulo Si

and if t is the equivalence class of A, then x^(A) = x(0 í if A is not invertible, then

XTG4)=0.
The set of functions xT defined in this way are called the characters of the

relation 01. Since we shall have no occasion in the sequel to use the characters of

GiSi) directly, we shall for notational convenience abuse language somewhat and

write x instead of /T to indicate the character of the relation Si derived from the

character x of the group G(Si). Thus we write Xo f°r tr-e character of Si which

has the value 1 when A is invertible and the value 0 otherwise.

A character x of Si has the multiplicative property

(4.1) x(AB) = x(AMB)

for all A and B in M. This is immediate if A and B are invertible modulo Si.

Otherwise, it follows from (3.3). A character x of Si also satisfies:
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(4.2) x(A)   = 1(B)       if A = B (mod Si) ;

(4.3) z(l)   = 1;

(4.4) x(A)  =0 if ^4 is not invertible modulo Si.

Conversely, any complex-valued function y defined on M which satisfies (4.1)-

(4.4) is a character of Si. For any such function may be used to define a character

of the group G(Si) of which it is the associated character of Si.

If/, and Xiare characters of Si, then the function x defined by x(A) = Xi(A)Xi(A)

for A in M satisfies (4.1)-(4.4) and is therefore a character of St. It is easy to verify

that the characters of Si with multiplication defined in this way form a group

isomorphic to the character group of G(Si) and therefore isomorphic to G(St)

itself. In particular, there are exactly giSi) characters of Si.

Definition 4.2. A set of polynomials in M is called a representative set modulo

Si if the set contains one and only one polynomial from each equivalence class of Si

and a reduced representative set if it contains one and only one polynomial

from each equivalence class in GiSt).

If x is a character of Si, then

< f0       if   x#Xo>

(4-5) im^m = \x   „

F running through either a representative set or a reduced representative set

modulo SÎ. We have also, if one of A and B is invertible modulo Si,

r 1       if   A = B (mod á?),

(4-6) -¿m ? *A)ÄB) =
sw LO       otherwise,

X running through the characters of Si. The bar indicates the complex conjugate.

Both (4.5) and (4.6) follow immediately from the corresponding properties of

the characters of G(Si).

The group Glf€), as we saw before, is isomorphic with the direct product of

the additive group GF(q) with the multiplicative group GF(cj)*. Every character x

of Gif&), therefore, may be represented as the product of an additive character X

of GF(q) and a multiplicative character *F of GF(q). The corresponding character

X of ^ is defined as follows: For

A = xm + zxxm-i +•••+«„,       x(A) = xV(am)X(ax).

When deg A = 1, the first and last coefficients of A coincide. Thus

I   X(A) =     £     ¥(a)A(a),
degA = l ieGF(j)

which we note is a Gauss sum.
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5. Induced relations. A finite congruence relation on M induces in a natural

way a finite congruence relation on M(r).

Definition 5.1. Let Si be a finite congruence relation on M. We define a

relation St(r) on M(r) as follows: For every A and B in M(r), A and B stand in the

relation Si(r) if and only if Nir)(A) = N(r)(B) (mod Si). The relation St(r) is said to

be the relation induced by Si on M(r).

Theorem 5.1. The relation St(r) is a finite congruence relation on M(r).

A polynomial A in M(r) is invertible modulo 3tw if and only ifN(r)(A) is invertible

modulo Si.

Proof. Suppose N(r)(A) = Nir)(B) (mod Si). Then for any C in M(r),

N(r)(A)N(r\C) = N(r)(B)N(r\C) (mod £), and hence ZV(r)(,4C) = N(r)(BC) (mod »).

This proves that St(r) is a congruence relation. Since for any A in M(r), ZV(r)(/i)

falls in one of a finite number of equivalence classes of Si, ^(r)is finite, and, in

fact, partitions M(r) into a number of equivalence classes which is less than or

equal to the number of equivalence classes into which St partitions M.

To prove the second assertion of the theorem, suppose first that A is invertible

modulo St(r\ Choose B so that AB = 1 (mod Siir)). Then iV(r)'(A)N(r)(B) =Nir)(AB)

= 1 (mod Si), so that Nir)(A) is invertible modulo Si. Suppose next that N(r)(A) is

invertible modulo Si. Then each of the following congruences implies its suc-

cessor :

AB   = AC (mod St(r));   N(r)(AB) = JV(r)(ylC) (mod Si);

N^(A)N(r)(B) = N(r)(A)N(r)(C) (mod St);

N(r)(B) m N(r\C) (mod St);   B = C (mod St(r)).

It follows from this that AB runs through a representative set modulo Si (r)when B

does. Therefore, there is some B such that AB=l (mod St(r)). This completes

the proof.

Definition 5.2. If j- is a character of the finite congruence relation St, then for

every A in M(r), we define x(r)(A) = x(Nir\A)).

Theorem 5.2. For every character x of Si, xir) is a character of St(r). The

map x~*x(r) is a homomorphism from the character group of St into the

character group of Si(r\

Proof. To show that x(r) is a character of St(r), we have only to verify properties

(4.1)-(4.4). The verification of (4.1)-(4.3) is immediate. To verify (4.4),we observe

from Theorem 5.1 that whenever A is not invertible modulo St{r), then N(r)(A) is not

invertible modulo Si. Therefore, if A is not invertible modulo St(r), then xir\A)

= x(N{r\A)) =0. The proof of the homomorphism property is a simple exer-

cise.



1965] THE DISTRIBUTION OF IRREDUCIBLES 109

6. A basic formula. The proof of the main theorem, Theorem 8.1, is based

upon formula (6.2) below which expresses the number of irreducibles of a given

degree in a given equivalence class of a finite congruence relation Si on M asymp-

totically as a sum involving the characters of Si.

Definition 6.1. Let Si be a finite congruence relation on M and let AeM.

Given positive integers r and d such that d | r, we denote by n(A ; r, d) the number

of irreducibles P in M such that Io deg P = d and 2° Pr/d = A (mod Si).

Theorem 6.1. Let A be a polynomial which is invertible modulo the finite

congruence relation Si on M. Then

(6.1) E à ■ n(A ; r, d) = -L-  E %A) E ¿'\x + a),
d\r US«)      x *

where x runs through the characters of Si and a runs through the elements of the

field GF(qr).

Proof.    By (4.6), for any K eM,

rl   if K = A (mod St),
-^  I X(K)X(A) =

gy   ' [O   otherwise.

Therefore, by Theorem 2.3 we have

E d ■ u(A; r,d) =   Id      I   -i-  I x(P"d)x(A)
d\r d\r       degP=d  5t^      *

=   S -¿r  Z x(Nlr\x + <x))x(A)

Ip)Iñx + a),

where the polynomials P are primary and irreducible. The formula (6.1) is thus

proved.

Definition 6.2. Let n(r; St, A) denote the number of primary irreducibles of

degree r which are congruent to A in M modulo the finite congruence relation Si.

Theorem 6.2.  // A is invertible modulo the finite congruence relation Si, then

(6.2) n(r; St,A) = ^—^ I HA) I x(r)(x + a) + o(Ç),

where x runs through the characters of St and a runs through the elements of

GF(q').

Proof.   We observe first from the definitions that n(r;St,A) =n(A;r,r).

Secondly, we observe that
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I  d-n(A;r,d) =      E    do(-Ç\ = o(    ?, qd\ = o(q"2 +    Eg")
d\r;d<r d\r;d<r \   "   / \ d\r;d<r    I \ iSr/3       /

= 0(<//2) + 0(rq^) = 0(V'2).

Here we have used the well-known fact that the íoííjZ number of primary irreduci-

bles of degree d in GF[cj,x] is 0(qd/d). The asymptotic formula (6.2) follows from

these two observations and (6.1).

If we apply Theorem 6.2 to the relation If defined in §3, we obtain an asymptotic

formula for the number n(r ; y, Ô) of primary irreducibles of degree r which have

for first and last coefficients, respectively, the fixed field elements y and ¿5, ô being

different from 0. Left in the form (6.2), this formula is not particularly enlightening.

We proceed to show how Theorem 6.2 may be used to derive an asymptotic

formula for n(r;y,S) which gives more insight into the nature of this function.

This formula was first derived in a different way by Carlitz [2].

First, an estimate is required for the absolute value of the sum

(6.3) I    x(r)(x + a),
creGF(4r)

when x is a nonprincipal character of #. From our previous discussion, we know

that if A = xm + ^x"1'1 -\-r 0Lm, then x(A) = ^(O^i) for some multipli-

cative character *P and some additive character X of GF(q). Since x is nonprincipal,

at least one of *F and X is nonprincipal. From (2.4) it is evident that the last coef-

ficient of JV(r)(x + a) is n(r)(a) and the first coefficient is i(r)(a). Therefore

Xir\x + a) =xP(n(r\(x)) ■ A(i(r)(a)). If we set ¥(r)(a) =¥(n(r)(a)) and A(r)(a)

= A(i(r)(a)), then xP(r) is a multiplicative and A<r) is an additive character of GF(qr).

It follows that (6.3) is a Gauss sum defined on GF(ijr). Since one of ¥ and X is

nonprincipal and since both i(r) and n(r) are onto, one of *F(r) and A(r) is non-

principal. From the estimate (2.6), therefore, we conclude that

(6.4) E     *(r)(x + a)
aeGF(«r)

= q"\

Now let A = x2 + yx + <5. Since ô # 0, A is invertible modulo c€. By Theorem

6.2 and the estimate (6.4), therefore,

n(r;y,ô) = n(r;V,A) =  f   ^    lx(A) Exw(x + a) + o(Ç-)

rq(q hrfj [&?»(* + «) + J Mïni+«)] + 0IÇ-)
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This is the asymptotic formula derived by Carlitz in [2].

7. ¿-functions. In this and succeeding sections, whenever the symbol H' is

used in a summation over polynomials, then it is understood that only primary

polynomials appear in the summation.

Definition 7.1. The "absolute value" of a polynomial F is defined by

(7.1) |F|=qdegF.

The absolute value clearly satisfies the multiplicative property

(7.2) | FG | = | F | • | G |

for every F and G in GF[q,x].

Definition 7.2. A complex-valued function x defined on M is said to be

multiplicative if

Io. | x(A) | is either 0 or 1 for all A in M and

2°. xiAB) = x(A)xiB) for all A and B in M.
If X is a multiplicative function on M, then for all complex values s where the

series is convergent, we define

(7.3) Lis,X) = Z   S„ix) ■ q~"
d=0

where

(7.4) Sdix)=     I'      X(F).
F;deg F=d

The function Lis,x) is called the L-function associated with x- Observing the

tradition in number theory, we write s =a + it, where o is the real part and t the

imaginary part of s. Since clearly

(7.5) |Sd(x)| ú       I'     \X(F)\Ú      I'    l=q",
F;degF=d F;degF=d

we see that the series (7.3) is absolutely convergent when a > 1 and uniformly

convergent in the half plane a > 1 + ô for every positive ô. The function Lis, x)

is therefore defined and analytic in the half plane a > 1.

Since

(7.6) I'    $£- - t   Sd(x) • q-
F.degFgr \r \ d=0

the infinite series

ds

I'
|F|.
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is absolutely convergent for a > 1 when the polynomials F in M are arranged in a

sequence by degree. When o> 1, therefore, it is immaterial what sequence the

polynomials F run through, and we may write without ambiguity

(7-7) L(s,x)=S'^.

The infinite product

c«) n(i-f^)"',
the product extending over the irreducibles in M, is absolutely convergent in

the half plane a > 1. Furthermore,

(7.9) L{s,X) = ri(i-jgiy

for every s in that half plane. The product (7.8) is called the Euler factorization

of Lis,x). The reader who is familiar with the elementary properties of the Rie-

mann-Zeta function will have no difficulty in seeing how the proofs go for the

assertions of this paragraph. We therefore omit the details.

We note from the definition (7.3) that the function Lis,x) is periodic with

period 2ni/logq.

Definition 7.3. If r is a positive integer and £ is a complex rth root of unity,

we define a complex-valued function n on M as follows:

niA) = ¡:iesA

for all A in M.

It is easily verified that such a function n is multiplicative.

For fixed r, there are exactly r different functions n corresponding to the

r different rth roots of unity. Under the "pointwise" product, the functions n

form a group isomorphic with the group of rth roots of unity. In fact, the map

which assigns to each rth root of unity £ the function n defined by £ is an iso-

morphism of these two algebraic structures.

Theorem 7.1. If x »s a character of the finite congruence relation Si and if

r is a positive integer, then for a > 1

(7.10) L(s,x(r)) = n^s.W),
i

where in the product n runs through the functions of Definition 7.3.

Proof.   By the Euler factorization (7.9), we have for a > 1
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Il L(s,nx)= Il   Ç   (^-^f-)1

<-»       "      .nfn(l.^a)]-.
For fixed P, the map r\ -* n(P) is a homomorphism from the group of the functions

r\ into the group of rth roots of unity. The image of this map will be the group

of/th roots of unity for some/ dividing r, and each /th root of unity will be

r\(P) for g = r/f functions n. Thus

~L    MSJ'

where in the product, £ runs through the/th roots of unity. Using this last rela-

tion in (7.11), we find that

(7.12)

n«Mx> -ç(i-jf^)"'

Now, as is evident from the definition of the functions n, the values off and g

associated with a fixed P are given by f = r/(r,degP) and g = (r,degP). There-

fore, by Theorems 2.1 and 2.2,

n ifeta - n fr - ^^ )"
(7.13)

irWrmv»

where g runs through the irrreducibles in M(r). The product on the right in (7.13)

is the Euler factorization of L(s,x(r)). Substituting L(s,x(r)) for this product,

we obtain (7.10). This completes the proof.

8. Arithmetically distributed relations. In this section we define the class of

finite congruence relations on M which we call the arithmetically distributed
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relations. The importance of these relations stems from the following theorem,

the proof of which we must delay until §10.

Theorem 8.1. // Si is arithmetically distributed on M and if A is invertible

modulo Si, then

(«•D «(r;«M)-^-f+0(C)

for some v < 1.

Since there are approximately qr/r irreducibles of degree r in M, Theorem 8.1

asserts that these irreducibles are "ultimately uniformly divided" among the

equivalence classes in G(Si). Axioms sufficient to insure this uniform distribution

of irreducibles are stated in the following definition.

Definition 8.1. A finite congruence relation Si on M is said to be arithmetically

distributed if:

(AD1) Only  finitely many irreducibles in M are not invertible modulo Si.

(AD2) There is an integer m depending only on Si such that if r > m, then

the number of primary polynomials of degree r in any one equivalence class

of GiSt) is the same as the number in any other equivalence class of G(St).

Definition 8.2. Let Si be arithmetically distributed. Then we define miSt)

to be the smallest of those non-negative integers m for which the condition of

(AD2) holds for St.

The finite congruence relation # is arithmetically distributed. Every polynomial

which is not invertible modulo ^ has last coefficient 0 and therefore is divisible

by the polynomial x. The only irreducible which is not invertible moduo <€ is

therefore x itself. To verify that <€ satisfies (AD2), we observe that having chosen

a first and last coefficient for a polynomial of degree r ^ 2, we may fill in the

r —2 remaining coefficients in exactly qr~2different ways without altering the

equivalence class to which the polynomial belongs modulo <€. Thus, if r > 1,

then each equivalence class modulo <€ contains exactly q'~2 polynomials of

degree r. Since the condition of (AD2) clearly does not hold for m = 0 and

Si = if, it follows that mifê) = 1.

We proceed now to describe some further examples of arithmetically distributed

relations on M. We require the following lemma.

Lemma 8.2. Let a polynomial H and a non-negative integer s be given.

If degfi = h and ifr}z.h + s, then for any polynomial K and any field elements

ai)""jas» there are exactly q"~h~s primary polynomials A of degree r such

that

(1) The first s coefficients of A are respectively ax,---,as and

(2) As K (modi/).
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Proof. For the purposes of this proof, a polynomial is said to be regular

if it is primary and of degree r, has first s coefficients a1( •■■,as and is congruent

to K modulo H. If A is regular, then the polynomials of the form A + HR where

degR < r — h — s are regular also. Conversely any regular polynomial is neces-

sarily of that form; for such a polynomial is congruent to A modulo H and has

the same first s coefficients as A. Thus if there is any regular polynomial at all,

then there are exactly qr~''~s regular polynomials. But since every polynomial

is congruent modulo H to a polynomial of degree less than h and since r^h+s,

regular polynomials clearly exist. This completes the proof.

For a fixed polynomial H in GF[q,x] the relation StH ("congruence mod-

ulo //") is a finite congruence relation on M. This relation is also arithmeti-

cally distributed and provides us with an important example of this class of

relations. The polynomials which are not invertible modulo H are those which

have a common factor with H. Therefore, an irreducible which is not invertible

modulo H is necessarily one of the irreducible divisors of H. Since there are

only finitely many such divisors, we have verified (AD1) for this relation. That

(AD2) holds is an immediate consequence of Lemma 8.2 with s =0.

Definition 8.3. Given a nonzero polynomial A in GF[#,x] of degree m,

let A* be the polynomial defined by

(8.2) A*(x)=xm-A(^j.

The polynomial A* is called the conjugate of A, and the function which asso-

ciates with each polynomial its conjugate is called conjugation. In order that a

conjugate be defined for every polynomial in GF[g,x], we set 0* =0.

We list below several easily proved properties of the conjugation function.

Io.   For every positive integer m, (xm)* = 1.

2°. If the constant term of A is not zero, then A** = A. Further, A** divides

A for every A in GF[q,x].

3°. Conjugation maps GF[q,x] onto the set of all polynomials in GF[q,x]

with nonzero last coefficient together with the zero polynomial.

4°.   For all A and B in GF[>,x], (AB)* = A*B*.

5°. If deg .4 = deg B and if co = deg A - deg(A + B), then xa(A + B)* = A*

+ B*, and xca + 1 does not divide A* + B*.

6°. Let H be a polynomial in GF[g,x] which is not divisible by x. Then for

every K in GF[g,x], H divides K* if and only if H* divides K.

Definition 8.4. Given H in GF[g,x], let St£ be the relation on M defined

as follows : polynomials A and B in M fall in the same equivalence class of St£

if and only if A* = B*(mod//).

Theorem 8.3. For every polynomial H in GF[q,x], á?¿ is arithmetically

distributed.



116 D. R. HAYES [May

Proof. We show first that St^¡ is a finite congruence relation. Suppose A and

B fall in the same equivalence class modulo Si£. Then for any C in M, we have,

since A* = B* (mod//) that (CA)* = CM* s C*B* =(CB)* (mod//). In other

words, for any C in M the polynomials d and CB fall in the same equivalence

class modulo Si%. Thus Si% is a congruence relation. Since for any A, A* falls

in one of a finite number of residue classes modulo H, Si% is finite.

Next, we verify (AD1). Suppose A is an irreducible in M which is not invert-

ible modulo Slg. Since AB = 1 (mod^f) for no B in M, as B runs through a

representative set modulo St%, AB does not. Therefore, there are polynomials

B and C in M such that AB = AC (mod St„) but B ^ C (mod St%). That is, there

are polynomials B and C in M such that A*B* = A*C* (mod//) but B*^C*

(mod H). This can happen only when there is a primary irreducible P which

divides both A* and H. Since x does not divide ^4*, P 5e x. Therefore, by Prop-

erty 6° of the conjugation function, P* divides .4. Since ^4 is irreducible, there-

fore, A = uP* for some field element a. Since only finitely many irreducibles

divide H, only finitely many irreducibles are not invertible modulo Si%.

Finally, we verify (AD2) for Stfi. Let H=xsHx where s is a non-negative

integer and x does not divide Hx. Suppose A and B are polynomials in M, each

of degree r ¿i degH. Let co = r — deg(A-B). Then we have, making use of the

properties of conjugation listed above, A = B (mod St%)<-> A* = B* (mod//)

<-// | (A* - £*)*-»// | x%4 - £)*<->xsHx \ xa(A - B)*<->s = co and #J | {A - B)

<->v4 and B have the same first s — 1 coefficients and A = B (mod //*). If s = 0 or 1,

this last statement is to be interpreted to mean just A= B (mod //*). Now

r = degH = degHx + s = degH*+ s. It follows from Lemma 8.2, therefore,

that the number of polynomials of degree r which fall in any one equivalence

class   of Sil  is exactly ^-"««»i-'+i = ^i-^h+i if s ^ ! or exactly ^-degn

if s = 0. These numbers being independent of the equivalence class, we see that

(AD2) holds for St%. This completes the proof.

Theorem 8.4. Let H in GF[<j,x] be given. The polynomial A in M is in-

vertible modulo St% if and only if {A*, H) = 1.

Proof. Suppose first that {A*,H) = 1. If AB = AC (mod^£), then we have

successively: {AB)* = {AC)*{modH); A*B* = A*C* (mod//); B* = C*{modH);

B = C{modStl). We conclude that AB runs through a representative set modulo

Sin when B does. Therefore, there is a polynomial B inM such that AB = 1 {modSt^)-

Now suppose that A is invertible modulo^*.; that is, suppose there is a B

such that A*B* = 1 (mod//). This clearly implies that {A*,H) = 1. The proof

is complete.

Given a positive integer s, we define a relation St,s) on M as follows : Two

polynomials A and B in M fall in the same equivalence class of St,s) if and only

if A and B have the same first s coefficients. If A =xm + oe^"1-1 + ••■ +a.m,
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then A* = 1 +axx + a2x2+ ■■• +a,x*, where i is the last subscript such that

oCj^O. Hence, if we choose H = xs+1, then we have evidently StHX = St¡%. It

follows from the previous two theorems, therefore, that St(s) is arithmetically

distributed and that every polynomial is invertible modulo St(s). The total number

of equivalence classes modulo St(s) is clearly qs, so that we have giSt(s)) = qs.

We now investigate the possibility of forming a third arithmetically distributed

relation from two given ones.

Definition 8.5. Let Sty and Si2 be congruence relations on M. A new rela-

tion Si is defined on M as follows: For all A and B in M, A and B fall in the

same equivalence class of á? if and only if both A= ^(mod^jjand A = BimodSt2).

The relation so defined is called the intersection of Sty and Si2.

Theorem 8.5. The intersection St of two congruence relations Sty and St2

on M is again a congruence relation on M. The set of equivalence classes of

St consists of all nonvacuous intersections of the form cnb where c is an equiv-

alence class of Sty andbisan equivalence class of St2. If Sty and Si2 are finite and

f Ain M is i'iJirtiblelmodulo bothSix andSt2, then A is also invertible'modulo St.

Ths proof is straightforward. We note that Theorem 8.5 implies that the inter-

ssction of two finite congruence relations on M is finite also.

Definition 8.6. Two congruence relations Stx and St2 are said to be indepen-

dent if for all polynomials B and C in M, there is a polynomial A such that

A = B (moda?,) and A = C(mod^2). In other words, Stx and Si2 are independent

if an equivalence class of Six and an equivalence class of Si2 always have a non-

vacuous intersection.

Theorem 8.6. Let SHy and 0l2 be independent finite congruence relations

on M, and let Si be their intersection. Then:

Io.   G(Si) is isomorphic to the direct product of G(Stx) and G(Si2).

2°. A is invertible modulo Si if and only if A is invertible modulo both Sty

and St2.

3°. The characters of Si are exactly the functions of the form XiX2> where

Xy is a character of Ry and Xi is a character of St2.

Proof. The map/: (c,b)->cnb is by Theorem 8.5 a bijection from the

set of ordered pairs (c,b), where c is an equivalence class of Sty and b is an equiv-

alence class of Si2, onto the equivalence classes of St. We show first that / is

also a homomorphism of the semigroup which is the direct product of M/Sty

and M/St2 and the semigroup M/St. Let (c^bj and (c2,b2) be given and

choose  Ae CyC\ by and Be c2 n b2• Then

(CLbJ-iCa.ba)   = iCyC2,byb2) = HAB:Sty), iAB:St2))

-> iAB:Sty)r\iAB:Si2) = iAB:St)

= iA:St)-iB:Si) = (c. nby) ■ (c2nb2),
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where (A:Si) denotes the equivalence class of A modulo St. The map/ is thus

an isomorphism of the two semigroups. We note also that the identity element

of the direct product semigroup is carried into the equivalence class of St which

contains 1 and therefore into the identity element of M/St.

Let h denote the restriction of / to the subgroup G(Stx) x G(St2) of

M/Stx x MI St,. Since/ is an isomorphism which carries the identity element

of the one semigroup into the identity element of the other, the range of h is a

subgroup of G(St). On the other hand, for the same reason, if/(c,b) is invertible,

then so is (c,b), i.e., both c and b are invertible in M/0tx and M/St2, respectively.

Thus, h is onto G(St), which proves Io. Both 2° and 3° are easy corollaries of Io.

This completes the proof.

If S/tx and 0t2 are arithmetically distributed, then their intersection St satisfies

(AD1). For let c be an equivalence class modulo St which consists of polynomials

not invertible modulo Si. Choose cx and c2, equivalence classes of Slx and Si2,

respectively, such that c= cx n c2. By the last sentence of Theorem 8.5, one of Ci

and c2 consists of polynomials which are not invertible modulo one of Stx and

Si2. Thus one of cx and c2 contains only finitely many irreducibles so that their

intersection c contains only finitely many irreducibles also. In order to decide

whether or not the intersection of two arithmetically distributed relations is

arithmetically distributed, therefore, one has only to verify (AD2).

We are now in a position to prove Theorem 1.2. Given a positive integer s

and a polynomial H in GF[c7,x], let St(s)H be the intersection of the arithmetically

distributed relations St(s) and StH. It follows from Lemma 8.2 that St{s)H satisfies

(AD2) and also that the relations St(s) and StH are independent. Since g(Si(s) = qs

and g(StH) = <D(ZZ), we see from Theorem 8.6 that g(St(s)H) = cf<I>(//). It follows

also from Theorem 8.6 that the invertible polynomials modulo Stis)H are just

those which have no common divisor with H. If we take St = St(s)H in Theorem

8.1, therefore, we obtain Theorem 1.2.

9. ¿-functions of arithmetically distributed relations. Let St be arithmetically

distributed on M, and let x be a nonprincipal character of Si. By (AD2) the

polynomials of degree d > m(ST) consist of several copies of a reduced repre-

sentative set modulo SÎ together with a few odd noninvertible polynomials. By

(4.5), therefore, Sd(x) = 0 for every d > m(St). We observe from this and the

definition (7.3) that when x^Xo* tnen L(s,x) is a polynomial function of

q~s. It follows at once that L(s,x) is defined and analytic in the whole complex

plane.

The function L(s,x0) also has a simple form. It follows from (7.9) that for

<7> 1,

(»•D «.,*„>-n (»-rgp)"'.
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where Q runs through the irreducibles in M which are invertible modulo St.

Since by (AD I) only finitely many irreducibles are not invertible modulo Si, we

conclude from (9.1) that for o > I

«,*„> = ri (i-r^-n (--rpp)"'-
where T runs through the finitely many irreducibles in M which are not invertible

modulo Si and P runs through the set of all irreducibles in M. Now, since the

function on M which is identically 1 is multiplicative, the Euler factorization of

the   associated   L-function gives

n(1-fpi7)"1=I'TFV = 2«-* r  i-ifl-*-<x-*tl-*rl-
P\ |r|   / F     |r| d = 0 F;degF=d d-0

Therefore, for <r > 1

(9.2) L(s,xo) = p (i - rar) • d - «(1_s))_1-

Since the product over Tis finite, (9.2) shows that L(s,x0) can be continued to

a function which is meromorphic in the whole complex plane with poles of order 1

at the points

(9.3) s = l + 2jtir/logf2,       r =0, ± 1, ± 2, •••.

Theorem 9.1. If St is arithmetically distributed on M, then St(r)is arith-

metically distributed on M(r), and m(St(r))=m(St). The map x^X(r) is an

isomorphism of the character group of Si onto the character group of St^.

Further, the number of irreducibles which are not invertible modulo St^is

Oil) as r-* co.

Proof. If g is an irreducible in M(r), then by Theorem 2.2, N(r)(ß) =Pf,

where P is the unique irreducible of M which is divisible by Q in the ring

GF[</r,x] and/ = r/(r,degP). If Q is not invertible modulo St(r\ then P is not

invertible modulo St. Otherwise, Nir>(Q) = Pf would be invertible modulo St in

contradiction to Theorem 5.1. Since the number of noninvertible irreducibles

in M is finite, the number of divisors of these polynomials in M(r) is finite;

and in fact the sum of the degrees of these polynomials is an upper bound for

this number. Therefore, we have established (AD1) for St(r) and also proved

the last assertion of the theorem.

If x is any nonprincipal character of St, then Lis,nx) is a polynomial in

q~s of degree less than or equal to m(á?) for every function r\ (see §7). This fol-

lows since

(9-4) SdinX) =       I'    n(F)x(F) = t.%(x) = 0
F;degF=d



120 D. R. HAYES [May

if d>m(Si), for some rth root of unity £. The function L(s,x(,)), being

by (7.10) a product of r polynomials in q~* of degree less than or equal to m(St),

is itself a polynomial in q~s of degree less than or equal to r • m(St). Comparing

coefficients in (7.3), we find that

(9.5) Sd(xir)) =0    for ci > m(St).

If x(r) were the principal character of Stir) for some nonprincipal character

X of Si, then (9.5) would imply that every polynomial of degree d>m(Si) is not

invertible modulo St(r). But since Si(r) satisfies (AD1), there are infinitely many

irreducibles which are invertible modulo St(r), and therefore there are invertible

polynomials of arbitrarily high degree. It follows that x(r) is nonprincipal when-

ever x is.

Now by Theorem 5.2, the map x ~* XW is a homomorphism of the character

group of Si into the character group of St^r). We have just seen in effect that

the kernel of this homomorphism consists of Xo alone. Since the order of G(á?(r))

is less than or equal to that of G(St), it follows that the map x_>Z(r) is onto.

Every character of ä$(r) is, therefore, x(r) for some character x of St and x ~* ZCr)

is an isomorphism.

The verification of (AD2) for Si(r) is now easy. If A is invertible modulo

Si(r), then the number of polynomials of degree d in M(r) which are congruent

to A modulo ^(r)is, by (4.6) and what we have just proved, equal to

(9.6) E -¿r,  E X(r\A)x('XF),
FeMC-);degF = d     g(St^)     x

where x runs through the characters of St. Interchanging the summations in

(9.6), we find that the number of polynomials in M(r) of degree d and congruent

to A modulo St is

¿^ e t\A) ■ sir).

If ci > m(St), then by (9.5) this sum becomes

1

g(St^) Sd(Xo),

which is independent of A. It is evident, therefore, that (AD2) holds for St{r)

and that in fact m(Stín) = m(St).

To prove m(St) = m(St(r)), we note first that we may assume g(St)>l since

otherwise we have trivially m(0l) = 0 = m(St<-r)). When g(St) > 1, there is always

a nonprincipal character x of St for which

(9-7) SnW(x)¥=0.
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When m(St) =0, this is trivial. If miSt) ^ 1, the assumption that (9.7) is false

for every nonprincipal character of St leads via the argument of the preceding

paragraph t o the conclusion that the condition of (AD2) holds with m = m(Si) — 1,

contradicting the defining property of miSt). Letting x be a nonprincipal charac-

ter for which (9.7) holds, therefore, we observe from (9.4) that the r functions

L{s,nx) are all polynomials of degree miSt) in q~s. Therefore, by (7.10) L(s,x(r))

is a polynomial of degree r • miß) in q ~s, from which we deduce that

(9-8) Sm(a)(x(r)) # 0.

This implies that m(^(r)) ¿z miSt). Combining this inequality with the inequality

at the end of the preceding paragraph, we find that miSt) = miSt(,)). This com-

pletes the proof.

Definition 9.1. For every nonprincipal character x of the arithmetically

distributed relation Si, set

m(St)

(9.9) ^(z)=    I   Sdix) ■ z'-^-"
d=0

so that £r is a polynomial function of z.

Let a run through the miSi) complex roots of Çx so that

(9.10) «*)-n <*-«)•
a

Then we have, setting m =m(âl)9

m

(9.11)        Lis,x) = I   Sdix) ■ q~is = q-ms ■ txiq°) =T\(l-a-q ~s).
d = 0 a

Theorem 9.2. Let St be arithmetically distributed on M, and let xbe a non-

principal character of St. Then for every positive integer r, the roots of ¡z^r-,

are just the rth powers of the roots of' Çx.

Proof.   Let m = miSt) = m(St(r)). We have for every function n

L(s,nX) =   S Sd(nx) ■ q~ds = I C ■ Sd(X) ■ q -ds

= s Sd(x)-(ryrd = (Cq-r-ucq5)
d = 0

for some rth root of unity £. Using this result and (9.11) to substitute for

L(s,x(r)) and L(s,r\x) in (7.10), one obtains for a > 1

(9.12) q-rms- £>,(o = n u<rTsx{cV).
C

where  £ runs through the  rth roots  of unity.  Cancelling the factor q~rms

from both sides of (9.12), we get for o > 1
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(9.13) Ézw(«") = n r-^crV).
ç

Since both sides of this equation are polynomials in qs, and since equality holds

for infinitely many values of qs, we find, replacing q" by z, that

(9.14) ^„.(zo = n r-urlz)

for every complex z. Now from (9.10),

n cm-^(c_iz) = nt"-n cr1*-«)

= n n (*-ca) - n(2r-«r),

where a runs through the m complex roots of ¿¡r Substituting from this last re-

lation in (9.14) and changing zr to z, we find that

tM$ = n>-«r),
a

which is what was to be proved.

Definition 9.2. For a given arithmetically distributed relation St on M, let

a(St) denote the set of complex roots of all the L-functions associated with the

characters of St, and let 9(St) denote the least upper bound of the real parts of

the numbers in a(St).

Theorem 9.3. If St is arithmetically distributed on M and if A is invertible

modulo St, then

(9.15) n(r;St,A)=^yt+0(C),

where v = max {\, 0(St)}.

Proof. Put 0 = 6(St) and m = m(St). Let x be a nonprincipal character mo-

dulo St and for every nonzero root a of £ , choose sQ =a0 + it0 so that

qs° =a. Then from (9.11) it is evident that s0 is a root of L(s,x)- Therefore,

|fl| =|<7i0| = qao-=q9 from the definition of 6 = 0{3t). The coefficientSx(xir})

of Çx<r) is the negative of the sum of the roots of ¿;z(r). Therefore, by Theo-

rem 9.2

(9.16) S.GT)MM - Ú   I  \a\ =   E qre   = ma'"

where a runs through the  roots  of  Çx.   By Theorem 6.2 and (9.16), we

have
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«'■*■»-rmi^+zj1^] +0(Ç)

(9,„ -im+ r o(ü) + 0f£!)

SyixV)  + "(f)'r • g(^)

The number of noninvertible irreducibles in M(r) is by Theorem 9.1 less than a

fixed positive constant. Therefore, since first-degree polynomials are irreducible,

Si(xór)) = »2'+0(1). Substituting this estimate in (9.17), we arrive at (9.15).

This completes the proof.

10. Nonvanishing of the /.-functions on the line a = 1. That the L-functions

associated with the characters of a given arithmetically distributed relation St

do not vanish in the half plane a > 1 is a simple consequence of the Euler fac-

torization (7.9). We arrive rather easily therefore at the estimate 6iSt)<L 1. Un-

fortunately, this upper bound for 0(St) is not sufficient to ensure that the asymp-

totic formula (9.15) gives a meaningful estimate for the function n(r;St,A). In

this section, the estimate Q(St) z% 1 is improved to 6(St) < 1, thus providing a

proof of Theorem 8.1. The method used is essentially that used in classical number

theory in the analytic proof of the prime number theorem for arithmetic pro-

gressions. This method was first adapted for use in the arithmetic of polynomials

by Kornblum [6] and Artin [1].

Theorem 10.1   (Landau).   For 0 < u < 1 and any real v,

(10.1) (l-«)3|l-«e'"'|4|l-«e2,'i|2 < 1.

Proof.   Note first that

2.     .     -/ . 1 \2      3 ^      3
2cosv + cos2y = 2cost; + 2cos v — 1 =21 cosu-f- I   — - 2:

Therefore, since the geometric mean of three positive numbers is less than or

equal to their arithmetic mean,

|l-«e"i|4|l-tie2,'i|2 = (l-2Mcosu + w2)2(l-2Mcos2r;-t-u2)

^ (1 -(2/3)u(2cosi> + cos2t;)-!-t<2)3

z% (l + u + u2)3

(r-y.
which was to be proved.
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Theorem 10.2.   If St is arithmetically distributed on M and if x is a char-

acter of Si, then for a > 1 and any real t

(10.2) L{<t,Xo)3\L{g + it,x)\*\L{o + 2it,x2)\2 fc 1.

Proof.    In Theorem 10.1 take u =\P\~", where P is a fixed invertible irre-

ducible modulo Si inM. Choose v so that eiv=x(P)'\P\~i'■ Then from (10.1)

',        *o(P)\3

\P\° )
1 - X(P)

pU + it
1 x2(P)

I p\a + 2it
<    1.

This inequality clearly holds also when P is not invertible modulo St. Taking

the product of the inverse of the left-hand side of this inequality over all irreduc-

ibles P in M, we observe from the Euler factorization (7.9) that

(L(a,Xo))3\L(a + it,x)\4\L(a + 2it,x2)\2   ^  1,

which is what we set out to prove.

Theorem 10.3. // either x2 # Xo or X=Xo> then L(s,x) does not vanish on

the line a = 1. If x2 = Xo> then L(s,x) does not vanish on the line a = 1 except

possibly at one of the points s = 1 + kni/log q, k=0, ±1, ±2,---.

Proof. If x = Xo> then it is evident from (9.2) that any zero of L(s,x) must

lie on the line a = 0. We may assume, therefore, that / # Xo • By Theorem 10.2

(10.3)        ((o--l)L(c7,Xo))3
L(a + it,x)

1
L(cT + 2it,x2) >

1

1

for a > 1 and all real values of t. Suppose for a certain value of t that

L(l + ii,x) = 0. Letting a -v 1 on the left-hand side of (10.3), we find that :

Io. (o — 1) L(cr, Xo) approaches a finite limit since L(s, x0) has a pole of order 1

at the point s = 1.

2°. L(a + it,x)¡(o — 1) approaches the finite limit L'(l + it,x), L(s,x) being

analytic in the whole plane.

3°. L(cr + 2it,x2) approaches a finite limit if 1 + 2¿í is not a pole of x2, i.e.,

if either x2^ Xo or else 1 + 2i'r is not one of the points (9.3). This follows since

L(s,x2) is a meromorphic function.

The hypotheses of the theorem, therefore, are enough to ensure that the left-

hand side of (10.3) approaches a limiting value as cr-> 1. The right-hand side

of (10.3), however, is clearly unbounded as ff-> 1. This contradiction establishes

the theorem.

Theorem 10.4.   // x2 = Xo but x # Xo* then L(l,x) # 0.

Proof.   Consider the complex-valued function f on M defined by
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f(A) =   E' x(D)
DM

for all A in M. If (A,B) = 1, then

(10.5)

f(AB) =   I'   xW =        S'    *(öiD2) =       I'   X(0,)Z(Ö2)
DUB Di|X,.|D2|B D,\A;D2\B

= (   E' z(Oi)) (   E'x(Z>2))  =/(A)-/(B).
\  DiM /    \ D2|B /

If P is an irreducible in M and if e is a positive integer, then

f 1 if   X(P) = 0

f(n = i x(n = e (x(p))' =
¡=o ¡=o

e+l

i + i-iy

i

if   x(F) = 1

if x(P) = -i.

It follows from (10.5) therefore that fiA) ^ 0 for every A in M. Further, if

A = B2 so that the exponent of every irreducible in the canonical factorization

of A is even, then fiA) ^ 1. Let

gik) =     E'   /(/i)
A;degA = 2k

for every non-negative integer k. Then

(10.6)

On the other hand,

gik) ^        I'   fiB2)^qk.
B,degB=k

gik) =        I'       I'  x(D)   = E' X(D)
A\deg A=2k D\A B,D;deg BD = 2k

= I'    X(D) E' 1  -       E'      x(D)q2k-degD
D;degDá2fc B;degB = 2fc-degD D;degDá2fc

2k 2k

= q2k E q-'  E'     z(D) = «"E «^«-^«"Kl.z)
d = 0        D;degD=d d=0

if 2k^mi0t). From (10.6), therefore, L(l,x) ^ q ~k> 0 for 2k^miSi). This

completes the proof.

Theorem 10.5.   If x2 = Xo DUt X^Xo> ^en

1/1 - in/log«,*)-/0.

Proof.   Consider the complex-valued function f on M defined by

fiA)=   Z'i-l)áe*DxiD).
D\A

As in the previous theorem if iA,B) = 1, then

(10.7) fiAB) =fiA)fiB).
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If P is an irreducible in M and if e is a positive integer, then

[May

An = E(-iydegPx(p')= Ea-iy^xiP))'
i = 0 1 = 0

rl

e+l

i + i-iy

if x(P) = o

if (~l)dcsPx(P) = 1

if(-irs*x(p) --i.

As in the previous theorem, we observe from this and (10.7) that f{A) — 0 for

all A in M and thatf{A) = 1 if A = B2. Let

g(fc) E'     /(A)
¿4;deg,4 =2*

for every non-negative integer k. Then

(10.8) g(k) =       E'     f{B2)^qk.
B- degB=k

On the other hand,

g(k) =    E'      E'(-i)de8ßx(ö) =      E'     (-i)degDx(£»)
X;deg¿ = 2fc   D|/l B,D;degflD = Ik

=    E'    (-i)degDx(ö) E'      i
D;degD§2fc B;deg B = 2fc-degD

E'  (-i)desDx(ö)i/2*"degD

D; deg D&2k

2k 2k

= q2k E (-DV    E' x(£>) = q2k E s^-»-*"08**'
d = 0 D;degD=d d = 0

= c22*L(l-7ri/logii,x)

if2k = m(St). From (10.8) therefore L(l - ni/logq,x)^q~k>0foï2k = m

This completes the proof.

Theorem 10.6. // x is a character of the arithmetically distributed rela-

tion Si on M, then L(s,x) # Ofor any point s on the line a = 1.

Proof. By Theorem 10.3, we may assume that x 5e Xo > that X2 = Xo. and

that s= 1 + kni/log q for some integer k. Since L(l,x) ¥= 0 by Theorem 10.4

and since L(s,x) is periodic with period 27ri/logcJ, L(s,x) is not zero if k is even.

Similarly, since by Theorem 10.5, L(l - ni/logq,x) # 0, L(s,x) is not zero when

k is odd. Therefore, L(s,x) is not zero, and the proof is complete.
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Theorem 10.7. // Si is arithmetically distributed on M, then 9(St)<l.

Proof. If x is a character of St, then the zeros of L(s, x) all lie on a certain

finite number of vertical lines in the plane. When X =Xo> this follows from (9.2).

When x^Xo» it follows from (9.11). The numbers in a(Si), therefore, also lie

on a certain finite number of vertical lines. We know from the remarks at the

beginning of this section and from Theorem 10.6 that all these lines lie to the

left of the line a = 1. Therefore, since 8(St) is just the abscissa of that one of

these lines which lies farthest to the right, 6(St) < 1. This completes the proof.

Theorem 8.1 follows readily from this estimate for 9(St) and Theorem 9.3.
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