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1. Introduction and statement of results. Let K be a field of characteristic zero,

let E be an n-dimensional vector space over K and let G be a finite group of linear

transformations of £ generated by reflections. If gr is the number of elements of G

with an (n — r)-dimensional fixed-point set then [9] there exist integers my,---,m„

such that

(1.1) I g/ = O (1 + m,t),
r=0 ¡=1

where t is an indeterminate. In this paper we consider the possible existence of

such formulas for the unitary, symplectic, and orthogonal groups over a finite

field. The question is a natural one since we know next to nothing about reflection

groups in characteristic p > 0, and the classical groups defined by a sesquilinear

form are all generated by elements which fix a hyperplane. The results, roughly

stated, are that such formulas exist if and only if the Witt index of the form is 0 or 1.

Although there are similarities in the statements and proofs for the unitary, symplec-

tic and orthogonal cases, it is awkward to try to handle them together. In the

following theorems we consider n to be fixed and let q vary over the set of prime

powers.

Theorem 1. Let E be an n-dimensional vector space over Fqi with a non-

singular sesquilinear form which is hermitian with respect to the automorphism

a-+a9ofFq2. LetG(q) =U(n,q2) be the unitary group and let gr(q) be the number

of elements ofG(q) with an (n — r)-dimensional fixed-point set. There is a formula

(1.2) I gr(q)tr = El (1 + m.(«7)0,     rn^eZ,

for each prime power q, if and only if the index of E is 0 or 1.

For the symplectic group the index cannot be 0 and the dimension n is even.

Theorem 2. Let E be an n-dimensional vector space over Fq with a non-

singular alternating bilinear form. Let G(q) = Sp(n,q) be the symplectic group
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and let gp(<j) Ae tAe number of elements of Giq) with an in — r)-dimensional

fixed-point set. There is a formula (1.2) for each prime power q, if and only if

the index of E is 1.

The theorem for the orthogonal group requires a little more care in its proof,

because there are two distinct types [1] of orthogonal geometry for each pair

in,q). We assume that q is odd.

Theorem 3. Let E be an n-dimensional vector space over Fq with a non-

singular symmetric bilinear form í>9, wAere the forms d>? are, for varying q, of

some fixed type. Let Giq) =Oin,q,<t>q) be the orthogonal group and let griq)

be the number of elements of Giq) with an in — r)-dimensional fixed-point set.

There is a formula (1.2), for each"odd prime power q, if and only if the index of

E is 0 or 1.

The main tool in the proofs is a counting argument which uses an analogue

for finite groups of the Möbius inversion formula. With this inversion formula

and Witt's theorem we show, by computing the orders of certain subgroups of

Giq), that griq) is a monic polynomial in q with integer coefficients. The method

yields the degree of griq)- With this information and Hubert's irreducibility

theorem, we show that if the m¡iq) exist, they are polynomials in q of known

degree with integer coefficients. We conclude that the m¡iq) can exist only in low

dimensions and settle the cases in low dimensions by explicit computations.

We exhibit the m¡iq) when they exist.

The results are disappointing in that one has analogues of (1.1) in dimension at

most four. One might hope for some substitute for (1.2) in case the index v is

grçater than 1. The evidence for v = 0,1,2 suggests that, in general, the polynomial

T,rgr(q)tr has« — v linear factors of the form 1 + q't, where the positive integers i

are given by

i   =  1,3, —,2(zi — v) — 1, if G(q) is unitary,

i  = 1,2, •••,/! — v, if G(q) is symplectic,

i  = 0,1,—,n — v — 1, if G(q) is orthogonal.

The simple counting arguments of this paper are not strong enough to prove such

a theorem(2). In characteristic zero, the integers 1 + m¡ are the degrees of certain

basic polynomial invariants [3] of G. We have shown in [10] that this information

leads to a proof of (1.1). As for the groups G(q), the endomorphism x,-»x?

of the ring Fq[xx,--,xn] of polynomial forms on E (x,->x? ,Fqi[xx,-~,x„], in

the unitary case) may be used to construct, from the given invariant sesquilinear

form, a set of n-v algebraically independent invariant polynomial forms of the

"correct" degrees 1 + g. This makes it seem plausible that information about the

(2) William Johnston has verified this conjecture on an IBM machine in case G(q) is

symplectic, v is 3 or 4, and q is small.
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polynomial invariants of G(q) may provide a substitute for (1.2) in case the in-

dex is greater than 1.

2. Notation, and collection of known facts. If S is a finite set we let \ S\

denote the number of elements in S. We use S £ Tto denote inclusion and S <zT

to denote proper inclusion of sets. We let Fq denote the field of q elements,

R the field of real numbers, and Zthe ring of integers. If/is an R-valued function,

defined on the set of prime powers q, we say that f(q) is a polynomial in q if /

may be extended to a polynomial function on R. To avoid a cluttered notation

we often omit a subscript q which should be attached to spaces or forms over Fq.

If E is an n-dimensional vector space over Fq we let GL(E) = GL(n,q) denote

the general linear group. Subspaces of £ will be denoted A,B,C,--,V, W,X, —.

If ye GL(E) and A is a subspace of£, we let y | A denote the restriction of y to A.

We let ô(A) denote the dimension of A and write v(A) for the binomial coefficient

(i(2)). The letters L,M,---,P,Q,--- denote matrices with coefficients in Fq or

Fq2. We let 'L denote the transpose of L. We let L denote the conjugate ofL

with respect to the involutory automorphism a->a? of Fqz.

Let £ be an n-dimensional vector space with a nonsingular sesquilinear form d>.

We write A 1 £ for a Witt sum of two subspaces A, B of £, that is, a direct sum in

which A, B are orthogonal with respect to <D. We let rad A denote the singular part

of A, the subspace of all £ e A such that i)(^, n) = 0 for all ne A. The subspace A

is isotropic if and only if rad A ^ Oand totally isotropic if and only if radA=A.

The Witt index of <P is the dimension of a maximal totally isotropic subspace of £.

The restriction d^ of <D to A defines a geometry in A. We let U(A),Sp(A), 0(A)

denote, in the three cases, the subgroups of GL(^4) which leave <bA invariant.

Since <&A may be singular these need not be the unitary, symplectic, and orthogonal

groups in the usual sense.

We collect here some information about the classical groups over a finite field.

The group GL(E) = GL( n, q) has order

(2.1) |GL(n,q)|=q"<B-1)/2 f\ (ql - 1),
¡ = i

which is a polynomial in q of degree n2 with coefficients in Z. In the unitary case

there exists a nonsingular hermitian form on £ which is unique up to equivalence

under the natural action of GL(E) = GL(n, q2). The index of £ is n / 2 if n is even

and (n — l)/2 if n is odd. The group l/(£) = U(n,q2) has order

(2.2) |t/(n,q2)| = q"("-1)2fl(qi-(-l)i),
i - 1

which is a polynomial in q of degree n2. In the symplectic case there exists, for

even n, a nonsingular alternating bilinear form on £ which is unique up to equiv-

alence. The index of £ is n / 2. The group Sp(E) = Sp(n, q) has order
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(2.3) |Sp(n,a)| = a(!l/2»2n («2í- 1),
i = i

which is a polynomial in q of degree zi(zi + l)/2. For given in,q) with q odd, the

inequivalent nonsingular symmetric bilinear forms $ on £ may be separated

into four types according to the following scheme:

Type n Discriminant Index

I odd (-lf-D'2 (n-l)/2

II odd (-l)(n_lv2co (n-l)/2

III even ( - l)"'2 n/2

IV even ( - l)"/2co n/2-Í,

where co is a nonsquare in Fq. The group 0(£) = Oin,q,<S>) has order

|O(//,a,0))|=2a("-1)2/4    n   "   iq2,-D, Types I, II

| Oin,q,(D) | = 2a"'"-2)/4 iq"'2- e) j]      iqu.-.l),   Types III, IV,
i = 1

where e = + 1 for type III and e = — 1 for type IV. For a given type the order

| 0(/i,g,<P) | is a polynomial in q of degree n(zi — l)/2. The groups corresponding

to types I, II are isomorphic. For proofs of these facts and references to the ideas

which center around Witt's theorem see [1], [2], [4].

3. The counting argument. Let E be an //-dimensional vector space over

Fq and let G be a subgroup of GLiE). If A is a subspace of E we let KiA) denote

the subgroup of G which consists of those elements of G which fix every vector

in A. We are interested in the number of elements of G which have A for fixed-point

set. The following proposition allows us to compute this number in terms of the

orders of subgroups KiB) for the subspaces B which include A.

Proposition 1. Let E be an n-dimensional vector space over Fq and let G

be a subgroup of GLiE). Let A be a subspace of E. The number of elements of G

which have A for fixed-point set is equal to

Z     i-l)a(BIA)qv(B/A)\KiB)\,
ÁSB^E

where the sum is over all subspaces B of E which include A.

To prove Proposition 1 we use an inversion formula analogous to the Möbius

inversion formula of elementary number theory. This method of enumeration

was discovered by Weisner [11] and P. Hall [7]. Let £ be a finite group and let <p
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be an R-valued function which has for domain the set of subgroups of £. Let i¡/ be

the summatory function derived from cb, defined for a subgroup £ of £ by

(3.1) iKB) = I  ch(C),
C^B

where the sum is over the set of all subgroups C of £ which are included in B.

Then  we  have  the  inversion formula

(3.2) ch(E)=2Zp(E,A)HA),
A

where the sum is over all subgroups A of £ and the Möbius function p is defined

recursively by

(3.3) p(£,£) = l,

(3.4) I /((£,£) = 0   if   AcE.
B=>A

In case £ is an elementary abelian p-group, Weisner [11] and Hall [6] have shown

that the function p is given by

(3.5) p(E,A) = ( - i)'(*My"-M>.

All the formulas (3.1)—(3.5) are valid in case £ is a finite-dimensional vector space

over Fq and the sums are taken over subspaces of Fq.

Lemma 1. Let E be a finite-dimensional vector space over Fq and let X(E)

be the free (additive) abelian group generated by symbols \_Ä] which are in one-

to-one correspondence with the subspaces A of E. Let VX,---,VS be the one-dimen-

sional subspaces of E. In X(E) we have the formula

i ( - i)k    I    \ytl + - + vtj = I ( - ifAYAUl
lc = l ¡i<""<fie A

where the sum on the right is over all the nonzero subspaces A of E.

Proof. If A is a finite-dimensional vector space over Fq, let p(A) be the number

of one-dimensional subspaces of A. Let rk(A) be the number of sets {Wy, ■•-, Wk}

of k distinct one-dimensional subspaces of A such that A = Wl + ■■■ + Wk. Then

and from the inversion formula (3.2) it follows that

t^)=£  p(A,B)[Pf^.

Set
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C- Z (-D*    Z   [vh + - + vikl
k = l '¡<"-<ik

Then

C -   Z   (-1)"   Z     TkiA)[Ä\
k=l OcAEÍ

-   Z   i-lf     Z       Z     piA,B) (Pf)iA-].
k=l OçASE   BSA \    K    I

Since s = piA) ^ p(ß) it follows that

y (   \*{rM\    °    if5 = °.
» =, (      M A   j _   -  1 if B # 0.

Thus

C--    Z       Z   p(^,b)M.
0<=ASE    OcBEA

Now from (3.4) and (3.5) we have

so that

-Z     piA,B) = piA,0) = i-l)0(A)qHA\
OcBSA

c-   z  (-d'wvm)[^],
OcXEE

and this proves the  lemma.

Lemma 2. Let E be a finite-dimensional vector space over F„ and let A be a

subspace of E. Let VX,---,VS be the subspaces of E such that V¡ => A and

oiV¡IA)= 1. Let <j) be an R-valued function which has for domain the set of

subspaces of E. Then

i i-if   Z   M, + - + vik) =    Z   i-i)«',AVWA)4>iB),
k=l h<"m<'k AcBSE

where the sum on the right is over all subspaces B of E which include A properly.

Proof. We have a one-to-one correspondence £<->5 between subspaces B

of E which include A and subspaces B of Ê= E/A. The subspaces V¡ are the

one-dimensional subspaces of Ë. Define </>, an /c-valued function on the set of

subspaces of Ë, by <¡>iB) = c6(ß). The function c6 may be extended uniquely to a

Z-linear function on the free abelian group XiE) and Lemma 2 follows at once

from Lemma 1.
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To prove Proposition 1 we apply Lemma 2 to the function cj> defined by

cf>(A) = | K(A) |. Let Vx, ■■-, Vs be the subspaces of £ such that V¡ zz> A and such

that <5( V¡ I A) = 1. An element y e G has A for fixed-point set if and only if y lies in

K(A) but not in any K(V¡). Thus the number of elements which have A for fixed-

point set is

\K(A)\ -    (J   K(V.)
k=l

= | K(A) | - I  ( - l)k+1     I      | K(Vh) n - n K(Vik) I
* = 1 lt<...<i*

= I K(A)\ +  i   (-If      I      lK(V¡¡ + ...+V¡k)¡
fc = l ¡l<".<ifc

=  \K(A)\ +      I     i-l)«"AW'A>\KiB)\,
A <=B=E

which is equivalent to the statement of Proposition 1.

4. The Hilbert irreducibility theorem. We need this theorem in a form proved

by Dörge [5], [8]. Let x, t be indeterminates and let g(x, t) e Z[x, z]. Let A be the

set of those positive integers n such that g(n, t) is reducible in Z\t~\. If n is a positive

integer, let A(n) be the number of elements in A which are = n. Dörge has shown

that, if g(x,t) is irreducible in Z[x, z], then there exists a positive real number

a, such that A(n)/n1_<r->0 as n-»oo.

Suppose A includes the set of primes. Since the number of primes _ n is at least

cn/log n for some positive c, we have A(n)/n1_a_cn71ogn, so that A(n)/n1_a-»oo

for all positive a. We conclude that if g(q, t) is reducible in Z\jt\ for all prime

powers q, then g (x, Z) is reducible in Z[x,z].  Hence we have the following.

Lemma 3.   Let x,t be indeterminates and let

g(x, t)=t" + gyixy1 + - + g„ix) e Z[x, Z].

Suppose that for each prime power q the roots of giq, t) are integers. Then there

exist polynomials m^x), — ,m„(x)eZ[x] such that g(x, z) =JL(t-F m¡(x)).

5. The unitary group; degree of g,iq). Let £ be a nonsingular n-dimensional

unitary space over Fq2 and let G(q) be the unitary group. Let Í2 = Q(q) be the set

of all pairs (£, A) where B 3 A are subspaces of E.

Lemma 4. Let (£,-, A¡), i = 1,2, be pairs in Í2 and let Z¡ = A¡ n rad B¡. Suppose

ô: Ay -» A2 is an isometry which maps Zy onto Z2. If By,B2 are isometric, then 8

may be extended to an isometry By -* B2.

Proof. In case the B¡ are nonisotropic this is Witt's theorem. Suppose first

that Z, = 0. Then we may write B¡ = rad£¡ !£,', where B'¡ 2 A, and B'y,B'2 are
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isometric and nonisotropic. Then 9: Ax -* A2 may be extended by Witt's theorem

to an isometry B'x -* B2 which, since ¿(rad Bx) = ¿(rad B2), may be extended to an

isometry Bx -* B2. In the general case write A¡ = Z¡ 1 A", ß; = Z¡ 1 B"¡ where

ß,"2 A"and Ä2= 9AX. Since A"r\TadB¡'= 0, the map 9 \ A"x : A'[ -> A2 may be

extended to an isometry B"x -» ß2 and the Witt sum of this extension with the map

9\ZX :ZX-*Z2 gives the desired extension. One has analogous lemmas for a

symplectic   or  orthogonal  geometry.

The group Giq) acts naturally as a permutation group on fi. Let GiE,B,A)

denote the group of all ye Giq) such that yB^B and y A c A, let GiB,A) denote

the group of all y e l/(ß) such that y A ç; A, and let HiB,A) denote the group of

all elements of G(ß, A) which fix every vector in A. We have a natural homomor-

phism G(£, B, A) -* G(ß, A) defined by restriction of an element of G(£, B, A) to B.

Witt's theorem states that this is an epimorphism. The kernel is ff(£, ß). Thus

\GiE,B,A)\= \GiB,A)\ \H(E,B)\.

Since G(£, B, A) is the stability group for the pair {B,A) in the permutation

representation of Giq) on il, the number of elements in the orbit of (ß, A) under

Giq) is | Giq) | |G(ß, A) |-1. Let AP = AP(g) be a set of representatives for those

orbits of Í2 under G(g) which contain pairs (ß, A) such that <5(^4) = r. Then from

Proposition 1 we have

gn-riq)= Z i-l)*BIAVvUSIA)\HiE,B)\
(B,A)eSl,d(A)=r

=       Z       |G(q)| \GiE,B,A)\-li-lf{BIA)q2*BIA)\HiE,B)\.
(B,A)e\r

Thus

(5.1) g„_P(a) = | G(a) |       Z       ( - l)^y™| G(B,¿) f"1.
(B,.4)eAr

For the symplectic and orthogonal groups we define G(ß, Ä), H(ß, A), SI, and AP

in the analogous way and we have practically the same formula for gn_riq). The

only difference is that 2v(ß//l) is replaced by viBjA).

Our problem is thus to find a set of representatives (ß, A) for the orbits and to

compute | GiB,A) j. It is easy to find a set of representatives. If (ß, A)eil we set

X = rad A, Y= rad B, Z = A Orad ß. To the pair (ß, A) we let correspond the

quintuple ia,b,x,y,z), where a,b,x,y,z are the dimensions of A,B,X, Y,Z.

It follows from Lemma 4, Witt's theorem, and the fact that there is a unique

nonsingular unitary geometry for each dimension and prime power q, that two

pairs iB,A), (ß',^4') are in the same orbit if and only if (a, b,x,y, z) = (a',A',x',y',z').

In the next lemma we state several formulas which help us to compute | G(ß, A)\.

Lemma 5. Let AIX, BLX be subspaces of E, where ß 3 A and where X

is totally isotropic. Then
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(1) \G(BLX,X)\ = \ GL(X) | | Horn (B, X) \ \ U(B) \,

(2) \H(BlX,ALX)\=\Uom(BIA,X)\ \H(B,A)\,

(3) | H(B±X,A) | = | GL(X) \ \ Hom(B/A,X)\ \H(B,A)\ if B is nonisotropic,

(4) | U(B±X) | = | GL(X) | | Hom(B,X) \ \U(B) \ if B is nonisotropic.

Proof. If o e U(B), x e Horn (B, X), and p e GL(X), we may, since X is totally

isotropic, define an element y e G(B 1X, X) as follows : ye = oe + xe if e e B,

ye = pe if e e X. Every element of G(B 1X, X) has this form. This proves (1).

If o e H(B, A) and x e Horn (B, X) annihilates A, then we may define an element

yeH(BLX,A 1 v) as follows: ye = oe + xe if eeB, ye = e if eeX. Every

element of H(B 1X, A1X) has this form. This proves (2). If o e H(B, A), p e GL(X),

and x e Horn (B, X) annihilates A, then we may define an element y 6 H(B L X, A)

as follows : ye = oe + xe if eeB, ye = pe if ee X. Since B is nonisotropic, X

= rad (B1X) is globally invariant under H(B _L X, A) so that every element

of H(BLX, A) has this form. This proves (3). Now (4) is just (3) with A = 0; it

is also a special case of (1).

Lemma 6. For each prime power q let Eq be a nonsingular n-dimensional

unitary space over Fq2 and let (Bq,Aq) be a pair of subspaces of Eq with Bq 2 Aq.

Suppose these subspaces are chosen so that the corresponding quintuple

(aq,bq,xq,yq,zq) = (a,b,x,y,z) is independent of q. Then |G(q)|q2v(BM)|G(Bq,Aq)\~L

is a monic polynomial in q of degree at most n2 — a2 with integer coefficients

which depend only on n and the quintuple (a, b,x,y,z). The degree is n2 — a2 if

and only if Aq is nonisotropic and Aq = Bq.

Proof. We shall sometimes omit the subscript q. Choose spaces F, IF such that

X = Z±V, Y= ZLW. Choose a nonisotropic subspace C of A such that

A = X1 C. Since (VL C) (~\ Y = 0 and C is a nonisotropic subspace of B, we may

choose a nonisotropic subspace D of B such that D 2 V and B = Y± C I.D.

We thus have decompositions

(5.2) A = Z±V±C,   B = Z1_WLCLD,

where V, W, Z are totally isotropic and C, D are nonisotropic, and where DsK

Each of the spaces C, D, V, Wis provided with a subscript q, but the corresponding

dimensions c,d,v,w are independent of q. We have

v = x — z,    w = y — z,   c = a — x,   d = (b — a) + (x — y).

There is a homomorphism G(B,A) —> G(A,Z) defined by restriction of an element

of G(B, A) to A. By Lemma 4 this is an epimorphism. The kernel is H(B, A). Thus

|G(£,,4) \=\H(B,A)\ \G(A,Z)\.

Now from Lemma 5 we have
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\GiA,Z)\   = |G(Z1F1C,Z)|

= I GLiZ) | | Hom(FL C,Z)\ | f7(Fl C) |

=  | GL(Z)| |Hom(FlC,Z)| | GL(F) | | Horn (C, F)|| 17(C) |.

Thus from (2.1) and (2.2) we see that | GiAq,Zq) | is a monic polynomial in q with

integer coefficients which depend only on (a, b, x,y, z) of degree

2z2 + 2vz + 2cz + 2v2 + 2cv + c2 = z2 + v2 + a2.

Again, using Lemma 5,

\HiB,A)\  = \HiZ±W±C±D,Z±V±C)\

=  |Hom(B/i4,Z)| \HiW±C±D,V±C)\

=  | Hom(ß/,4,Z) | | GL(IF) | | Hom(D/F, IF) | | H(C1D,F1C)|

=  | HomiBIA,Z) | | GL(IF) | | Hom(D/F, IF) | | ff(D, V) \.

The last equality | i/(Cl D, VL C) | = | #(£>, V) | is valid because C and D are

nonisotropic, so that an element of UiCID) which fixes C leaves D globally

invariant. Since F is a totally isotropic subspace of the nonisotropic space D,

we have a Witt decomposition D = (F+ V')±F, where V is totally isotropic,

V+ V is nonisotropic, c5(F) = <5(F'), the sum V+ V is direct, and F is non-

isotropic. The dimension of F is f — b — a + 2z — x — y. In a suitable basis

adapted to this decomposition of D, the hermitian form <DD defining the geometry

in D is given by

0     /   0
<DD=     I     0   0

.0     0   /.

where / denotes an identity matrix of an appropriate degree, v or /. In this basis

the matrix for an element of H(D, V) has the form

/     0   0

P    I  Q

.R    0   S)

where Q is an arbitrary v-by-f matrix with coefficients in Fq2 and P, R, S are

subject to the conditions

SeUiF),   P + tP + Q'Q = 0,   R + Q'S^O.

The number of possibilities for Q is q2vf. R is determined by Q and S. For

given Q the number of possibilities for P is the number of v by v skew-hermitian-

matrices with coefficients in Fq2. This number is q * . Thus | HiBq,Aq) | is a monic

polynomial in q with integer coefficients which depend only on ia,b,x,y,z) of

degree
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2(A - a)z + 2w2 + 2(d - v)w + v2 + 2vf+f2 = 2(A - a)z + w2 + (A - a)2.

Thus j Giq)\q2HB"'A')\GiBq,Aq)\''1 is a monic polynomial in q of degree

n2-a2-(A-a)(H-2z) z2 — v2 — w2.

This is at most n2 — a2 with equality if and only if A = a and z = v = w = 0.

Hence equality holds if and only if A = B is nonisotropic. This proves the lemma.

Let Tr(q) denote the set of all quintuples (a4, bq, xq, yq, zq) with aq=r, which cor-

respond to the pairs iBq, Aq) in Ar(q). Since there is a unique nonsingular unitary

geometry for each dimension and prime power q, the set Tr(q) depends only on r

and n and is independent of q. We conclude from (5.1) and Lemma 6 the

following.

Proposition 2. Let Giq) be the unitary group of degree n. Then g„-ria) is a

monic polynomial in q of degree n2 — r2 with integer coefficients which depend

only on n and r.

We shall need more explicit information about gyiq), the number of elements

of Giq) distinct from the identity, which fix an (n — l)-dimensional subspace.

Lemma 7.    Let Giq) be the unitary group of degree n. Then

gi(q) = QÁ.q"+Qn-i)IQi

where we set Qk = qk - ( - 1)*.

Proof. The set Tyiq) consists of four quintuples, two of them corresponding

to pairs (£, A) for which A is nonisotropic and two for which ¿(rad A) = 1. To

each A correspond two pairs (£, A), one with B = A and the other with B = £.

We use the argument of Lemma 6 to compute the polynomials

\Giq)\q2*B'A\GiB,A)\-\

These are given by the following table:

(a,A,x,v,z)

(n- l,n- 1,0,0,0)

(n-1, n, 0,0,0)

(ii-I.ii- 1,1,1,1)

(n-1, n, 1,0,0)

It follows from (5.1) that

Giq)  q2HBIA)\ GiB,A) l-i

q- 'Or.

q"-lQnlQi

qQnQn-llQ2

QnQn-llQ2   •
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gliq) = q^'Qn- <ZB_1ß„/Öl + qQnQn-l IQ2 - QnQn-l IQl

which, after some simplification, yields the statement of the lemma.

6. The unitary group; proof of Theorem 1. Suppose that for all prime powers

q there exist integers m¡(<?) which satisfy (1.2). Since gr(q) is a polynomial in q

with integer coefficients it follows from Lemma 3, with / replaced by t~l, that

(after renumbering the m¡iq) for each q, if necessary) mf(q) is a polynomial in q

with integer coefficients. Since g„-r(q) has degree n2 — r2 and is the (n — r)th

elementary symmetric function of the m¡(q), it follows that the degrees of the

m¡iq) are l,3,5,-,2n - 1. Set t = 1 in (1.2). Then the formula (2.2) for | Giq) \

yields

(6.1)
«(n-D/2 n(9'-(-i)') = ri(i + «i(«)).

From Lemma 7 it follows, for n > 1, that gxiq) = — 1 mod q, so that

(6.2) Z m¡iq) m - 1 mod q.
i

Assume for the moment that n > 1. Then from (6.2) we have

(6.3) Z(l + /n,(0)) = M-l.
i

Since 1 4- m,(q) is a polynomial with coefficients in Z we see from (6.1) and the

unique factorization in Z[x] that

(6.4) 1 + m¡(0) = 0, +1,-1,

for each i = 1, —, n. Now (6.3) and (6.4) taken together show that the only possible

distribution for the values 1 + m,(0) is 0,1, •■•, 1 where 1 is taken n — 1 times.

It follows that 1 + m¡iq) = 0 mod q for at most one value of i and hence from (6.1)

we see that some 1 + m¡(q) is divisible by qn(n-1)/2. In particular, the degree of

this m¡iq) must be at least nin — 1) / 2. On the other hand, we have seen that the

degree of m¡(q) is at most 2n — 1. Thus nin — l)/2 ^ 2n — 1 and hence n _ 4.

We can exclude the case n = 4. In this case the degrees of the hypothetical m¡(q)

are 1,3,5,7. We must have 1 + mj(q) = 0 mod q6 for some/ From (6.1) and the

unique factorization in Z[x] if follows that we must have m^q) = q6iq ± 1) — 1

while the remaining m¡(q) have degree at most 5. This contradicts Lemma 7, which

shows that Z¡ m¡iq) = q1 — q2 + q — 1. Thus n = 4 is impossible. For n = 1,2,3

we compute the griq) directly using (5.1). The results are

gi(q)

<z5+<z-i

g2(q)

q*-q2-Q

q8-q3-q

g3(q)

9 7
q -q
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From this information we see that the m¡(q) exist for n = 1,2,3 and are given by

miq)

q,q   -q-1
q,q3,q5-q3-l  .

This completes the proof of Theorem 1.

7. The symplectic group. We sketch those parts of the argument which differ

from the unitary case. The symplectic group Giq) acts on the set £2 of pairs (£, A)

of subspaces of £ and the orbits are again in one-to-one correspondence with

certain quintuples (a, A,x,,y,z). The spaces B,A may be decomposed as in (5.2).

Here | GiAq,Zq) | is a monic polynomial in q of degree

z2 + vz + cz + v2 + cv + ^_—I = _ [z2 + v2 + a2 + c}.

In the decomposition D = (F+ V) 1F we write the nonsingular symplectic space

F as a direct sum F = F0 + F'0 of maximal totally isotropic subspaces. Set /0 = <5(F0)

so that/= 2/0. In a suitable basis adapted to this decomposition of D, the alter-

nating form Od defining the geometry in D, is given by

(DD =

0

-/

0

0

/

0

0

0

0

0

0

/

0

0

/

0

where / denotes an identity matrix of an appropriate degree, v or/0. In this basis

the matrix for an element of H(D, V) has the form

I 0

L /

P 0

S 0

0

M

ß
T

0

N

R

U

where M, N are arbitrary t>-by-/0 matrices with coefficients in Fq and L,P,Q,R,S,T,U

are subject to the conditions

L symmetric,  I I symplectic,

tP-MtR + NtQ = 0, tS-MtU + N*T=0.

We conclude that | H(ß,, Aq) \ is a monic polynomial in q of degree



436 LOUIS SOLOMON [May

,,_ 2      ,_, f(l>+l) ,    /(/+ 1)
(A - a)z + w2 + (d - v)w + ' + vf +      2

= -j {2(A - a)z + w2 + ib-a)2+ v +/}.

It follows, after a little computation, that \Giq)\q'(BqlA-''\GiBq,A)q\'1 is a

monic polynomial in q of degree

y {nin + 1) - aia + 1) - (A - a)(l + 2z) - (z2 - z) - (u2 - ») - (w2 -w)} .

This is at most n(n 4- l)/2 — aia + l)/2. If equality holds then A = a and z = 0

or 1. Then A = B and Z = A nradß = rad^4 and hence v = w = 0. Since the

dimension of a nonsingular symplectic space is even we have z = a mod 2. Thus

equality holds if and only if A = B and one of the following is true:

OÍA) is even and A is nonisotropic,

¿iA) is odd and S(radA) = 1.

We conclude from the symplectic analogue of (5.1) the following.

Proposition 3. Let Giq) be the symplectic group of degree n. Then gn-Xq)

is a monic polynomial in q of degree n(n 4-l)/2 — r(r + l)/2 wizA integer

coefficients.

Suppose that for given n we have a formula (1.2) for all prime powers q. We

conclude via Lemma 3, Proposition 3 and (2.3), the existence of polynomials

myiq),---,m„iq) of degrees 1, —,n with integer coefficients, such that

q<»m> "ft <qn -. 1) . A (1 + miq)).
i=1 1=1

Compute gyiq) = q" — 1. Since gyiq) = — 1 mod q, we conclude that some

m¡(q) has degree at least (n / 2)2. Hence (n / 2)2 S= n and n = 4. We exclude the case

n = 4 by an argument similar to that for the unitary group. For n = 2 the m¡(q)

exist and are given by

my(q) = q,        m2(q) = q2 - q - 1.

8. The orthogonal groups. We sketch those parts of the argument which differ

from the unitary case. In this case two pairs (B,A), (B',A') lie in the same orbit

under G(q) if and only if (a, A, x, v, z) = (a', b',x',y', z') and there exist isometries

A/radAzz A'lradA', B/radB cz B'¡radB'. The analogue of Lemma 6 is the

following.

Lemma 8. For each odd prime power q, let Eq be an n-dimensional vector

space over Eq with a nonsingular orthogonal geometry of a type independent of
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q. Let (Bq,Aq) be a pair of subspaces of Eq with Bq 3 Aq. Suppose these subspaces

are chosen so that (aq,bq,xq,yq,zq) = ia,b,x,y,z) is independent of q and so

that the types of Aq/radAq and BqlfadBq are independent of q. Then

\G(q)\qv{B"lAg)\G(Bq,Aq)\~1 is a polynomial in q of degree at most

n(n — 1)12 — r(r — l)/2. TAe coefficients are integers or half-integers and

depend only on n, on the quintuple (a, b, x,y, z) and on the types of' Aq\'rad Aq and

Bq/iadBq. The degree is equal to n(n — l)/2 — r(r — l)/2 if and only if both Aq

and Bq are nonisotropic.

Proof. The spaces B,A may be decomposed as in (5.2). Since C^.A\rad A,

the type of C = Cq is independent of q and hence | 0(Cq) | is a polynomial in q.

Then | G(Aq, Zq) | is a polynomial in q of degree

z2 + vz + cz + v2 + cv + ^—-—- = —- {z2 + v2 + a2 - c},

with integer coefficients. Since B¡tadB ~ A/radALD, the type of geometry in

D = Dq is independent of q. In the decomposition D = (V+ V')±F, the non-

isotropic space V+ V has a geometry of type III and hence the type of F = Fq

is independent of q. Thus \0(Fq) | is a polynomial in q, and by computations like

those for the unitary group we see that | H(Bq, Aq) | is a polynomial in q with

integer coefficients of degree

(A - d)z + w2 + (d - v)w + ^1) + ,/ + 4£zil

= ~ {2(b - a)z + w2 + (b-a)2-v -/}.

It follows that | Giq) | q^8-'^ \G(Bq,Aq) |_1 is a polynomial in q of degree

-j {nin - 1) - fl(a - 1) - 2(A - a)z - iz2 - z) - v2 - w2 - x - y}.

This is at most n(n — l)/2 — aia — l)/2. Equality holds if and only if v,w,x,y,z

are all 0, that is, if and only if both A and ß are nonisotropic. The coefficients

are half-integers if Cq and Fq are both different from zero, in which case both

| OiCq) | and | OiFq) | contribute factors of 2 to the denominator. Only one of

these factors of 2 is cancelled by | Giq) |.

Proposition 4. Let Giq) =Oin,q,<t>q) be the orthogonal group, where the

forms <X>? are all of the same type. Then gn-riq) is a monic polynomial in q of

degree nin — l)/2 — rir — l)/2 with integer coefficients.

Proof.    We have

(8.1) gn-,(q) = \G(q) | Z ( - l^y^lGfß,^-1.
(B,A)eAr(q)
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Two complications occur here which were not present for the unitary and symplec-

tic groups. First, the terms in the sum may have half-integer coefficients. Second,

all pairs  iB,A) with nonisotropic B and A contribute to the leading term of

g„-Xq)-
To eliminate the half-integer coefficients, suppose iB,A) is a pair such that

C,F are both nonzero. In this case the leading coefficient of

\Giq)\q«B/AX\GiB,A)\-1

is 1/2. To the orbit of iB,A) under G(q) we associate a second orbit containing a

pair (B, Ä) such that the corresponding C, Fare both nonzero, such that A = A, and

such that the polynomial \G(q)\ qv(BIA\\G(B,A)\-1 + \G(B,Ä)\~X) has integer

coefficients. This will be enough to show that gn-r(q) has integer coefficients.

We use the decompositions

A = Z±V±C,   B = ZLWLCLD,   D = (V+V')±F,

Since C,F are nonzero, we may choose in the nonisotropic space CLF, sub-

spaces Gesuch that CLF=C±F, ¿(C) = Ô(C), ¿(F) = ¿(F), and such that

C, C have different types of geometry. We use here the fact that a space £ over Fq

with a nonsingular orthogonal geometry, contains nonisotropic subspaces of

both types, for any dimension ô such that 0 <<5< <5(£). Then F, F have different

types of geometry. Set

Ä=Z±V±C,   B=ZLWLCLD = B,   D=(V+V')±F.

The computations of Lemma 5 are valid for the orthogonal group, almost without

change. These computations show that

|G(£„4)| = |H(£,^)| = | HjD, V) | = | Q(F) |

\G(B,Ä)\      \H(B,Ä)\      \H(D,V)\     | 0(F) |'

so that

(8 2)      ' G(q) ' qHB'A)( ' G(B'A) I ~ ' + ' G(B' ** '"1}

= \G(q)\q^\G(B,A)r      (l+j^j)-

If/ is odd we have \0(F)\ = |0(F)| so that we acquire a factor of 2 in the numerator

and (8.2) is a monic polynomial in q with integer coefficients. If/ is even, then

from (2.4) we see that, interchanging F and F if necessary,

y    10(f)! . 1    qfn - i.    V/2

|0(F)| q//2 -I- 1      qfl2 4-  1'

so that (8.2) is, in this case too, a monic polynomial in q with integer coefficients.
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We must show that the leading coefficient of gn_r(q) is L In view of Lemma 8

we need consider in (8.1) only those orbits which contain pairs (ß,^4) for which

B, A are nonisotropic. If r = n we must compute the leading coefficient of

\G(q)\ z (-i),(,y(B)|0(B)r,
BeA

where the sum is over a set A of subspaces of £ such that every subspace of £ is

isometric to a unique element of A. Since there are, up to isometry, two pos-

sibilities for ß in each dimension k with 0 < k < n, this leading coefficient is

2+    Z     ( - 1)*(1 + 1) + ( - 1)" = 1.
0<k<n

If 0 < r < n, there are, up to isometry, two subspaces A, Ä of dimension r, and

then (8.2) shows in the same way that the leading coefficient is 1 here too. This

completes  the  proof of Proposition  4.

Suppose now that for given n and given type we have a formula (1.2) for all odd

prime powers q. We conclude via Lemma 3, Proposition 4, and (2.4) the existence

of polynomials m¡(q) of degrees 0,1, — ,n — 1, with integer coefficients, such that

n

J! (1 + mt(q)), Types I, II,
¡ = i

Ô (1 + miq)), Types III, IV.

Types I, II,

Types III, IV.

Thus gx(q) = 0 mod q if n > 2. Assume for the moment that n > 2. Since one of

the m¡(q), say mx(q), has degree 0 and since gn(q) = f], m¡(q) is a monic polynomial

in q with integer coefficients it follows that mx(q) = 1. We may thus cancel a

factor of 2 on both sides of (8.3). Now, observing that

n

Z   m¡(q) = — 1 mod q,
i = l

we may argue as in the case of the unitary group, to conclude that some mt(q) is

divisible by the full power of q which divides | G(q) |. Thus

(n - l)2 / 4 = n - 1,        for Types I, II,

n(n - 2)/4 = n - 1,        for Types III, IV,

so that n ^ 5 for types I, II and n ^ 4 for types III, IV. We exclude n = 5 by an

argument similar to that for the unitary group. We exclude n = 4, type III, by

(n-iyz

2é~m*  n (<z2i-D =
¡=i

(8-3) (n-2)/2
2qMn-2V\qnl2-e) iq2i - 1) =

¡ = i

We compute gxiq) and find that

„n-i

q    >

giiq)=   ...       ...

q"   l - eq"12   \
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explicitly computing the gr(q). The remaining cases are enumerated in the following

table:

Type gi(q) gi(q) gi(q) g*(q)

LII
III

IV

LU
IV

l

3 + 1

q2

q3 + q

q-2

q
q3-q-l

q> + q3-q2-l

q3-q2-q

q6-q3-q2 q6-q5-q3

From this information we see that the m¡(q) exist in these cases and are given by

Type

LU
III

IV

LII
IV

m¡(q)

1

1,4-2
1,4
l,q,q2 -q- 1

l,q,q2,q3-q2-l

This completes the proof of Theorem 3.
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