NONLINEAR ELLIPTIC BOUNDARY
VALUE PROBLEMS. II())

BY
FELIX E. BROWDER

In a preceding paper on nonlinear elliptic boundary value problems [7], the
writer established an existence theorem for variational solutions of nonlinear
elliptic boundary value problems for systems of the form

Au= X D°A(x,u,---,D"u)
lalsm

with A4, having at most polynomial growth. This theorem was derived from an
abstract theorem concerning the solvability of a class of nonlinear functional
equations in reflexive Banach spaces. Our result in [7] extended and generalized
earlier results anonunced by M. I. Vishik [20], [21], [22] and obtained by more
concrete-analytic arguments. Very recently Vishik has published in [23] a detailed
account of his methods and obtained more precise results than those announced
in his Notes listed above. The one feature of the results of [23] which goes beyond
the framework of the methods given in [ 7] (and oneon which Vishik has laid great
emphasis) is that the monotonicity or strong ellipticity hypotheses imposed on
the system A involve essentially only the variation of the 4, with respect to
D™u and not with respect to the lower-order derivatives of u.

It is our object in the present discussion to give an extension of our methods
which allows us to obtain results under weaker hypotheses of this type.
As in [7], our approach is based on a general theorem on nonlinear functional
equations in Banach spaces. ‘

In §1, we formulate our main results on the solvability of nonlinear elliptic
boundary value problems and the corresponding abstract theorem. In §2, we
prove the abstract theorem. In §3, we prove our main theorem on the existence of
solutions of boundary value problems. In §4, we consider extensions and speciali-
zations of this theorem. In §5, we turn back to the abstract theory and analyze
the general method applied in [ 7] and here in the general context of locally convex
linear spaces.

1. Let Q be a bounded and smoothly bounded open subset of R*. The general
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point of R” will be denoted by x =(x,,"*,x,), while [f(x)dx will denote inte-
gration with respect to Lebesgue n-measure on Q. We set D; = i"ﬁ/&x, for
1<j=<n, and for each n-tuple a = («,...,a,) of non-negative integers we set

b =[5, |a|=

j=1 J

aj.

NP

By functions u# on Q, we shall mean s-vector functions u = (u,,---,u,) for a
fixed positive integer s, where each u, is a complex-valued function on Q. We set
D*u=(D"u,,---, D*uy).

Let m be a positive integer, p a real number with 1 <p< + occ. We define

W™P(Q) = {u|ueX(Q), D’uecI?(Q) for |«| < m}.

(All derivatives D*u will be taken in the sense of the theory of distributions.)
W™P(Q)is a reflexive separable Banach space with respect to the norm

by = { = []0ulrax)e.
Q

lalsm
We denote by CX(Q) the family of infinitely differentiable functions with
compact support in Q. We consider C2(Q) as a subset of W ™#(Q). Let

{u,v) = i f u (%) 5, (x)dx
k=1

be the natural pairing between u in I?(Q) and v in L1(Q), with ¢ = p(p — 1) .
We consider the svstem of differential operators

(1.1 Au= X DA(x,u,---,D™u)

lalsm
where for each «, 4, is an s-vector function of x in Q, the value of the function
u atx, and the values of all the derivatives D*u at x for |a| < m.

We assume the following smoothness and growth conditions on the coefficients
A,

ASSUMPTION 1. The functions A, are measurable in x on Q and continuous
in (u,--,D™u). There exists a real number p > 1 and a continuous function g(r)
of the real variable r such that if

{={ls; |a| = m}
then
1.2) -
A (x,0)|= -1 p-1 > (p=1)+cp.
mesolse( E o)) {1+ E it | |

m-n/pZ|Blsm—1

where cg, satisfies
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. [p—1 m
1.3 0=
(1.3) Scp<ry Mm{ > + "

bl }~(p—1)

and ry is any exponent such that
rgtzp ' —n"!(m—|B)).

To define a variational boundary value problem for the system A4, we assume
given a closed subspace V of W™?(Q) with C7 (Q)< V.

Corresponding to the representation (1.1) for A, we may define the nonlinear
Dirichlet form a(u,v) for each pair u and v in W™?(Q) by

(1.9) a(u)= X {A,(x,u,,D™u),D*v).
la|sm
From the Sobolev Imbedding Theorem (e.g. Lemma 5 of [2]), it followsthat
if u lies in W™P(Q), then for |y| <m— n/p, D'ulies in C(Q). For |y| Zm — nlp,
Du lies in L7(Q) where r, is any finite exponent such that

rytzpTt=nTi(m=y)).

Moreover the norms of the maps u— D”u from W™?(Q) to the spaces C(Q) and
L(Q)are bounded. Applying Assumption I and Holder’s inequality, it follows that
a(u,v) is well defined for all u and v in W™P(Q) and satisfies an inequality of
the form

|a(u,0)| < g1(||u "m-p)"v"mm

where g,(r) is a function of the real variable r depending on the function g of
Assumption 1.

If V* is the conjugate space of V, we may now define the variational boundary
value problem corresponding to the pair (4,V) by:

DEFINITION. Let f be an element of V*, (f,v) itsvalue onv inV. Thenu is said
to be a solution of the variational boundary value problem for Au= f satisfying
the null boundary conditions corresponding to the space V if

(@) ueV, and

(b) a(u,v) = (f,v), forallvinV.

In order to give a precise formulation of the hypotheses under which we shall
prove the existence of variational solutions for our boundary problem, weshall
write the nonlinear Dirichlet form a(u,v) in another notation which separates its
dependence on the lower order derivatives of u from its dependence onthe mth
derivatives D™u.

DEFINITION. Let

(1.5) a(u;v,w) = X (A x,u,...,D™ 'u,D™), D*w).

lalsm
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It follows from Assumption I that there exists r with ¥ > p~! — n™ ' such that
a(u;v,w)is welldefined for allu in W™~ >"(Q), and all v and w in W™ ?(Q). By the
Sobolev Imbedding Theorem, W™P?(Q) is contained in W™~ !*"(Q) and the im-
bedding map is compact. Moreover

(1.6) Ia(u;v,W)I = gl(”“ "m—xn)gz( " v "m,p) " w"'"-l"

THEOREM 1. Let A be a system of differential operators of the form (1.1)
satisfying Assumption 1 for a given value of p > 1. Let V be a closed subspace of
W™P(Q)suchthat CX(Q)< V. Let r be a real number as above withr™ Ispt-n?
such that a(u; v, w) is well defined for ue W™ *"(Q), w and v in W™?(Q) and
inequality (1.6) holds. Suppose that all of the following conditions are satisfied:

(a) For each positive integer N, there exists a continuous function Cy(t) with
lim Cy(t) = + o0 as t— + oo such that for allu in V with |u | u-1,, <N, we have

(1.7)  Refa(u;v,0—w) — a(u;w,0 — w)} = Cp([[o = W mp) | 0= W lm,»

forallvandwinV.
(b) There exists a continuous function c(t) on R* with c(t)— + o ast— + ©
such that for all constants k 2 1,

Rea(u; ku,u) = c( || u "m,p)" u "m,p

foralluinV.
Then for every f in V*, there exists a solution u in V of the V-variational
boundary value problem for Au = f (i.e. such that a(u, v) = (f,v) for all v in'V).

We shall derive Theorem 1 from the following abstract theorem concerning
nonlinear operators in Banach spaces.

THEOREM 2. Let X be a separable reflexive Banach space, X* its conjugate
space(i.e. the space of bounded conjugate-linear functionals on X). For w € X*,
ueX,let (w,u) be the value of w at u. Let Y be a second Banach space such that
the elements of X are identified with a linear subset of Y and the injection
mapping is a compact linear map of X into Y.

Let G be a (not necessarily linear) mapping of Y X X into X* and for u in Y,
let G, be the mapping of X into X* defined by G,(v)=G(u,v). Suppose that all
of the following conditions are satisfied :

(a) For each positive integer N, there exists a continuous function Cy(r) on R!
withlim,_ , Cy(r) = + 00 and Cy(r) > 0 for r > 0 such that

Re(G,v — Gw,v — w) = Cy( || v— w"x)" v—w "x

foruinY with || u "y < Nandforallvandwin X.
(b) There exists a continuous real-valued c(r) on R* with ¢(r) = + © as
r — + oo such that for every k = 1,
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Re(G,(ku),u) 2 c(||u[x) | | x

foralluinX.

(c) For each u in Y, G, is a demi-continuous mapping from X to X* (i.e.
continuous from the strong topology in X to the weak topology of X*). For each
fixed v in X, the mapping

u-> Gy

is a strongly continuous mapping from Y to X*.
Then the mapping F of X into X* given by Fu =G, maps X onto X*, i.e. for
every w in X*, there exists u in X such that G(u,u) = w.

2. Let X be a separable reflexive Banach space, X* its conjugate space (i.e. X*
is the space of bounded conjugate-linear functionals on X). For win X*, u in X,
we denote the value of wat u by (w,u). Thus (w,u) is linear in w, conjugate-linear
inu.

Let G be a (not necessarily linear) mapping from X into X*.

DEFINITION. G is saidto be demi-continuous if it is continuous from the strong
topology of X to the weak topology of X*.

PROPOSITION 1. Let G be a demi-continuous mapping of X into X* such that
(@) Forallu and v of X,

Re(Gu — Go,u—v) = 0.

(b) There exists a continuous real-valued function c(r) on R* with c(r)— + c©
as r— + oo such that

Re(Gu,u) = c(||ul))|u]-
Then G maps X onto X*.

Proof of Proposition 1. This is a special case of Theorem 2 of [7]. Since more
general results are proved in §5 below, we omit the proof here.

PROPOSITION 2. Let G be a demi-continuous mapping of X into X* such that
there exists a continuous function c¢(r) on R' with c¢(r)>0 for r>0 and
lime(r) = + o0 as r — o such that

(2.1) Re(Gu — Go,u —v) 2 c(||u — v|)]|u— |

foruandvin X. Then:

(@) G maps X onto X*.

(b) G is one-to-one, G~ is defined on all of X* and maps bounded sets of X*
into bounded sets of X.

(¢) G™'is strongly continuous from X* to X. There exists a real-valued
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monotone nondecreasing function h(r) on R! such that h(0)= 0, h is continuous
from the right, and

(2.2) [G™'w—G 'w | Sh(|w-w,|)

Jor all w and wy in X*. The function h depends only on the function c(r) of

inequality (2.1).

Proof of Proposition 2. From the inequality (2.1) and the fact that ¢(r) > 0
for r > 0, it follows that G is one-to-one. Hence G~ ! is defined on the range of G.
For each pair u and v in X, we know from (2.1) that

Re(Gu — Gv,u —v) = 0.
Moreover,
Re(Gu,u) = Re(Gu — G(0),u) + (G(0),u).
Hence
Re(Gu,w) z e(fJulpfu] - GO - |
z {c(uld= 6O} ]u]-

Since ¢(r) — || G(0) || — + oo asr— + oo, wemay apply Proposition 1 and conclude
that G maps X onto X*,i.e. the range of G is all of X*.
Foreach R= 0, let

h(R) = sup{r|c(r) £ R}.

Then h(R) < + oo for every R, h(0) =0, and h(R) is monotone nondecreasing
in R.Obviously h(R) depends only on the function ¢(r). Finally, h(R) is con-
tinuous from the right. Indeed suppose otherwise. Then there exists a sequence
R;— R such that h(R;) =r; 2 h(R) + . Then c(r;) = R; and extracting a con-
vergent subsequence from the bounded sequence r;, we willhave r;—»r = h(R) + ¢,
and ¢(r;) = R = ¢(r). This contradicts the definition of A(R). Thus h(R) is con-
tinuous from the right. From the inequality (2.1), we know that

c(Ju—o)]u-v|=]Gu=Go|-[u-0].
If u # v, we have
e(|u = v]) < [Gu~ Go].

Hence
Ju— ol $ ] G4 ~ o).
Setting u = G™'w, v = G™'w,, we obtain

167 w =G~ wy | < b([|w—wy .



536 F. E. BROWDER [May

Suppose w; - w, strongly in X*. Then ||w; — w, | > 0. Since h(0)=0 and h(R)
is continuous from the right, h(||w; — w, |)—0. Hence | G™'w;,— G~ 'w, || 50 as
j— + o, ie. G 'w;—»> G 'w, strongly in X. Hence G™! is continuous from
X*to X.

Finally if | w|| £ M, then

167 w—=G"1(O) | S h(|w]) S h(M).
Thus
[6~ W< M) + 61O,

and G~ ! maps bounded sets of X* into bounded sets of X. Q.E.D.
Proof of Theorem 2. Letube anelementof Y. Thenthe corresponding mapping
G, of X into X* satisfies the hypotheses of Proposition 2 with a function Cy(r)
which is uniform over all u with ||u |y £ N.
By Proposition 2, G, is a one-to-one mapping of X onto X* with a continuous
inverse G, !. This inverse satisfies an inequality of the form

2.3) " G, 'w—G,* W1" x= kN("W_ Wi "X')

for all u in Y with ||u|,<N.
Let w be a fixed element of X*. We wish to find a soluon wuit of the equation

2.4 G (u)=w.
For each vin Y, let T be the mapping of Y into Y given by
To =G, '(w).

Then u will be a solution of (2.4) if and only if Tu = u, i.e. if u is a fixed point of
TinY.

We shall show the existence of such a fixed point u of T by applying the Leray-
Schauder theory of the degree for compact displacements in the Banach space
Y [14]. To do this it suffices to show the following:

() T is compact.

(ii) There exists M > 0 such that for 0 < t £ 1, the mapping T, with T,v=tTv
has no fixed points u with || u "y =M.

Proof of (i). Let J be the imbedding map of X into Y. J is a compact linear
map by assumption. Let S be a bounded set in Y. Then for all v in S, there existsa
function ky(r) such that

" Gv_lw - Gv-lwl "x = ka( " w—w, "x')-

Setting w; = 0, we see that
167 wlx < ko

forallvin S. Hence Tv= G, '(w)liesin a compact subset of Y, i.e. T(S)is compact.
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To show that T is a compact mapping, it suffices therefore to show that T is
continuous. Let v and vy be elements of Y, u = Tv, uy = Tv,. Then

Gu=w, G,uo=w,
so that
Gyu — Gyug = G, uo — Gyto = (G, — Gyp)ito.
Suppose v; - vo. Then || v; ||y, | vo ||y < N, so that for every j
“ Go_,lf" Gv; lfl "xé kN( “f"'fl "x')
for all fand f, in X*. Setting f = G, u, f; = G,u, we find that
[ Tv; = Toollx = [|u— uo|x < kn(]| Got — Goto|x+)
< kn(]|(Gy, = Gopluo [x»)-

Since v; - v, strongly in Y and u, is a fixed element of X, we see from the
hypothesis of Theorem 2

(Gy,— Gpuo—0 in X*,
ie.
[(Go,— Gupuo [|xe—O.
Since kp(r) = 0 as r - 0, it follows that
kN( " (ij - Gvo)“O"X‘)-’ 0

so that | Tv; — Tve|x =0, i.e., Tv;—> Tv, in X and a fortiori in Y. Thus T is
continuous from Y to Y and the proof that T is compact is complete.

Proof of (ii). Let ¢ be a real number from the interval 0 < ¢ < 1, and suppose u
is a fixed point of T, where T,u = tTu. Then

tTu=u,
ie.

G, 'w)= -% u

G,,(—l—u)=w.
t

If t = 0, the only fixed point of T, is zero. If t > 0, let k = 1/t. Then k = 1, and we
have

or

G (ku) =w.
Then
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(Gu(ku),u) = (w,u).
From hypothesis (b) of Theorem 2, we know that
c(flull)fulx = Re(Gulku),u) < || wllxe - [ u]x-

Hence c(||ulx) < |w|x-. Since c(r)— + o as r— + oo, it follows that
| u]lx M, for some M > 0 independent of ¢. Since the injection of X into Y is
bounded,

fuly =M,

for all such fixed points u and (ii) is proved.
As we remarked above, Theorem 2 follows from (i) and (ii) and the Leray-
Schauder theory of the degree. Q.E.D.

3. We now turn to the proof of Theorem 1 using Theorem 2. To carry through
this proof, we shall need some preliminary results with which we begin our dis-
cussion.

LEMMA 3.1. Let N be a constant and let f(x,u,,--+,uy) be measurable in x on

Q for fixed u = (u,,-+,uy) and continuous in u for fixed x for almost all x in Q.
Let {u(’)} be an infinite sequence of functions on Q converging in measure on Q to
u®(x) (i.e. with each component uX(x) converging in measure to u'°(x)). Then
FOX) =f (x,uP(x), - ,u{(x)) converges in measure on Q to f(x,u'V(x), - ,u(x)).

Proof of Lemma 3.1. For N =1, this is a result of Nemytski given on pp.
29-30 of Krasnoselski [12]. The proof for N > 1 is the same as for N =1. We
give it here for the sake of completeness because of the relative inaccessibility of
the reference.

We consider N-vector functions u(x) on Q and N-vector constants u. Let
¢> 0 be a fixed positive number. Suppose u”’(x) converges in measure on Q to
u'®(x). For each k > 1, let

G, = {xler, [£G,u®x) — f(x,u)| <eifueC, [u'D(x)— u] <%} .

The G, are nondecreasing with k and since f(x,u) is continuous in u for almost
all xin Q, Q 'Uk G, has measure zero. If 1 > 0 is given, we may therefore find
an integer ko such that m(G,,) > m(Q)— n/2.

Now let
J

F,= {xler, [uO(x) — @ (x)] <El—-} .
0

Since u"” converges to u‘® in measure, we can find N such that forj> N,
m(F;)>m(Q) — n/2. Then x in G, N F; lies in the set
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D; = {x] |£(x,u ()~ fix, uP(x))| < ¢}
and thus
m(D;) = m(Q) — {m(Q— G, ) + m(Q — F))}
z mQ) -n.

Since m(D;) » m(Q) for fixed & as j— o0, f(x,u’(x)) converges in measure to

J(x,u9(x)). Q.E.D.

LeMMA 3.2. Let f(x,u,,---,uy) be continuous in u = (u,, ---,uy) for almost all
x and measurable in x for all u. Suppose

N
| £ ey, -, uw)| S ¢ { T |y

r+1 } (¢, ¢, constants).

Let Z=va=l L°%(Q) for some p = 1. Then the mapping Tof Z into LP(Q) given by
T(“b "'9“N)(x) =f(x,u1(x), "'9“N(x))
is a continuous mapping of Z into L*(Q).

Proof of Lemma 3.2. (This is a generalization of a result of M. M. Vainberg
for N = 1. Cf. [12] and [18].)

Let u(x) denote the vector function (u,(x),+-,ux(x)). Suppose u (x)converges
strongly to u‘®(x) in Z. Then u%’(x) converges to u‘®(x) in measure on Q. By
Lemma 3.1, f(x,u"’(x)) converges in measure to f (x,ux)) on Q.Thus given
&> 0and > 0, we may find j, depending on ¢ and # such that for j = j,, the set
F; given by

Fji={x| [£Ce,u@x) = fx,u(x))] 2 €}

has measure m(F;) <n.
We have then, however,

9 L [£Ge,u D) = f(x,uP(x)|?dx < ( f( et L ))

A

N . ) 4
£m(Q) + c"f ( w0+ |u£“(x)|"} +1 ) dx.
Fy r=1

For the last integral, we know that
N . P
J (Z [u, ()| + | uf(x)| "} + 1) dx
F \r=1

< sup [;(.’.N + 1)"*"; (ré { [u,(x)] 7"+ |u£”(x)|"°} +1 )dx] = u(F)

jz1
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where u(F) - 0 as m(F)— 0. Since

6; 2 e’m(Q) + cPu(F)
we may choose 5 so small that

cPu(F) < &f
and obtain the inequality
6; = e!(m(Q) + 1),
so that
"f (x,u?) = f(x,u'®) "Lwn) S em(Q) + '

for j = jo. Q.E.D.

PRQPOSITION 3.1. Let Ay (x,0),{ = {{, |¢| £ m}, satisfy the conditions of
Assumption 1. Let r be any exponent such that

1

1
)4 n

v

1
r
and for every « and for p withm—12|p|2m—n/p

[(p—1)+03¢]‘r“ ——"%_—Iﬁl—} < Min {"p’ 1 '”;'“',1’

(cge being the exponents of Assumption ).
Then if T, is given by

Ta(u’v)(x) = Aa(x’u(x)9"’, Dm-lu(x): D"'U(X)),
then T, is a continuous mapping of W™~ 1" (Q) x W™?(Q) into L**(Q) where
_1_=Min ‘p— 1 + m—lal’l}.
(] )4 n

Proof of Proposition 3.1. By Assumption I, A,(x,{) is measurable in x and
continuous in {. Moreover it satisfies the inequality

| 4,0x,0)| gg( z ICrl)

Irl<m—n/

3.1
R A N A e R B

1Bl=m m=n/p<|B1<m

Applying Lemma 3.2, we need only to show that for u e W™~ **"(Q) (r as above)
and vin W™ 1'P(Q), we have

3.2) DPueppdir=1reed |Blsm—1,
3.3) DPyelLP?~1) |B]=m,
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and that the mapping u — D®uand v — DPv in each of these cases is a bounded
linear map of W™~ 1"(Q) and W™ ?(Q), respectively, into the appropriate I*-

spaces.
To do this, we apply the Sobolev Imbedding Theorem (e.g. Lemma 5 of [2]) and
find that for u in W™ 1*"(Q), D%u lies in W™ ' ~1#1:(Q) and hence in L"*(Q) where

1.1 m-1-|p]

rg r n

1t suffices for this case to show that

m—1-—|B| _ 1 1
n (-1 +c pa

1—
.

i.e.

[p—1) +cpl{r™' —n"'(m=1~-|B])} < Min {1,”; LN '";lal}.

This is precisely our hypothesis on r.
For | B| = m, we must note that if v € W™ ?(Q) then D% e L%(Q). 1t suffices then
to prove that

p(p—-D=p
or
p—- 1 §P/Pr
However
i = Min {p— 1 + m—lal’l} ,
« p n
so that

Pype m=lal) 5
pag(p 1\+p{ - }zp L

The boundedness of the imbedding mappings follows from the Sobolev Im-
bedding Theorem. Q.E.D.
In order to apply Theorem 2 to the proof of Theorem 1, we must transform
the problem of the existence of the solution of the boundary value problem con-
sidered in Theorem 1 into the type of functional equation treated in Theorem 2.
We now let r be an exponent such that
1 1 1
TP
while forallaand all pwithm—n/p < |B| Sm -1,

1
r

m—1-|B| _ s [P=1 , m—]a|
§———;————+[(p 1) + ¢cp) Mln‘ > + - ,1}.
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Let X be the closed subspace V of W™P(Q) endowed with the Banach space
structure induced by W™ ?(Q). Let Y be the closure of ¥ in W™~ !"(Q) with the
norm of W™~ 1"(Q).

For uin Y, v and w in X, we consider the form

a(u;v,w).
This is conjugate linear in w and satisfies the bounds

a0, < gy, ol | w
Hence there exists a unique element of X which we shall denote by G(u,v)
that
(34 (G(u,v),w) = a(u;v,w)

forallwin X. ‘
We shall show that G satisfies the hypotheses of Theorem 2.

PROPOSITION 3.2. The mapping G of X x Y into X* defined by equation (3.4)
above is continuous.

As a corollary, we have the fact that the mapping of X into X* given by
v = G(u,v) is continuous.

Proof of Proposition 3.2. To show that G is continuous, it suffices to show
thatif u; > uyin Y, v;— v, in X, then

[(G(ujv;)— G(uo,vo),w)! <e|wlx

where ¢;— 0 as j - + 0.
However,

(G(uj,v;) — G(“o,_vo),w) = a(u;;v;,w) — a(ug; vo,w)
while ‘
- a(uy;v5,w) = a(to;vo, W)

= 2 (Aa(x»u]s"'9Dm_luj’Dva) - Aa(x’um""Dm-luOstvo)’Daw>-

lajsm

The term indexed by « in the last sum has its absolute value bounded by

" Aa(x’uj’ '"’Dm—l“i’Dmvj) — Au(x,uo, e, D™ ! “O’Dmvo) "Lp“ " D'w l L'e

where 1/r,=1/p— (m—|«|)/n, 1/p,=Min(1 - 1/r,,1). By Proposition 3.1,
the first norm approaches zero as j — oo. The second norm is bounded by | w ||,
by the Sobolev Imbedding Theorem. Hence

Ia(uj;vi,w) - a(uo; UO’W)' é s.i " w "m,p

where é,‘-»o asj— +oo. | Q.E.D.
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Proof of Theorem 1. We wish to apply Theorem 2 to the mapping G defined
above. Hypotheses (a) and (b) of Theorem 1 imply hypotheses (a) and (b) of
Theorem 2 for the mapping G. The only point that must be checked is that the
inequality of (a) of Theorem 2 for G holds not only for u in ¥ but also for u in Y.
However, we have for u in V with ||u}, £ N,

Re {(G(u,v),0 —w) — (G(u,w),v — W)} 2 Cp(||w —v|x) [w—v [Ix-

Both sides of the inequality are continuous in u on Y by Proposition 3.2. Hence
if the inequality holds for all u in the dense subset V of Y, it holds for all u in Y.

Finally hypothesis (c) on G follows from the continuity of G asa mapof X x Y
into X*. Q.E.D.

4. In the present section, we shall consider extensions and specializations of
Theorem 1.

The extensions of Theorem 1 that we give below move in two directions. In the
first place, we have decomposed the form a(u,v) in two variables u and v into
a form a(u;w,v) in three variables u in W™~ " (Q), w and v in W™?(Q) in a very
particular way by replacing all the derivatives D%y with | ﬂl =m by D*w and
leaving the lower-order derivatives alone. Under suitable hypotheses, it may be
more advantageous to make a more refined choice of the occurrences of u and its
derivatives which are to be replaced by the corresponding terms in w and D?w
respectively.

The second direction of generalization concerns the generality of the boundary
value problem. In the linear case, we know that new boundary problems can be
treated by adding boundary terms to the Dirichlet form a(u,v). If we carry through
the corresponding formulation for the present case, we obtain a much wider
class of boundary value problems. We simplify the application of this principle
by assuming the boundary forms to be continuous with respect to the W™:?(Q)-
norm. This is not necessary if we introduce a new norm on V¥ involving a boundary
norm with respect to which the boundary form is continuous.

As a specific representation of the two types of generalization we have just
described, we combine these techniques to obtain the following result:

k4

THEOREM 3. Let Q be a bounded, smoothly bounded open set in R* with
boundary T, A a system of s differential operators of order 2m acting on s-
vector functions u = (u,,--,u) of the form
¢)) ‘ ‘Au = X D°A(x,u,...,D"u).

lalsm ‘
Let {={ls|a|Sm},n={ns:|B| Sm—1}lie in C"™, C¥-', respectively,
where N, is the number of « with |¢| <m, N,_, the number of B with
| B]| £ m — 1. We assume that there exist functions
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E(x,n,0), |a| £ m,

such that A (x,0) = E(x,(,{) for all { € C"™, with E, measurable in x and con-
tinuous in (n, ). We suppose that the E, satisfy the analogue of the bounds of
Assumption 1, namely:

| Ex,n,0)|
se( Z 161+ T i)
lrl<m=n/p Iyl <m=n/p
M+ X Icplp-l + )> |Cﬁ|(?‘l)+¢.‘p.+ E l”ﬂl(p_”“”,
18l=m m—n/ps|Bl<m m=n/p<|B|<m
where

0 < ¢4, < rgMin {";1 +'"_n|“',1: -(p—-1

and rg is any finite exponent such that
-1 -1 -1
rg Zp —n (m—lﬁl)
There exist exponents r suchthat r~* > p~* — n™*' and such that the form

e(u;v,w)= X (E(x,{D"u},{D%}),D*w)
lalsm

(where E(x,{D"u}, {D’v}) is the result of substituting D*u for ng, DPv for {,
in E(x, n, ) is well defined for all ue W™ '"(Q) and v and w in W™ ?(Q) and
such that e(u;v,w) is continuous in the pair (u,v) in W™ " (Q) x W™P(Q)
uniformly for w in bounded sets of w in W™ P(Q).

Let b(u;v,w) be a boundary form having the same property. Let V be a closed

subspace of W™ ?(Q). Suppose that:
(a) For each N >0, there exists a continuous function Cy(t) on R, C\(t)>0

for t> 0, Cy(t)— + oo for t > + oo such that
Re {e(u;v,0— w) — e(u;w,v — w) + b(u;v,0— w) — b(u; w,v— w)}
2CM([|[o=w]m 0= W],

foralluin V with |u|u-,,, S NandallvandwinV.
(b) There exists a continuous function c(t) on R' with c(t)— + o0 ast— +

such that
Re {e(u;u,ku) + b(u;u,ku)} 2 c(| 4 |m, ) | 4 ]|m,

JorallueV, k1.
Then for every f in V*, there exists u in V such that
a(u,v) + b(u;u,v) =(f,v)
JorallvinV.
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We omit the proof of Theorem 3, which is essentially the same as that of
Theorem 1. We omit also the detailed statement of hypotheses on the boundary
form b(u;v,w) based on the boundary case of the Sobolev Imbedding Theorem
which would imply the continuity of b(u;r,w) in the sense required in the
hypothesis of Theorem 3.

This may be obtained by a direct analogue of the arguments of §3 culminating
in Proposition 3.2.

Let us conclude the present section with some brief remarks on the hypotheses
(a) and (b) of Theorems 1 and 3 and the possibility of verifying them from assump-
tions on the Jacobi equations of the nonlinear system A.

Let A, 3 = 04,/0(s. Then

a(u;v,v—w)— a(u;w,v—w)

1
= X f CAgg(x,u, -+, D" *u,tD™v + (1= )D"w)DP(v— w), D (v— w))dt
0

la|£m,|Bl=m

= E (e,,(x,u,v,w)Dﬁ(v— W), Da(u_ W)).
x,8

Thus estimates on Re{a(u;v,v— w)— a(u;w,v— w)} may be obtained from
hypotheses on the form with coefficients 4, of the type considered by Vishik
in [23]. Similar considerations apply to the form Re {a(u; ku,u)}.

5. We turn now to the detailed consideration of the abstract theory of non-
linear functional equations involving monotone operators which underlies the
results of §2. For continuous operators in Hilbert space, the study of monotone
operators was begun by G. J. Minty in [15] and extended by the writer in [3] and
Minty in [16]. The extension to demi-continuous and hemi-continuous operators
in Hilbert space was given by the writer in [4], [S], and [6]. The writer extended
these results to separable reflexive Banach spaces in [7], as well as to classes of
densely defined operators in [8] and [9]. A slightly later extension to reflexive
Banach spaces without a separability assumption was given by Minty in [17].
(More special results in the Banach space context were obtained earlier by M. A.
Krasnoselski [13] and Vainberg and Kachurovski [19].)

We propose in the present discussion to obtain a general theorem of this type
in the most general context available, that of locally convex linear spaces.

Let E, and E, be two locally ccnvex linear Hausdorff spaces over the real
numbers. Let (E,, E,) be a dual system in the sense of [11], i.e. for u in E, and v
in E, we have a bilinear pairing (u,v) defined such that:

(1) (u,v) is continuous in u on E, for fixed v in E,, and (u,v) is continuous in v
on E, for fixed u in E,.

(2) IfveE,, v # 0, there exists u in E, such that (u,v) # 0.

Let T be a mapping (not necessarily linear) from E, to E,. T is said to be

monotone if
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(u—0v,Tu—Tv)20

for all u and v in E,. T is said to be finitely continuous if it is continuous from
every finite-dimensional subspace of E, to E,.

Let S beasubset of E;. K(S) denotes its closed convex hullin E,. Ifu € K(S)— S,
then S is said toenvelop u if for every finite-dimensional flat F containing u, the
boundary of K(S) N F is contained in SN F.

If C is a mapping of E, into E,, it is said to be completely continuous with
respect to (E,, E,) if it is continuous and if the mapping j of E, into R! given by
j(u) = (u,Cu) is continuous on compact subsets of E,.

THEOREM 4. Let (E,E,) be a dual system as above, T a (not necessarily
linear) mapping of E, into E, such that T = T, + C where T, is finitely con-
tinuous and monotone, C is completely continuous with respect to (E,,E,). Let S
be a subset of E, such that K(S) is compact in E; and u, a point of K(S)— S
such that S envelops uy. Suppose that for given w in E,, we have

(5.1) . (u—ug,Tu—w)=20
foralluin S. Then there exists uy in K(S) such that Tu, = w.
The proof of Theorem 4 rests upon the two following lemmas.

LemMA 5.1. Let T, be a finitely continuous map of E, into E,, u,€E,,
u, €E,. Suppose that

652 (4 =y, Tou— ) 20
foralluin E,. Then Tou, = u,.

Proof of Lemma 5.1. Suppose Tou; # u,. Then there exists v in E; such that
(v,uy — Touy) > 0. For t > 0, let v,=u; + tv and substitute v, for u in the ine-
quality (5.2). We obtain

. t(v, Tov,— uy) 20
or cancelling the positive factor ¢,
(v, Tov,— u;3) 2 0.
We rewrite this as
(v, Tov, — Touty) = (v,uy — Tou,)
andlet t—>0+. Then (v,Tov, — Tou,)— 0, and
0= (v,u; — Tou,) >0,

a contradiction which implies that Tou, = u,. Q.E.D.
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LEMMA 5.2. Let E, be of finite dimension, T a continuous map of E; into

E, where (E,,E,) is a dual system. Suppose S is a bounded subset of E; which
envelops 0. Suppose that

u,Tu)=0
forallu in S. Then there exists u in K(S) such that Tu, = 0.

Proof of Lemma 5.2. If E, is of finite dimension and (E,E,) is a dual system,
E, is isomorphic to the dual space Eof E;. Since the assertions of the lemma
are invariant under the replacement of one topology on E, by an equivalent
topology, we may assume that E, is a Hilbert space H, E, = E, = H, and the
pairing is the inner product. Then T maps H into itself.

Let T,=(1—- 6T +tI, 0=t <1, and let D be the interior of K(S). Since the
boundary of K(S) is contained in S, O lies in D. We shall calculate the degree of

T,on D over 0. For t =1, T, = I and this degree is 1. On 4D, the boundary of
D, T,u # 0 for t > 0 since

(w,Tu)y=1—6)(u,Tu) + t|ul*=t]u]?

for uedD < S. If T, has a zero on D, our proof is complete. Otherwise the
degree of T, on D over 0 equals the degree of T; on D over 0, which equals 1.
Hence there exists u, in D such that Tou; = Tu; = 0. Q.E.D.

Proof of Theorem 4. We normalize the situation by replacing u by v = u — u,
and setting Tyv = T(u — uo) — w. Then S; = {v|v =u — u,y, u €S} surrounds 0
and the existence of a solution of Tu= w on K(S)is equivalent to the existence of a
solution of T;v =0 on K(S,). Thus we may assume to begin with that uo=0,
w =0, and

(u,Tu)=0

on S.
For fixed u in E, let

M, =K(S)n {v|(u — v, Tou + Cv) 2 0}.
The function
(u —v,Tou + Cv) = (u, Tou) — (v, Tou) + (u,Cv) — (v,Cv)
is continuous in v on K(S) for fixed u in E,. Hence M, is a closed subset of the
compact set K(S).
Let {u,,---,u,} be a finite set in E,, F, the finite-dimensional subspace of E,
generated by {u,,*--,u,}. By the Hahn-Banach Theorem, we can find a bounded

idempotent mapping P of E, into E, whose range is F, (i.e. P is a projection on
F,). Let P* be the mapping of E, into itself given by

(v, P*w) = (Pv,w).
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Then P*is well defined and is a bounded linear idempotent mapping of E,. Let F’
be the range of P*. Then (F,,F’) form a dual system. Let R be the map of F,
into F’ given by Ru= P*Tu. Since T is finitely continuous and F, has finite
dimension, R is continuous. If S, = SNF,, K(Sy) — S, contains 0 and its
boundary is contained in S, by hypothesis. For u € S,

(u,Ru) = (u,P*Tu) = (Pu,Tu) = (u,Tu) =0

since Pu=u for ueF,. Applying Lemma 5.2, we find that there exists v, in
K(S,) < K(S) such that
P*Tv, =0.

For this element v, we have
P*T v, = — P*Cv;y,
andforu;, 1<j=<r,
0 = (u;— vy, Tou;— Tovy)
= (u;— vy, Touy) — (P(u; — vy), Tovy)
= (u;— vy, Touy) — (u; — vy), P*Tov,)
= (u; — vy, Tou;) + (u;— vy, P*Cvy)

= (u; — vy, Tou; + Cv,).
Hence

r
v € n M"J,
k=1

i.e. the {M,} have the finite intersection property. By the compactness of K(S)
and the closedness of each M,, it follows that n,,eEl M, #J.
Let u, be an element of (),eg,M,. Then

(u—uy, Tou + Cuy) 20

foralluin E,. By Lemma 5.1, Tou; = — Cu,,i.e. Tu, =0. Q.E.D.
As a specialization of Theorem 4, we have the following:

THEOREM 5. Suppose X is a Banach space, X* its dual space, T a mapping
of X* into X such that T = T, + C where T, is monotone, T, is continuous from
finite-dimensional subspaces of X* to the weak topology of X, C is continuous
from the weak*-topology on bounded subsets of X* to the strong topology on X.
Let S be a bounded subset of X* which envelops uy, w an element of X such that

(u—ug,Tu—w)=0

for all u in S. Then there exists u, in K(S) the weak*-closed convex hull of S
such that Tu; = w.
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Proof of Theorem 5. This is obtained from Theorem 4 by letting E; be X*
with its weak*-topology, E, be X with its weak topology.

We conclude our discussion with an extension of the result of Theorem 5 in a
slightly different direction.

THEOREM 6. Let X be a reflexive Banach space, Y a Banach space, X* and Y*
the dual spaces of X and Y, respectively. Let T be a mapping of X into Y* such
that T=T, + C where T, is finitely continuous and C is continuous on bounded
sets of X from the weak topology of X to thestrong topology of Y*. Suppose there
exists a bounded linear operator L from X to Y with dense range in Y such that

(5.3) (Lou - Lov, Tou - Tov) g 0

for allu and v of X. Let S be a bounded subset of X which envelops a point u,
of K(S), the closed convex hull of S, and such that for a given w in Y*,

(5.4 (Lu — Lug, Tu—w)=0
foralluin S. Then there exists u, in K(S) such that Tu, = w.

Proof of Theorem 6. Let L* be the adjoint map to L carrying Y* into X*,
R = L*T. Then R satisfies the hypotheses of Theorem 5 since inequality (5.3) is
equivalent to

(u—v,Ru—Rv)=20

while inequality (5.4) is equivalent to
(u —ug, Ru— L*w) 20,

and L*is a continuous linear mapping and hence weakly continuous. (The reflex-
ivity of X implies of course that X = (X*)*.) Theorem Simplies that there exists
u, in K(S) such that

L*w = Ru; = L*Tu,.

Hence L*(Tu, — w) = 0. Since L has dense range in Y, L* has a trivial null space.
Thus Tu,; = w. Q.E.D.
A final remark: For complex linear spaces, the real inner product given by

Re(u,v)

gives us the corresponding theoremsin the complex form applied in the preceding
sections. Finally, if Re(u,Tu) 2 C(|u|)|u]| with C(r)> + 0 as r— + oo,
then for every w in X*, Re(u,Tu —w)Z {C(||ul)—|w|} =] =0 for |u]
sufficiently large.
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