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In a preceding paper on nonlinear elliptic boundary value problems [7], the

writer established an existence theorem for variational solutions of nonlinear

elliptic boundary value problems for systems of the form

Au=   2 D*Ax(x,u,-,Dmu)
MS"

with Ax having at most polynomial growth. This theorem was derived from an

abstract theorem concerning the solvability of a class of nonlinear functional

equations in reflexive Banach spaces. Our result in [7] extended and generalized

earlier results anonunced by M. I. Vishik [20], [21], [22] and obtained by more

concrete-analytic arguments. Very recently Vishik has published in [23] a detailed

account of his methods and obtained more precise results than those announced

in his Notes listed above. The one feature of the results of [23] which goes beyond

the framework of the methods given in [7] (and one on which Vishik has laid great

emphasis) is that the monotonicity or strong ellipticity hypotheses imposed on

the system A involve essentially only the variation of the Ax with respect to

Dmu and not with respect to the lower-order derivatives of u.

It is our object in the present discussion to give an extension of our methods

which allows us to obtain results under weaker hypotheses of this type.

As in [7], our approach is based on a general theorem on nonlinear functional

equations in Banach spaces.

In §1, we formulate our main results on the solvability of nonlinear elliptic

boundary value problems and the corresponding abstract theorem. In §2, we

prove the abstract theorem. In §3, we prove our main theorem on the existence of

solutions of boundary value problems. In §4, we consider extensions and speciali-

zations of this theorem. In §5, we turn back to the abstract theory and analyze

the general method applied in [7] and here in the general context of locally convex

linear spaces.

1. Let Í2 be a bounded and smoothly bounded open subset of R". The general
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point of £" will be denoted by x =(x1,---,xn), while jf(x)dx will denote inte-

gration with respect to Lebesgue n-measure on fi. We set D¡ = ¡~ ld/dXj for

1 g j g n, and for each n-tuple a = (a,, ...,a„) of non-negative integers we set

D' = f[D>/,   |a|=2a,.
7-1 j=i

By functions u on Q, we shall mean s-vector functions u = (ux,---,us) for a

fixed positive integer s, where each uk is a complex-valued function on £). We set

D0,ti = (DaM1,-.,£"0[us).

Let m be a positive integer, p a real number with 1 <p< + oc. We define

Wm'p(iT) = {«Ja 6Lpiiï), D'u eL*(£l) for | «| g m}.

(All derivatives D'u will be taken in the sense of the theory of distributions.)

Wm'p(Q) is a reflexive separable Banach space with respect to the norm

HU=   (   I    \\D"u\pdx\'p.
l|a|gra  Ja 1

We denote by Ctœ(Q) the family of infinitely differentiable functions with

compact support in Q. We consider C"(£2) as a subset of Wm,p(iX). Let

<u,u> = 2       uk(x)vk(x)dx
k=i J

be the natural pairing between w in Lp(£ï) and t> in L*(Í2), with q = p(p — 1)"1.

We consider the system of differential operators

(1.1) Au =   S DaAx(x,u,--,Dmu)

where for each a, ^a is an s-vector function of x in fi, the value of the function

u atx, and the values of all the derivatives D'u at x for | a | g m.

We assume the following smoothness and growth conditions on the coefficients

Ax-

Assumption I. The functions Ax are measurable in x onQ. and continuous

in (u, •■-,Dmu). There exists a real number p > 1 and a continuous function g(r)

of the real variable r such that if

C = {C„;|a|=m}
then

(L2) / \   Í 1
\Axix,0\^g(    2      |fr|  •  1+   2  \C,\'-l+       2 Id1'-1»*"-

\|y|<m-n/p /      I 1/S|=m m-n/pá \ß\ &M-1 j

w/iere fy, satisfies
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(1.3) 0£c,.<r, Minj-^y- +-!—M.,1 J-(p-l)

and r^ is any exponent such that

rßl^p-l-n-lim-\ß\).

To define a variational boundary value problem for the system A, we assume

given a closed subspace V of fT"'p(Q) with C* (fi)<= F.

Corresponding to the representation (1.1) for A, we may define the nonlinear

Dirichlet form aiu,v) for each pair u and v in IFm'p(n) by

(1.4) aiu,v)-=  S <^(x,u,--,Dmí/),Dí,ü>.
|a|gro

From the Sobolev Imbedding Theorem (e.g. Lemma 5 of [2]), it followsthat

if m lies in Wm-"i£l), then for \y\<m- n\p, Dyu lies in C(iï). For | y | ^ m - nip,

Dyu lies in Uy(Q) where ry is any finite exponent such that

r^^p-'-n-'im-lyl).

Moreover the norms of the maps u-*Dyu from Wm,p(Q) to the spaces C(fi) and

Lrv(i2) are bounded. Applying Assumption I and Holder's inequality, it follows that

aiu,v) is well defined for all u and v in Wm'p(Q.) and satisfies an inequality of

the form

\a(u,v)\^gx(\\u\\miP)\\v\\m,„

where gxir) is a function of the real variable r depending on the function g of

Assumption I.

If V* is the conjugate space of V, we may now define the variational boundary

value problem corresponding to the pair iA,V)by:

Definition. Let f be an element of V*, if,v) its value on v in V. Then u is said

to be a solution of the variational boundary value problem for Au=f satisfying

the null boundary conditions corresponding to the space V if

(a) ueV, and

(b) aiu,v) = if, v), for all v in V.

In order to give a precise formulation of the hypotheses under which we shall

prove the existence of variational solutions for our boundary problem, we shall

write the nonlinear Dirichlet form aiu,v) in another notation which separates its

dependence on the lower order derivatives of u from its dependence on the mth

derivatives Dmu.

Definition. Let

(1.5) aiu;v,w) =    S <4SI(x,M,...,Dm~1i/,Dmi;),D,,w>.
[«IS«
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It follows from Assumption I that there exists r with r~1 > p~1 — n ~' such that

a(u ; v, w) is well defined for all u in Wm~ l'r(Q), and all v and w in Wm-"(Cl). By the

Sobolev Imbedding Theorem, Wm-P(Q.) is contained in W"~1,r(Q.) and the im-

bedding map is compact. Moreover

(1-6) \Ku;v,w)\z%gx(\\u\\m^,r)g2(\\v\\m¡p)\\w\\mrP.

Theorem 1. Let A be a system of differential operators of the form (1.1)

satisfying Assumption I for a given value of p > 1. Let V be a closed subspace oj

Wm-p(ÇÎ)such that C^(0.)czV. Let r be a real number as above with r~1>p'1-n~1

such that a{u; v, w) is well defined for u e Wm~UriCÏ), w and v in Wm'p(fi) and

inequality (1.6) holds. Suppose that all of the following conditions are satisfied:

(a) For each positive integer N, there exists a continuous function CNit) with

limCjy(i)= + oo ast -► + oo such that for all u in V with \\u ||m-i,r=N, we have

(1.7)      Re {aiu ;v,v - w) - aiu;w,v - w)} ^ CNi \\v-w ||m>p) \\v-w \\„tP

for all v and w in V.

(b) There exists a continuous function c(i) on R1 with c(f)-» +ooos(-> + oo

such that for all constants k _ 1,

Rea(u;feu,w) ^ c( || u \\„tP)\\ u ||mjP

for all u in V.

Then for every f in V*, there exists a solution u in V of the V-variational

boundary value problem for Au =fii.e. such that a(u, v) = if,v) for all v in V).

We shall derive Theorem 1 from the following abstract theorem concerning

nonlinear operators in Banach spaces.

Theorem 2. Let X be a separable reflexive Banach space, X* its conjugate

space(i.e. the space of bounded conjugate-linear functionals on X). For w e X*,

ueX, let(w,u) be the value of w at u.Let Y be a second Banach space such that

the elements ofX are identified with a linear subset of Y and the injection

mapping is a compact linear map of X into Y.

Let G be a (not necessarily linear) mapping ofYxX into X* and for u in Y,

let Gu be the mapping of X into X* defined by Gn(v) = G(u,v). Suppose that all

of the following conditions are satisfied:

(a) For each positive integer N, there exists a continuous function CN(r) on R

with lim^a, CN(r) = + oo and CN(r) > 0 for r > 0 such that

Re(Guv - Guw,v- w) ^CN(\\v-w \\x)\\ v - w \\x

foru in Y with || u ||v g N and for all v and w in X.

(b) There exists a continuous real-valued c(r) on R1 with c(r) -» + oo as

r -* + oo such that for every k = 1,
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Re(Gu(ku),u)^c(\\u\\x)\\u\}x

for all u in X.

(c) For each u in Y, Gu is a demi-continuous mapping from X to X* (i.e.

continuous from the strong topology in X to the weak topology ofX*). For each

fixed v in X, the mapping

u -* Guv

is a strongly continuous mapping from Y to X*.

Then the mapping FofX into X* given by Fu = Guu maps X onto X*, i.e. for

every w in X*, there exists u in X such that G(u,u) = w.

2. Let X be a separable reflexive Banach space, X* its conjugate space (i.e. X*

is the space of bounded conjugate-linear functionals on X). For w in X*, u in X,

we denote the value of w at u by (w,u). Thus (w,u) is linear in w, conjugate-linear

in ».

Let G be a (not necessarily linear) mapping from X into X*.

Definition. G is said to be demi-continuous if it is continuous from the strong

topology ofX to the weak topology of X*.

Proposition 1. Let G be a demi-continuous mapping of X intoX*such that

(a) For all u and v of X,

Re(Gu- Gv,u-v)^0.

(b) There exists a continuous real-valued function c(r) on R1 with c(r)-> + oo

as /•-> +00 such that

Re(Gu,u)^c(\\u\\)\\u\\.

Then G maps X onto X*.

Proof of Proposition 1. This is a special case of Theorem 2 of [7]. Since more

general results are proved in §5 below, we omit the proof here.

Proposition 2. Let G be a demi-continuous mapping of X into X*such that

there exists a continuous function c(r) on R1 with c(r)>0 for r > 0 and

limc(z-) = + oo as r-* oo such that

(2.1) Re(Gu - Gv,u -v)^c(\\u-v ||) \\u-v ||

for u and v in X. Then :

(a) G maps X onto X*.

(b) G is one-to-one, G_1 is deñned on all of X* and maps bounded sets of X*

into bounded sets of X.

(c) G_1 is strongly continuous from X* to X. There exists a real-valued
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monotone nondecreasing function n(r) on R1 such that n(0)=0, n is continuous

from the right, and

(2.2) || G~iw-G~1w1 || ^hi\\w-wx\\)

for all w and w, in X*. The function h depends only on the function c(r) of

inequality (2.1).

Proof of Proposition 2.   From the inequality (2.1) and the fact that c(r) > 0

for r > 0, it follows that G is one-to-one. Hence G~i is defined on the range of G.

For each pair u and v in X, we know from (2.1) that

Re(Gu - Gv,u - p)^0.

Moreover,

Re(Gu,u) = Re(Gu - G(0),u) + (G(0),u).

Hence

ReiGti.tOà c( || ti ¡) ||u I - || G(0) || ■ || « ||

= {C(H|)-||G(p)||}H|.

Since c(r) — || G(0) || -» + oo as r -» + oo, we may apply Proposition 1 and conclude

that G maps X onto X*, i.e. the range of G is all of X*.

For each R = 0, let

n(R)=sup{/-|c(/-)áK}-

Then n(R) < + oo for every R, n(0) = 0, and h(R) is monotone nondecreasing

in R.Obviously h(R) depends only on the function c(r). Finally, h(R) is con-

tinuous from the right. Indeed suppose otherwise. Then there exists a sequence

Rj -*■ R such that h(Rj) = r¿ ^ hiR) + e. Then cirf) = R¡ and extracting a con-

vergent subsequence from the bounded sequence r,-, we will have rj-*r = n(R) + e,

and c(/-j) -> R = c(r). This contradicts the definition of hiR). Thus ñ(R) is con-

tinuous from the right. From the inequality (2.1), we know that

c( || u - v || ) || u - v || = I Gu - Gu || • || m - t> ||.

If u ^ v, we have

e('|ii-0|)á|GK-G»|.

Hence

|«-e||aÄ(|ö«-Gt/|D.

Setting u = G-1w, u = G~1wx, we obtain

|| G~ xw - G- ^i || ^ Ä( || w - wj ||).
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Suppose Wj ->■ wx strongly in X*. Then || Wj — wx || -» 0. Since n(0)= 0 and n(£)

is continuous from the right, n( || ws — wx ||)->0. Hence || G~1wj- G~lWy ¡] -+0 as

j-* 4-co, i.e. G~1Wj->G~lWy strongly in X. Hence G"1 is continuous from

X* to X.

Finally if || w || = M, then

|| G~x w — G~a (0) [| g n( || w ||) g n(M).

Thus

|| G-V || = n(M) + |G-'(P)|,

and G~x maps bounded sets of X* into bounded sets of X. Q.E.D.

Proof of Theorem 2. Let u be an element of Y. Then the corresponding mapping

Gu of X into X* satisfies the hypotheses of Proposition 2 with a function CN(r)

which is uniform over all u with || w || y = AT.

By Proposition 2, Gu is a one-to-one mapping of X onto A"* with a continuous

inverse G~l. This inverse satisfies an inequality of the form

(2.3) ¡G^w- G;lwy\\x èkN(\\w-Wy\\x.)

for all u in F with ||u||y=AF.

Let w be a fixed element of X*. We wish to find a soluon uit of the equation

(2.4) Gu(u)=w.

For each v in Y, let Tbe the mapping of Y into Y given by

Tv = G~\w).

Then u will be a solution of (2.4) if and only if Tu — u, i.e. if u is a fixed point of

Tin Y.

We shall show the existence of such a fixed point u of T by applying the Leray-

Schauder theory of the degree for compact displacements in the Banach space

Y [14]. To do this it suffices to show the following:

(i)   T is compact.

(ii) There exists M > 0 such that for 0^tz%l,the mapping T, with Ttv= tTv

has no fixed points u with || u \\Y = M.

Proof of (i). Let J be the imbedding map of X into Y. J is a compact linear

map by assumption. Let S be a bounded set in Y. Then for all v in S, there exists a

function kN(r) such that

|| G„-1w- G;lWy\\xz%kNi\\w-Wy Up-

setting Wy = 0, we see that

Il g;1"!* = fco

for all v in S. Hence Tv = G ~ '(w) lies in a compact subset of Y, i.e. T(S) is compact.
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To show that T is a compact mapping, it suffices therefore to show that T is

continuous. Let v and v0 be elements of Y, u = Tv, u0 = Tt;0. Then

Gvu = w,    Gvou0 = w,

so that

GBu -G„u0 = G0ou0 -Gvu0 = (G„0 - Gv)u0.

Suppose Vj -* v0. Then || v} \Y, || u0 ¡r = A, so that for every j

Ig;1/-G-y.lx* *■(!/-/! IrO

for all/and fx in X*. Setting/= Gv.u,fx = GDju0, we find that

I Tvj - Tv0 \\x =  || u - u0 |x g fcjv( || GBjw - G„.m0 ||x.)

^ M||(GCJ-G„>0||X.).

Since Vj-*v0 strongly in Y and u0 is a fixed element of X, we see from the

hypothesis of Theorem 2

(G^-GJuo-Oin X*,

i.e.

||(G^-G„>o||x^0.

Since fcjy(r) -» 0 as r -» 0, it follows that

M8(G„-Gee)M0|x.)-0

so that || Ti;,- - Tv0 ||x-»0, i.e., Tt>^ Tt>0 in X and a fortiori in y. Thus T is

continuous from y to T and the proof that T is compact is complete.

Proof of (ii). Let t be a real number from the interval 0 < t ^ 1, and suppose u

is a fixed point of T, where Ttu = tTu. Then

iT« = M,

i.e.

G„-1(w)=-iM

or

G„(!«)-w.

If í = 0, the only fixed point of T0 is zero. If t > 0, let k = 1/r. Then fe _ 1, and we

have

GJJai) = w.

Then
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iGuiku),u) = iw,u).

From hypothesis (b) of Theorem 2, we know that

c( || u \\x) || u \\x g Re (Gu(ku),u) S \\ w ¡x, ■ || m |z.

Hence c(|| m |»f) g || w||x.. Since c(r)->+co as r-» + co, it follows that

|| u \\x g M, for some M > 0 independent of t. Since the injection of X into F is

bounded,

||«|r = Ai.

for all such fixed points u and (ii) is proved.

As we remarked above, Theorem 2 follows from (i) and (ii) and the Leray-

Schauder theory of the degree. Q.E.D.

3. We now turn to the proof of Theorem 1 using Theorem 2. To carry through

this proof, we shall need some preliminary results with which we begin our dis-

cussion.

Lemma 3.1. Let N be a constant and let fix,Uy, ■■-,uN) be measurable in x on

Q for fixed u = iuy,---,uN) and continuous in u for fixed xfor almost all x in Q.

Let{uu)} bean infinite sequence of functions on Q converging in measure on Í2 to

u(0)(x)(i.e. with each component uy\x) converging in measure to u(r0>(x)). Then

fa\x)=f(x,uj)(x),---,u^j)(x)) converges in measure on Q to f(x,u{y0)(x),- ■ • ,i/^,0)(x)).

Proof of Lemma 3.1. For N = 1, this is a result of Nemytski given on pp.

29-30 of Krasnoselski [12]. The proof for N > 1 is the same as for N = 1. We

give it here for the sake of completeness because of the relative inaccessibility of

the reference.

We consider N-vector functions u(x) on Í! and N-vector constants u. Let

e > 0 be a fixed positive number. Suppose u0)(x) converges in measure on £2 to

u(0'(x). For each k^ 1, let

Gk = ix | x e Q, \fix,u<0\x)) -fx,u) \ < e if u e CN, \ u{0)(x)- " | < y] •

The Gk are nondecreasing with k and since f(x,u) is continuous in u for almost

all x in Í2, Í2 — {JkGk has measure zero. If n > 0 is given, we may therefore find

an integer k0 such that m(Gko) > m(Q)- n/2.

Now let

<j = [x|x e ÍL \u(0\x)-u(J,(x)\ < M
feo/"

Since u(j) converges to t/(0) in measure, we can find N such that for j > N,

m(Fj)>m(Q) — n/2. Then x in Gkon Fj lies in the set
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Dj = [x\  |/(x,U(0)(x))-/(x,U°->(x))| <E}

and thus

miDj) = m(Q) - {m(fi - GJ + m(ii - F,)}

5:  /n(Q) —if.

Since nt(D,-) -> /n(fi) for fixed £ as j-* oo, f(x,uÍJ)(x)) converges in measure to

/(x,h(0)(x)). Q.E.D.

Lemma 3.2. Let fix,ux, •••,%) be continuous in u — (ux, •••,uN)for almost all

x and measurable in x for all it. Suppose

\fix,ux,---, uN)\ = c I Z|t/r|Cr+lJ        (c, cr constants).

Let Z= TJÍL i LCrPiQ)for some p = 1. Tnen ine mapping Tof Z into Lp(fi) giren by

T(u1,---,Ujv)(x)=/(x,u1(x),---,í/jv(x))

is a continuous mapping of Z into Lp(fi).

Proof of Lemma 3.2. (This is a generalization of a result of M. M. Vainberg

forA= 1. Cf. [12] and [18].)

Let u(x) denote the vector function iuxix),---,uNix)). Suppose u(j)(x)converges

strongly to u(0)(x) in Z. Then uu\x) converges to u(0)(x) in measure on Q. By

Lemma 3.1,/(x,iz(J)(x)) converges in measure to /(x,w(0)(x)) on £2.Thus given

e > 0 and n > 0, we may find;0 depending on e and n such that for / ^j0, the set

Fj given by

Fj = {x | |/(x, u (0)(x)) - fix,u u\x)) | = e}

has measure miF¡) < n.

We have then, however,

öj =   f \fix,umix))-fix,uU)ix))\pdx^   ( f       +  f ) ...
Jn \ Jo-Fj     J/y

^ £pm(.Q) + rp f    I I {| ¡/r(x) |Cr + | w^ix) |Cr} + 1 Xdx.

For the last integral, we know that

i   ÍZ \urix)\Cr + \u(rJ\x)\c-\ + ijdx

^  sup [K2A/ + l)p_ »£ ( I  { | u,(x) |pf' + | u<» (x) Ipcj + 1 )dx] = p(F)
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where piF) -* 0 as miF) -+ 0. Since

ôj z% epm(Q) + cppiF)

we may choose n so small that

cpu(F)<ep

and obtain the inequality

ôj £ Ep(m(iï) + í),

so that

\\fix,uU)) -f(x,u^) \\LPm g e(m(fi) + l)1/p

for; ^j0. Q.E.D.

Proposition 3.1. Lei   Aj(x,Ç), Ç = {(a, |a|^m}, satisfy the conditions of

Assumption I. Leí r fte any exponent such that

±>!-±
r " p       n

and for every a and for ß with m— l^\ß\^m — nip

(cpa feeing ine exponents of Assumption I).

Tnen ¿/ Ta is g/uen by

T>,«;)(x) = ^(x,U(x),-,DB,-1u(x), 0"<x)),

tnen T„ is a continuous mapping ofWm~UriQ) x W""'P(Í2) info LP"(Q) wnere

l=Min  lLZ± + m-\«\,l\.
Px \    P n j

Proof of Proposition 3.1.   By Assumption I, Axix,Q is measurable in x and

continuous in Ç. Moreover it satisfies the inequality

(3
\AJix,Ç)\ûg(     S      \q)

j\ \   \y\<m-n/p I

•( 2  W1*     I       |C,|('-1)+"-+i)
\\ß\=m m-n/p£\ß\<m I

Applying Lemma 3.2, we need only to show that for u e Wm l''i&) (r as above)

and v in lFm"1,p(i2), we have

(3.2) D"u e Lp"lp- lrc°*\ | ß | z% m - 1,

(3.3) DßveL"-tp-i), |£| = m,
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and that the mapping u -> Dßu and v -» Dßv in each of these cases is a bounded

linear map of Wm"1,r(fi) and Wm,Piii), respectively, into the appropriate Lp-

spaces.

To do this, we apply the Sobolev Imbedding Theorem (e.g. Lemma 5 of [2]) and

find that for u in Wm~Ur'iT),Dßu lies in Wm~ ' _lp|,r(£2) and hence in L'"(n)where

± ^ ± _ m-l-\ß\
rß       r n

It suffices for this case to show that

1 _ «-i-lfll <        1        1
r n ~(P~i) + cßx    px

i.e.

i(P- 1) + Cßx~\{r'1 -n-xim-l-\ß\)}^ Min jl,^ + ^~^\.

This is precisely our hypothesis on r.

For | ß\ = m, we must note that if u e W" p(ii) then f/« e Lp(fi). It suffices then

to prove that

Px(P - 1) = P

P - 1 â P/Pa.

1       »„     ÍP- l     m-\a\   A
— = Mm {-4--LJ  i
Px \    P n j

£»,<,_»♦, j-dd)-,,_,.

The boundedness of the imbedding mappings follows from the Sobolev Im-

bedding Theorem. Q.E.D.

In order to apply Theorem 2 to the proof of Theorem 1, we must transform

the problem of the existence of the solution of the boundary value problem con-

sidered in Theorem 1 into the type of functional equation treated in Theorem 2.

We now let r be an exponent such that

J.   JL..J_
r       p       n

while for all a and all ß with m - n¡p^ \ß\ i% m - 1,

1^n,-1-|0l.r/       <\ .      i-i »*•    ÍP — 1  . m — lal   .1— $-—L + ÍÍP ~l) + cßx]    Min   ---1--f—í, 1   .
r n u p J i    p n J

or

However

so that
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Let X be the closed subspace V of Wm,piQ) endowed with the Banach space

structure induced by Wn-"iÇl). Let Y be the closure of V in W*~1,'ÍQl) with the

norm of flr~1,r(£i).

For u in Y,v and w in X, we consider the form

aiu;v,w).

This is conjugate linear in w and satisfies the bounds

\aiu;v,w)\ ^ gi\\i>\\y, \\v\\x)\\wix.

Hence there exists a unique element of X which we shall denote by G(u,v)

that

(3.4) (Giu,v),w) = a(u;v,w)

for all w in X.

We shall show that G satisfies the hypotheses of Theorem 2.

Proposition 3.2. 77ie mapping G of X x Y intoX* defined by equation (3.4)

above is continuous.

As a corollary, we have the fact that the mapping of X into X* given by

v -* Giu, v) is continuous.

Proof of Proposition 3.2. To show that G is continuous, it suffices to show

that if Uj -» u0 in Y, v¡ -* v0 in X, then

where e,- -► 0 as ; -» + co.

However,

iGiUj,Vj) - GiuQ,Vo),w) = aiuj-,vj,w) - aiu0;v0,w)

while

aiUj-,Vj,w)- aiu0;v0,w)

=   I <Axix,up-,Dm-1Uj,DmVj)- Axix,u0,-,Dm-1u0,Dmv0),Dawy.

1*1 s«

The term indexed by a in the last sum has its absolute value bounded by

\\Aaix,uJ,-,Dm-1Uj,DmvJ)-Axix,u0,-,Dm-,u0,DmvQ)\\Lr4D*w\\Lr.

where l\rx = 1/p - (m - | a | )/n, l/p„ = Min(l - l/r„ 1). By Proposition 3.1,

the first norm approaches zero as ; -* oo. The second norm is bounded by || w ||m>p

by the Sobolev Imbedding Theorem. Hence

|aiuy,Vj,w)- fl(w0;i>o>w)| ^ e7|| w||mjJ,   ,

where ej -* 0 as j -» + oo. Q.E.D.
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Proof of Theorem 1. We wish to apply Theorem 2 to the mapping G defined

above. Hypotheses (a) and (b) of Theorem 1 imply hypotheses (a) and (b) of

Theorem 2 for the mapping G. The only point that must be checked is that the

inequality of (a) of Theorem 2 for G holds not only for u in F but also for u in Y.

However, we have for u in V with || u || Y ̂  N,

Re{iGiu,v),v -w) - (G(u,w),i; - w)} = CN( || w - v \\x) \\w-v \\x.

Both sides of the inequality are continuous in u on F by Proposition 3.2. Hence

if the inequality holds for all u in the dense subset F of Y, it holds for all u in Y.

Finally hypothesis (c) on G follows from the continuity of G as a map of X x Y

into X*. Q.E.D.

4. In the present section, we shall consider extensions and specializations of

Theorem 1.

The extensions of Theorem 1 that we give below move in two directions. In the

first place, we have decomposed the form aiu,v) in two variables u and v into

a form aiu;w,v) in three variables u in Wm~1,r(Çï), w and v in Wm,p(£l) in a very

particular way by replacing all the derivatives Dßu with \ß\ = m by Dßw and

leaving the lower-order derivatives alone. Under suitable hypotheses, it may be

more advantageous to make a more refined choice of the occurrences of u and its

derivatives which are to be replaced by the corresponding terms in w and Dßw,

respectively.

The second direction of generalization concerns the generality of the boundary

value problem. In the linear case, we know that new boundary problems can be

treated by adding boundary terms to the Dirichlet form a(u, v). If we carry through

the corresponding formulation for the present case, we obtain a much wider

class of boundary value problems. We simplify the application of this principle

by assuming the boundary forms to be continuous with respect to the Wm,p(SÏ)-

norm. This is not necessary if we introduce a new norm on F involving a boundary

norm with respect to which the boundary form is continuous.

As a specific representation of the two types of generalization we have just

described, we combine these techniques to obtain the following result:

Theorem 3. Let Ci be a bounded, smoothly bounded open set in £" with

boundary T, A a system of s differential operators of order 2m acting on s-

vector functions u = (u¡,---,us) of the form

(1) Au =    I,   D'Ax(x,u,...,Dmu).
|a|Sm

Let C = {£„; I a | ^ m}, n = {n8 ; | ß \ z% m - 1} lie in CNm, Cf?'*, respectively,

where Nm is the number of a with |a| %%m, Nm_y the number of ß with

| ß\ _ m — 1. We assume that there exist functions
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Exix,n,Ç), H^m,

such that Axix,0 = Exix,C,0 for all ÇeCNm, with Ex measurable in x and con-

tinuous in in, (). We suppose that the Ex satisfy the analogue of the bounds of

Assumption I, namely:

\Exix,r,,0\

*g(     I   \c\*   I    |*|)
\\y\<m-n/p \y\<m-n/p /

1+ I K/,1""1 +     s      \cß\l'-u+e" +    I     |*|"'1,+H
\ß\=m m-n/p£\ß\<m m-n/p^\ß\<m )

where

0**<r,llta{^+!^l}-(,-l)

and rß is any finite exponent such that

rß-l^p-l-n-\m-\ß\).

There exist exponents r such that r~l > p~l — n~l and such that the form

e(u;i;,w)= I   <[Exix,{Dyu},{Dßv}),D*w>
l*IS"

iwhere Exix,{Dyu}, {Dßv}) is the result of substituting Dßu for nß, Dßv for C.f

in E(x, n, 0) is well defined for all ueWm~u\Çï) and v and w in W""'p(fi)and

such that e{u;v,w) is continuous in the pair iu,v) in Wm~ 1,r(£2) x Wm,Piil)

uniformly for w in bounded sets of w in Wm,Piil).

Letbiu;v,w) be a boundary form having the same property. Let V be a closed

subspace of W"",P(Q). Suppose that:

(a) For each N>0, there exists a continuous function CA(i) on R1, CA(f)>0

for t > 0, C,v(i) -> + co for t -* + oo such that

Re {e(u ; v, v - w)— eiu;w,v— w) + biu;v,v- w)— biu;w,v— w)}

^CNi\\v-w\\mtP)\\v-w\\miP

for all u in V with \\u j|m_1>r^ N and all v and w in V.

(b) There exists a continuous function c(i) on R1 with cit)-> + oo as /-> + oo

such that

Re{e(M;u,fcM) + i/(u;M,feu)}^c(||u|m>p)||«||mp

for allueV, k = 1.

Then for every f in V*, there exists u in V such that

aiu,v) + biu;u,v) = (f,v)

for allv in V.
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We omit the proof of Theorem 3, which is essentially the same as that of

Theorem 1. We omit also the detailed statement of hypotheses on the boundary

form b(u;v,w) based on the boundary case of the Sobolev Imbedding Theorem

which would imply the continuity of b(u;v,w) in the sense required in the

hypothesis of Theorem 3.

This may be obtained by a direct analogue of the arguments of §3 culminating

in Proposition 3.2.

Let us conclude the present section with some brief remarks on the hypotheses

(a) and (b) of Theorems 1 and 3 and the possibility of verifying them from assump-

tions on the Jacobi equations of the nonlinear system A.

Let Ax¡„ = dAJdCß. Then

a(u ;v,v— w) — a(u ; w, v — w)

2 f <Axßix,u,-,Dm-1u,tDmv+il-t)Dmw)Dßiv-w),D'iv-w)>dt
|3t|Sm,|/î|=m   Jo

= I <[exßix,u,v,w)Dßiv- w),D\v- w)>.
x,ß

Thus estimates on Re{a(u;v,v— w)— a(u;w,v— w)} may be obtained from

hypotheses on the form with coefficients Axß of the type considered by Vishik

in [23]. Similar considerations apply to the form Re{a(u;ku,u)}.

5. We turn now to the detailed consideration of the abstract theory of non-

linear functional equations involving monotone operators which underlies the

results of §2. For continuous operators in Hubert space, the study of monotone

operators was begun by G. J. Minty in [15] and extended by the writer in [3] and

Minty in [16]. The extension to demi-continuous and hemi-continuous operators

in Hubert space was given by the writer in [4], [5], and [6]. The writer extended

these results to separable reflexive Banach spaces in [7], as well as to classes of

densely defined operators in [8] and [9]. A slightly later extension to reflexive

Banach spaces without a separability assumption was given by Minty in [17].

(More special results in the Banach space context were obtained earlier by M. A.

Krasnoselski [13 ] and Vainberg and Kachurovski [19].)

We propose in the present discussion to obtain a general theorem of this type

in the most general context available, that of locally convex linear spaces.

Let Ey and £2 be two locally convex linear Hausdorff spaces over the real

numbers. Let (£«.,£2) be a dual system in the sense of [11], i.e. for u in Ey and v

in £2 we have a bilinear pairing (u,v) defined such that :

(1) (u,v) is continuous in u on Ey for fixed v in £2, and (u,v) is continuous in v

on £2 for fixed u in Ey.

(2) If v e £2,u#0, there exists u in Ey such that (u,u) #0.

Let T be a mapping (not necessarily linear) from £, to E2. T is said to be

monotone if
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(u -v,Tu- Tu) = 0

for all u and v in Ey. Tis said to be finitely continuous if it is continuous from

every finite-dimensional subspace of £, to £2.

Let S be a subset of Ey. K(S) denotes its closed convex hull in Ey. If u e K(S)-S,

then S is said to envelop u if for every finite-dimensional flat F containing w,the

boundary of K(S) n F is contained in S OF.

If C is a mapping of Ey into £2, it is said to be completely continuous with

respect to(£l5£2) if it is continuous and if the mapping j of E¡ into R1 given by

j(u) = (u,Cu) is continuous on compact subsets of £..

Theorem 4. Let (EX,E2) be a dual system as above, T a (not necessarily

linear) mapping of Ey into E2 such that T = T0 + C where T0 is finitely con-

tinuous and monotone, C is completely continuous with respect to (Ey,E2). Let S

be a subset of Ey such that K(S) is compact in Ey and u0 a point of K(S) — S

such that S envelops u0. Suppose that for given w in E2, we have

(5.1) (u-uo,Tu-w)}±0

for all u in S. Then there exists Uy in K(S) such that Tuy = w.

The proof of Theorem 4 rests upon the two following lemmas.

Lemma 5.1. Let T0 be a finitely continuous map of Ey into E2, UyeEy,

u2eE2. Suppose that

(5.2) (u-Uy,Tou-u2)^0

for all u in Ey. Then T0Uy = u2.

Proof of Lemma 5.1. Suppose T0Uy # u2. Then there exists v in Ey such that

(v,u2 — T0Uy) > 0. For t > 0, let v, = Uy + tv and substitute v, for u in the ine-

quality (5.2). We obtain

i(i>,Toi>(-u2) = 0

or cancelling the positive factor t,

iv,T0vt-u2)^0.

We rewrite this as

iv,T0vt-T0Uy)^iv,u2-T0Uy)

and let t -+ 0 +. Then iv,T0vt - T0Uy) -* 0, and

0^(u,u2-T0«1)>0,

a contradiction which implies that T0Uy = u2. Q.E.D.
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Lemma 5.2. Let Ex be of finite dimension, T a continuous map of Ex into

E2 where iEx,E2) is a dual system. Suppose S is a bounded subset of Ex which

envelops 0. Suppose that

(u,Tu) = 0

for all u in S. Then there exists u in X(S) such that Tux = 0.

Proof of Lemma 5.2. lfEx is of finite dimension and (£^£2) is a dual system,

E2 is isomorphic to the dual space E*ofEx. Since the assertions of the lemma

are invariant under the replacement of one topology on Ex by an equivalent

topology, we may assume that Ex is a Hubert space H, E2 = EX = H, and the

pairing is the inner product. Then T maps H into itself.

Let T, = (1 - t)T + tl, 0 ^ t =: 1, and let D be the interior of KiS). Since the

boundary of KiS) is contained in S, 0 lies in D. We shall calculate the degree of

T, on D over 0. For t = 1, Tx = I and this degree is 1. On 8D, the boundary of

D, Ttu # 0 for t > 0 since

(h,7>) = (1 - t)iu,Tu) + 11| u ||2 = 11| u ||2

for uedDcS. If T0 has a zero on dD, our proof is complete. Otherwise the

degree of T0 on D over 0 equals the degree of Tx on D over 0, which equals 1.

Hence there exists ux in D such that T0ux = Tux = 0. Q.E.D.

Proof of Theorem 4. We normalize the situation by replacing u by v = u — u0

and setting Txv = Tiu - u0) - w. Then Sx = {v | v = u - u0, u e S} surrounds 0

and the existence of a solution of Tu = w on KiS) is equivalent to the existence of a

solution of Txv = 0 on KiSx). Thus we may assume to begin with that t/0 = 0,

w = 0,and

(m,Tm) = 0

on S.

For fixed u in Ex, let

M„ = KiS) r> {»|(« - », T0u + Cv) = 0}.

The function

(u -v,T0u + Cv) = iu,T0u) - iv,T0u) + iu,Cv)- iv,Cv)

is continuous in v on X(S) for fixed u in Ex. Hence M„ is a closed subset of the

compact set KiS).

Let {ux,---,ur} be a finite set in Ex, F0 the finite-dimensional subspace of Ex

generated by {ux,---,ur}. By the Hahn-Banach Theorem, we can find a bounded

idempotent mapping P of Ex into Ex whose range is F0 (i.e. P is a projection on

F0). Let P* be the mapping of E2 into itself given by

iv,P*w) = (Pv,w).
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Then P* is well defined and is a bounded linear idempotent mapping of £2. Let F '

be the range of P*. Then iF0,F') form a dual system. Let £ be the map of £0

into F' given by Ru = P*Tu. Since T is finitely continuous and F0 has finite

dimension, £ is continuous. If S0 = Sn£0, K(S0) — S0 contains 0 and its

boundary is contained in S0 by hypothesis. For u e S0,

(u, Ru) = (u,P*Tu) = (Pu,Tu) = (u, Tu) = 0

since Pu=u for ueF0. Applying Lemma 5.2, we find that there exists Vy in

K(SQ) c K(S) such that

P*TVy =0.

For this element Vy, we have

P*T0Vy  =   ~P*CVy,

and for u¡, lz^jz^r,

0     ̂  (Uj -  Vy,   T0Uj -   T0Vy)

= (Uj -   Vy,   T0Uj) - (P(Uj -   Vy),   T0Vy)

= (Uj -  Vy,  T0Uj) - ((Uj -  Vy),P*T0Vy)

= (Uj -  Vy,  T0Uj)   + (Uj -  Vy,P*CVy)

= (Uj-Vy,T0Uj+CVy).

Hence
r

"l £   H M»„
k=l

i.e. the {Mu} have the finite intersection property. By the compactness of K(S)

and the closedness of each M„, it follows that Ç\ueEiMu # 0.

Let Uy be an element of (^„^M,,. Then

(U — Uy,T0U  + CUy) = 0

for all u in Ey. By Lemma 5.1, T0Uy = — Cuy,i.e. Tux = 0. Q.E.D.

As a specialization of Theorem 4, we have the following:

Theorem 5. Suppose X is a Banach space, X* its dual space, T a mapping

of X* into X such that T = T0 + C where T0 is monotone, T0 is continuous from

finite-dimensional subspaces of X* to the weak topology of X, C is continuous

from the weak*-topology on bounded subsets of X* to the strong topology on X.

Let S be a bounded subset of X* which envelops u0, w an element of X such that

(u — u0, Tu — w) ^ 0

for all u in S. Then there exists Uy in K(S) the weak*-closed convex hull of S

such that Tuy = w.
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Proof of Theorem 5. This is obtained from Theorem 4 by letting Ex be X*

with its weak*-topology, E2 be X with its weak topology.

We conclude our discussion with an extension of the result of Theorem 5 in a

slightly different direction.

Theorem 6. Let X be a reflexive Banach space, Y a Banach space, X* and Y*

the dual spaces of X and Y, respectively. LetT be a mapping of X into Y* such

that T= T0 + C where T0 is finitely continuous and C is continuous on bounded

sets of X from the weak topology of X to the strong topology ofY*. Suppose there

exists a bounded linear operator L from X to Y with dense range in Y such that

(5.3) iL0u - L0v, T0u - T0v) ^ 0

for all u and v of X. Let S be a bounded subset of X which envelops a point u0

of KiS), the closed convex hull ofS, and such that for a given w in Y*,

(5.4) {Lu - Lu0, Tu-w)^0

for all u in S. Then there exists ux in KiS) such that Tux = w.

Proof of Theorem 6. Let L* be the adjoint map to L carrying Y* into X*,

R = L*T. Then R satisfies the hypotheses of Theorem 5 since inequality (5.3) is

equivalent to

(u -v,Ru- Rv) = 0

while inequality (5.4) is equivalent to

(u - Bo, Ru - L*w) = 0,

and L* is a continuous linear mapping and hence weakly continuous. (The reflex -

ivity of X implies of course that X = iX*)*.) Theorem 5implies that there exists

u, in KiS) such that

L*w = Rux = L*Tux.

Hence L*CTux — w) = 0. Since L has dense range in Y, L* has a trivial null space.

Thus Tux = w. Q.E.D.

A final remark: For complex linear spaces, the real inner product given by

Re (u,v)

gives us the corresponding theorems in the complex form applied in the preceding

sections. Finally, if Re(w,T«) _ C(|| u ||)|| u || with Cir)-+ + oo as r-> + oo,

then for every w in X*, Re(M,T« - w) = {C( || u \\) - || w||} ||u || = 0 for \\u\\

sufficiently large.
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