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It is the object of this paper to prove that the binary operator of addition of the

natural numbers is not arithmetically definable in terms of a single unary operator.

An arithmetical (or elementary) definition is one in which no variables ranging

over sets of natural numbers are permitted; all variables range over just the

natural  numbers  themselves.

It is actually easier to prove something more than this: that a single unary

operator will not suffice even when any number of one-place predicates of natural

numbers are added. The method of proof is by elimination of quantifiers, origi-

nally due to Presburger. A by-product of the method used is the subsidiary result

that addition is not definable without quantifiers in terms of any set of unary

operators,  one-place   predicates  and   two-place  predicates.

The interpreted well-formed formulas herein considered have the following

as symbols: =, identity, interpreted in the usual way;/, a unary functor, in-

terpreted as a unary operator over the natural numbers; truth functions and

quantifiers; and predicate letters, each interpreted as a definite property of natural

numbers, a, b, c, d, x, y, z are variables. A term will be either a variable x or

f'(x), i.e., fifi- • • (x) ••■)), in which / occurs i times ; thus/°(x) is simply the variable

x. t and s, with and without subscripts and superscripts, will be arbitrary terms.

The symbols T and J. are propositional constants standing, respectively, for

truth and falsity,    m, n, h, i, j, k are natural numbers.

The class of formulas that are allowed can be made precise by the following

recursive characterization : (1) if tt, t2, ■•• are terms and F is an n-ary predicate

letter (n = 1) then tx = t2, Ftx •■• r„, T and 1 are allowed formulas; (2) if Ox and

02 are formulas and x is a variable then -(«Dj), Oj & <52> ( 3x)Q>x and (x)<I>i are

all formulas; and (3) nothing else is a formula.

Theorem I.   Given the formula

i3x)ifix) = t  & Pix)&x¥=s°x&-&x¥=s°no

&fix)*s1x&-&fix)*s1„1

_ &.fp-\x) # ¿r'A-au*-? (JC)*C\).
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where t and the s's are terms not containing x, there is an equivalent formula

without quantifiers but with the same free variables.

To begin the proof of this theorem, I shall describe a method which could be

used to plot Z and the s's on a tree assuming their numerical values were known.

For 0 ^ i =■ p — 1, d is eligible for the ith bay of a tree if' f~'(d) = t and there

exists a y such that f\y) = d and Piy). If s] is not eligible for the ith bay, we do

not plot it. If it is, we plot it as a cross in the ith bay. If sj = si, then they are

plotted at the same cross; otherwise, separately. If i # A, then it is not necessary

to check for the equality or inequality of s'j and s* in plotting them on the tree.

Plot z as a circle as the only item in the pth (and last) bay. For each plotted

s) plot/(sj) as a circle in the (i + l)st bay, unless something identical to it has

already been plotted. Similarly plot/2(s}) in the (i + 2)nd bay, etc. Connect

by a straight line any two items et and e2 in the succeeding bay if/(e.) = e2.

Change every circle to a cross if it is connected to a cross in the succeeding bay;

continue this untilno circle is connected by a line to a cross in a later bay. Complete

the table by entering, for every cross not connected to any cross in an earlier

bay, a chain of new crosses from that cross to the first bay. (Thus if there is a

cross in bay 3 not connected to a cross in bay 2, enter one cross each in bay 1

and in bay 2 and connect these by lines.)

The tree will then look something like the following example in which p = 7:

zero     x  s,

first bay

second bay   ó

third bay     o

x  s2°

x  s\

X    S,

x s

c s2

X    Si

<  s2

fourth bay

fifth bay

sixth bay

seventh bay

o-

OZ

X   s,       xs7

Every item (of which there are finitely many) in the zero bay will be a cross

and linked to Z in the pth bay by a chain. In each chain crosses appear until the

first circle following which all entries are circles. The last cross in any chain is

one of the s's. All chains begin in the zero bay.



1965]     UNDEFINABILITY OF ADDITION FROM ONE UNARY OPERATOR       331

Definition.   A root of y is a z such that /(z) = y.

Lemma 1. TAe formula of Theorem I is true if and only if at least one circle

in the tree has at least one more root eligible for the immediately preceding bay

than   there  are  in   the  tree.

Proof. Suppose first that there is such a circle e in the ith bay. There must be

an x such that P(x),/'(x) = e (and hence fix) = t) and/i_1(x) is not plotted

on the tree. It follows that x, f(x),---,f'~2(x) are likewise not on the tree. To

prove that, for each s*, f\x) # sj", there are three cases to consider.

Case I.    h < i and s) is on the tree. Then since fix) is not on the tree, q.e.d.

Case II. A ̂  i and s) is on the tree. Then/A(x) must be a circle on the tree,

since e =/'(x) is a circle. Since sj is a cross, q.e.d.

Case III. s1} is not on the tree. Then, it is not eligible for the Ath bay. Since

P(x) and fix) = t, fix)  is  eligible;  hence  q.e.d.

Suppose now that the formula is true. Note that in any chain the last cross must

be one of the s's. There must be an x such that fix) =£ s), for all A and j, P(x)

and f{x) = Z; hence, for each i < p, f(x) is eligible for the ith bay. If g is the

smallest number such that/f(x) is on the tree, then/*(x),/?+1(x), •••,/p(x) = Z,

are in a chain on the tree. Each of these must be a circle ; otherwise there would be

a k such that fix) would be the last cross in the chain, and hence, for some j,

fix) = s), contradicting the specification of x. Thus/?(x) is a circle with a root

f~lix) which is eligible for the ig — l)st bay but not on the tree.

Lemma 2. For every tree there is a formula without quantifiers which says

that t and the s's are such as to give rise to the tree.

Let F¡d mean that there exists a y such that Piy) and f'(y) = d. Note that F¡

has a definite interpretation given /, / and P. The formula for Lemma 2 can be

taken as a conjunction of all formulas described under (1) and (2) below.

(1) For each i and j a formula stating that s'¡ is eligible for the ith bay or not

(i.e., either the formula

f-ïs'j) - Z & F^s))

or its negation),

(2) for each i, j, i', j' and k such that j < n¡, j' < nv, and max (i, V) ^ k < p

either the formula

/-¡(sj) =/'-*'(S;:)

or its negation.

Lemma 3. For any circle on a given tree, there is a formula without quanti-

fiers which says that it has more roots eligible for the immediately preceding

bay than there are in the tree.
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The proof is by example. The reader can verify that the considerations are

valid in their generality. Consider the circled item marked with an asterisk in the

diagram above. Let G\z mean there are more than two roots of z of the form

/3(y) for some y such that Piy). Note that for an arbitrary z, G\z does not

assert that these roots are eligible for the fourth bay of the tree ; it implies it only if

/3(z) = t. Note also that G\ has a definite interpretation given / and P. The

circled item with an asterisk is /(s3) ( =/ (s2) =/3(s2)). Hence the condition

that this circled item has more roots eligible for the preceding bay than shown

on the tree can be expressed by the atomic formula G\fis\).

The proof of Theorem I can now be completed. There are only finitely many,

say m, trees possible; let Tiis%,--,sB^l,iy,'",TJ^s%,"-,f^i,f) be the formulas

without quantifiers corresponding to these, which exist by Lemma 2. The formula

without quantifiers which can replace that of Theorem I is a disjunction of m

disjuncts; the z'th disjunct is a conjunction of T&&%,•••>sj~.11,i) and a formula

without quantifiers which is a disjunction of all the formulas each of which states

that a circled item has more eligible roots than shown in the tree. These formulas

exist by Lemma 3. That the formula so constructed is equivalent to the formula of

the theorem is a consequence of Lemma 1.

Theorem II. To the formula like that of Theorem I, except that fix) = t is

deleted, there is a formula equivalent to it without quantifiers but with the same

free variables.

The proof is similar to that of Theorem I except for a few changes. The tree will

have only p bays since there is no entry for the pth bay. A number z is eligible

for they'th bay if there is a number y such that Piy) and fJ(y) = z. Lemma 1 is

still true if we add the words, "or if there are more items eligible for the (p - l)st

bay than appear on the tree." Lemmas 2 and 3 and their proofs still hold without

change, but a fourth lemma must be added.

Lemma 4. Given any tree it is possible to state that there are more numbers

eligible for the (p-l)si bay that there are in the tree by means of a formula

without quantifiers.

Proof. Consider the tree which was used as an example and diagrammed in

the proof of above theorem and pretend there is no t or seventh bay. Let

Hsz mean that z is one of at least five numbers w such that there is a y such that

Pyand/6(y) = w. The interpretation of H65 is definite given Pandf. To say there

are more than four numbers eligible for the sixth bay the formula /T^sf (or H5f3is x )

or etc.) will suffice.

The remainder of the proof is similar, in an obvious manner, to that part of

the proof of Theorem I following Lemma 3.
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Theorem III. A formula (3x)0(x), where <D(x) is a conjunction of atomic

formulas, or their negations, is equivalent to a formula without quantifiers and

with the same free variables.

Note that a term contains at most one variable ; that an atomic formula contains

at most two variables, and if it contains two variables, it must be an identity.

Case I. x appears with another variable in at least one conjunct which is an

unnegated identity. Then let p be the smallest number ^ 0 such that fix)

is one of the principal terms of such an unnegated identity. Let/P(x) = t be one

of these identities; Z does not contain x. Divide the conjuncts of 4>(x) into three

classes.

Class I. The conjunct fix) = t, those conjuncts which contain x as the only

variable, and those conjuncts containing, for some j < p, fJ(x) in a negated

identity. The clauses which contain x as the only variable can all be replaced by a

single atomic formula Px, where P has that interpretation making Px equivalent

to the conjunction of all the conjuncts containing x as the sole variable.

Class II. Other conjuncts containing x, which must contain x only in a term

fix), where j ^ p.
Class III.   Conjuncts not containing x.

By Theorem I there is a formula \¡i without quantifiers equivalent to the formula

obtained from ( 3x)0(x) by deleting conjuncts of Classes II and III. The formula

without quantifiers equivalent to ( 3x)i>(x) is the conjunction of ip together with

the conjuncts of Class III together with the conjuncts of Class II with f~p(t)

substituted for each term of the form f\x).

Case II. x does not appear with another variable in an unnegated identity

but does appear in a negated identity. The proof of this case is similar to that of

Case I except for using Theorem II instead of Theorem I.

Case III. x does not appear with any other variable in any conjunct. Then

( 3x)<5(x) is logically equivalent to (( 3x)<£>'(*)) • x, where % is the conjunction of

all the conjuncts of i>(x) which do not contain x, and <I>'(x) is the conjunction of

those that do. <J>'(x) contains no variables other than x, so (3x)0'(x) is either

true and can be replaced by T , or false and can be replaced by _L .

Theorem IV. Any formula is equivalent to one without quantifiers and

with the same free variables.

The proof is by Presburger's method. Replace universal quantifiers by exis-

tential quantifiers in the usual manner. Consider an innermost existential quantifier

( 3x) and assume the truth function in its scope is in disjunctive normal form

whose disjuncts are Ot(x), <D2(x),--. (3x)(<by(x)y ■■■) is logically equivalent to

( 3x)Ox(x) V(3x)cp2(x) V"- • By Theorem III each of these is replaceable by a

formula without quantifiers and with the same free variables. In this manner all

quantifiers can be eliminated, q.e.d.
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It remains to prove that there is no formula without quantifiers containing just

the variables a, b, and c which is true if and only if a = b + c. This fact will be

proved as Theorem VIII (which it will be noted, is true even if any number of

two-term relations and any number of additional unary operators are added).

Formulas without quantifiers can be assumed to be in disjunctive normal form.

A formula (with only a, b, c free) is suitable for addition if, for any m, n, p, it is

true for a = p, b =m, c = n only if p = m + n; it covers an order pair <[m,n}

of non-negative integers if the disjunct is true for a = m, b = n and c = m + n.

A fundamental formula is an atomic formula or its negation or a conjunction of

such. A disjunctive normal formula is then a fundamental formula or a disjunction

of fundamental  formulas.

Theorem V. If a fundamental formula <I> suitable for addition covers <[m,n}

and <m, n + h.y,for h > 0, then it does not cover <m + h, n>. (A/or does it cover

(m-h, n + h}.)

Proof. Note that an atomic formula may not contain more than two variables.

There are then three classes of conjuncts of O: Ca, those not containing a; Cc,

those not containing c; and Cb, those not containing b. These are inclusive of all

the conjuncts of $>, but perhaps not exclusive. Suppose <S> covers (m,n},

(m,n + hy and <m + h,n). Then the conjuncts of Ca are true for b = m

and c = n, by virtue of the coverage of (m,n}; those of Cc are true for

a = m + n + h and b = m, by virtue of the coverage of <m, n + h}; and those of

Cb are true for a = m + n + h and c = n, by virtue of the coverage of <m + h, n>.

Hence <b is true for b = m, c = n and a = m + n + h, and i> is not suitable for

addition, q.e.d.

Our main objective can be achieved if it can be shown that Theorem V implies

that no finite number of fundamental formulas suitable for addition can cover all

the ordered pairs of non-negative integers. To do this, we must digress. If A is a

set of non-negative integers let v¡iA), i > 0, be the number of numbers of A less

than i. The density of A is

lim^-,
/-»OO '

if this limit exists.

Theorem VI. If for every k the subset of those x's in A such that x + k is

also in A is of density 0, then A is of density 0.

Proof. Let Ak be the set of all x'sin A such that there is a y in A such that

0 < y — x _ k. From the hypothesis of the theorem it follows by familiar reasoning

that, for each k, Ak is of density 0. Thus, for every positive integer k and for every

s > 0, there is a j such that, for every ¿ > /, v¡iAk)/ i < e. For every x in the set
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A — Ak, the k numbers immediately following x are not in A, and hence not in

A — Ak; hence, for every i >j, v¡(A — Ak)/i ^ l/(fe 4- 1). Thus for every i >j,

since v¡(A) = v¡(Ak) + v¡(A — Ak), v¡(A)/ i < e + l/(k + 1). Since there is such a

j for any positive integer k and any e > 0, A is of density 0.

Theorem VIII. Let A be a sequence of non-negative integers that is not of

density zero; then there is a positive integer k and a subset C of A not of density

zero such that, for every x in C, x + k is in A.

Proof. By contraposition from Theorem VI. (Note: to say that a set is not of

density zero is not to say that it has density greater than zero ; for it may not have

any density at all as when the limit of v¡(A)/ i does not exist.)

Theorem VIII. No finite number of fundamental formulas suitable for

addition cover all the ordered pairs of natural numbers. (Hence, no formula

without quantifiers expresses a = b + c.)

Proof. Suppose contrary to the theorem that there are a finite number of,

say m, such fundamental formulas. Then there would be m sets of ordered pairs

By, ■■•,Bm such that By \JB2 U ■•• UBm is the set of all ordered pairs of natural

numbers and such that, for each i, if <[m,n) is in B¡ and (m,n + A> is in B¡,

then <m + A, n> is not in B¡. For any; 2: 0 and for any set X of ordered pairs of

natural numbers, let XJ be the set of all x's such that <j,x> e X.

Not all the B,'s are such that the density of B?is zero. Otherwise, the B's could

not together cover all the pairs <0,x>. Let us suppose that B° is not of density

zero. Then by Theorem VII, there exists a positive ky and a subset Dy of

By such that Dy is not of density zero and for every x in Dy, x + ky is in

B°. Let E2 be the set of all pairs <fe1(x> for x in Dy. By Theorem V, E2 nß.

is empty, since both <0,x> and <0,x + ky} are in By when <fej,x> is in £2.

Ek2 is not of density zero, since Dy is not of density 0. Now if, for each i,

Bklr\Ek2 were of density zero, then (ß^1 U ••• UB^,') nEk2 would be of density

zero and some members of £2 could not be covered since E2 'is not of density zero.

Therefore, for some B¡, say B2, Bk2c\Ek2=F2 is not of density zero. But

then again by Theorem VII there is a positive integer k2 and a subset D2 of F2

such that D2 is not of density zero and, for every x in D2, x + k2 is in F2 (and hence

<k1,x + k2y is in E2). Let E3 be the set of all pairs (ky + k2,x} for x in D2.

Similar to reasoning in the case of By n E2, B2 n E3 is empty. But now By n E3 is

also empty: for if <ki + fc2,x>isin E3, then x is in F2 and hence </c1;x> is in E2

and, by construction of £2, <0,x> is in By; also </c1, x + k2} is in E2 and

<0,x + fci + fc2> is in B!. Again there must be a B¡, say B3, such that B31+*2nÊ31+l[2

is not of density 0. In like manner EA, E5, ■•-,£„+y can be constructed in such a

way that, for each; and for each i <j, B¡n E¡ is empty. Em+1 will not be empty

but, for each iz%m, B¡r\Em+y will be, contradicting the assumption that

By O ••• C\Bm is the set of all ordered pairs of natural numbers.
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Main Theorem. Addition is not arithmetically definable in terms of any

single unary operator even withtheaidof anarbitrary setofone-placed predicates.

This now follows from Theorems IV and VIII. An interesting though subsidiary

result can be proved following the method given in Theorems V, VI, VII and

VIII. If we note that the proof that addition is not definable without quantification

turns solely on the feature of the language of this paper that an atomic formula

may have at most two variables (cf. the proof of Theorem V), the following by-

product of the present investigation is apparent.

Subsidiary Theorem. Addition is not definable without quantifiers in terms

of any number of one-place predicates, two-place predicates and unary operators.

The above methods serve to show that both results are true for many binary

operators other than addition, such as multiplication and raising to a power.

I have been unable to obtain a necessary and sufficient condition on a binary

operator <j> that the results of this paper hold for it. A sufficient condition is that

there exist arithmetic functions gx, g2 and g3,gx being bi-unique (i.e., gxim) =gxin)

implies m = n) such that, for all m and n, (p(g2(m), g3in)) = gxUn + n). (As a

consequence g2 and g3 are also bi-unique.) By reasoning in a manner similar to

that in the proof of Theorem V, it follows that if a fundamental formula suitable

for a - cj>ib, c) covers <g2(m), g3in)} and <g2(m), g3in + //)>, for h >0, then it

does not cover <g2(m + h), g3in)}. (Analogous definitions for "suitable for

a = <j>(b, c)" and "cover" are assumed.) With this result, the proof of the main

theorem and with it the subsidiary theorem for <6 is apparent. Thus for the formula

a = be, take gxim) = g2im) = g3im) =2m; for the formula a = bc take gx(m)

- g2(m) — 22m and take g3(m) = 2m. An open question is whether a = 2b • 3b

is definable in terms of a single unary operator. Taking f2(x) and/3(x) as, re-

spectively, the exponents of 2 and 3 in the prime factorization of x (or 0 if x — 0)

and F(x) meaning that x # 0 and x has no prime factor except 2 or 3, we get the

following equivalent to a =2b • 3C, showing that the subsidiary theorem is

false for it:

F(a)&f2(a) = b&f3(a)=c.

It is an easy matter to find three unary operators in terms of which addition

may be defined. Let/(w) be the sum of the exponent of 2 and the exponent of 3 in

the prime factorization of w. Let g(w) be the exponent of 2, and h(w) the exponent

of 3. Then z = x + y is equivalent to

(3w)(/(w) = z & g(w) =x& hiw) = y).

In a recent paper [2], Hartig gives two unary operators in terms of which both

addition and multiplication, and hence all of the notions of Peano arithmetic,
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can be defined. This result, together with the one reported in this paper, establishes

that two is the minimum, whether one wants to define just addition or all of

Peano arithmetic.
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