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Nash [11] defined a set T0 consisting of paths a on a topological manifold M

such that for 0 ^ t S 1, a(0 = a(0) if and only if t = 0. We add to this set the

constant paths on M; call the union T and give it the compact-open topology. The

map q:T -> M defined by q(a) = <x(0) is a fibre space in the sense of Hurewicz [10].

This fibre space extends the concept of the tangent bundle to topological mani-

folds in the sense that when M is a differentiable manifold, (T,q,M) is fibre ho-

motopy equivalent to the tangent bundle of M under a fibre homotopy equivalence

which takes T0 into the nonzero tangent vectors [6]. We recall that a vector field

on a differentiable manifold may be defined as a cross-section in the tangent

bundle. By analogy, we define a path field on a topological manifold to be a cross-

section in (T,q,M).

The principal result on the existence of nonzero vector fields on differentiable

manifolds was discovered by Hopf [9]. The theorem states that a compact ori-

entable differentiable manifold M admits a vector field which is nowhere the zero

vector if and only if the Euler characteristic of M is zero. The purpose of this

paper is to prove the corresponding theorem for path fields on topological mani-

folds: a necessary and sufficient condition for a compact orientable topological

manifold to admit a path field which is nowhere the constant path is that the

Euler characteristic of the manifold be zero.

A somewhat modified proof of the existence theorem, developed by Alexandroff

and Hopf [1], is the model for the present proof. The main step in their de-

velopment is the proof that every compact differentiable manifold admits a vector

field which is the zero vector at one point at most. In other words, there is always

a cross-section in the tangent bundle which intersects the standard cross-section of

zero vectors at one point at most. This theorem, besides being of interest in its

own right, reduces the problem from a global to a local one which is much easier
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to handle. We shall show in §1 that in a fairly large class of fibre spaces with

standard cross-section over compact manifolds, a cross-section may be obtained

which intersects the standard cross-section at one point at most. In particular,

such a cross-section exists for the fibre space (T,q,M) described above. In §2 we

use this theorem together with the results of [4] to extend Hopfs existence theorem.

Hirsch [8] asked whether a topological manifold of Euler characteristic zero

admits a fixed-point free map homotopic to the identity. The paper concludes

with an affirmative answer to his question when the manifold is compact and

orientable.

1. Cross-sections in generalized «-plane bundles. We shall use singular homology

theory throughout this paper. We adopt the convention of omitting the coefficient

group when it is the integers. For topological spaces X and Y, we denote by

Yx the space of maps from X to Y with the compact-open topology. Let E"

be Euclidean n-dimensional space, let S"~ ' be the unit sphere in E", and denote by 0

the origin of E". Let / stand for the unit interval [0,1]. If X and Y are topological

spaces with A e X, B e Y, then/: (X,A)->(Y, B) is a map iffe Yx andf(A) <zz B;

we write thatf:(X,A) -*(Y,B) is a homeomorphism iff is a homeomorphism of X

onto Y and/1A is a homeomorphism of A onto B.

Let (E,p,B) and (E0,p0,B) be Hurewicz fibre spaces [10] over the same base

space B. Fadell [6] defined (E0,p0, B) to be a fibre subspace of(E, p, B) provided

E0 <zz E, p0 = p\ E0 and (E, p, B) admits a lifting function X with the additional

property that if e0e£0 and weB1 such that p(e0) = w(0), then X(e0,w)e(E0)r.

When (E0,p0,B) is a fibre subspace of (E,p,B), Fadell calls g =(E,E0,p,B) a

fibred pair. When \J =(E,E0,p,B) is a fibred pair, the fibre over beB is the

pair (F,F0) where F = p~x(b) and F0 = pöl(b). If B is arcwise connected, the

fibre is independent, up to homotopy type, of the choice of b.

Let 5 = (E, E0, p, B) and $' = (F/> F0, P ', B) be fibred pairs over the same base

space B. Fadell calls ¡y and $' fibre homotopy equivalent if there exist

(1) maps cj> and \¡/ such that the diagram

*    *
(E,E0)->(E',E¿)

\        *       /,

P\ /P

commutes,

(2) a map H :(E x I,E0 x 1)-+(E,E0) such that for all ee£, H(e,0) = e,

H(e, 1) = \lieb(e) and H is fibre-preserving, i.e., pH(e,t) = p(e) for all tel,

(3) a map //' : (£' xI,E'0xT)-+ (£', E'0) such that for all e' e E', H\e', 0) = e',

H'ie', 1) = ctnj/ie') and //' is fibre-preserving.

A cross-section of a map p: £ -» B is a map a: B-* E such that p<x is the identity

map on B.
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A generalized plane bundle (gpb) is a map p : £-» B together with a cross-

section s : B-*E such that if £0 =£ — s(B) then

(1) (E,E0,p,B) is a fibred pair with fibre (£, £0),

(2) there is a homotopy # : £ x f -► £ such that if(£0 x [0,1)) c £0 and

//(£ x 1) = £ n s(B).

A gpb is a generalized n-plane bundle (n-gpb), n ^ 2, if

(3) £0 is arcwise connected and when n ^ 3, rci(F0) = 0, and

(4) H*(F,Fo)^H*(E",En-0).

From property (2) we have that the fibre £ of a gpb is contractable, so for k S: 1,

Hk(F,F0) ^Hk-X(F0). If Ç = (£, E0, p, B) is an «-gpb, we apply the Hurewicz

Isomorphism Theorem to conclude that £0 is (n — 2)-connected and nn„x(F0) ^ Z

(the integers). This definition of «-gpb is slightly more general than that used by

Fadell [6].

Lemma 1.1. IfHf = (E,E0,p,B) is a fibred pair, X is a topological space, and

/: X->B is a map, then the induced fibred pair f*(ft) =(/*(£),/*(E0), p*,X)

defined by setting

/*(£)   = {(x,e)6X x E\f(x) = p(e)},

/*(£<,) - {(x,e)eX x E0\f(x)=p0(e)},

p*(x,e) = x

is a fibred pair.

Proof. The fibred pair g has a lifting function X from which we obtain a lifting

function X* for/*(g) as follows. For coeX 'and (co(0),e)ef*(E),let

X*[(co(0), e), fi>](f) = (co(t), A[e,/co](0)

for all tel.

It is clear from the definitions that if g is a gpb, then /*($) is also. Since the

fibre off*(%) is homeomorphic to that of g, if g is an «-gpb, so is/*($).

A well-known property of fibre spaces is that a fibre space over a contractable

base is fibre homotopy equivalent to a trivial fibre space. By an extension of the

same argument, the following result may be obtained.

Lemma 1.2 [6]. Let ft = (£,£0,p,B) be a fibred pair and let U <z B be a set

contractable in B to a point b0e U. Then g| U = (p~1 (U), pô 1(U), p, U) is fibre

homotopy equivalent to a trivial fibred pair (U x F,U x F0, n, U) where

F — p~ (b0), £0 = pö'(fro) and Tt : U x F -*■ U is projection.

Lemma 1.3. If g =(£,£0,p,B) is a gpb over a metric space B and U cz B

is a contractable in B to a point b0e U such that b0 stays fixed throughout the

contraction then there exists a fibre-preserving deformation retraction

R: p"1 (17)x/->p~\U) takingp~\V) to s(B)such that R(p¿l(U) x [0,l))c£0

and s(b0) stays fixed throughout the retraction.
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Proof. Let

(p-'iiapo-^I/fl^Zt (UxF,Ux F0)
W

be the equivalence of 1.2 induced by the contraction of U. There is a fibre-pre-

serving homotopy G : p~l(U) x I -* p"1^ such that G(e,0) = e, G(e, 1) = i¡/ep(e)

andG(pô1(U) x I) cz pôl(U). Since $ is a gpb, thereis a homotopy H : F x I -> F

such that //(e,0) = e, H(e, I) = s(è0), and //(F0 x [0,1)) c F0. Let C : C7 x / -> B

be the contraction of U to b0 (keeping b0 fixed). For beU, define C6 e ß' by

Cb(t) = C(o, 1 - i), then i>(Mo) = ¿(b0,C„) (1). Define I : E -► £f by 1(a)

= A(a(0), pa), then by Proposition 1 of [5], there is a fibre-preserving homotopy

K-.E'xI-tE1 such that K(oe,0) = 1(a), K(oc,l) = a and from the proof of the

proposition it is clear that if a(r)eF0 then K(a(r),t)eE0 for ie[0,1). Now

define the deformation retractionP of p~ 1(U) to s(B) by

• G(e,3i), 0 ^ i ^ 1/3,

P(e, i) = -  i¡,[p(e), H(n'cb(e), 3i - 1)],       1/3 á » á 2/3,

.KiCp(e), 3i-2)(l), 2/3 £ r^l,

where n' : U x F -> F is projection. Since the functions agree at t = 1/3 and

■Kp(C), Hin'cpie),l)) =Hp(elb0) =KCp(e))il) = KiCp(e),0)il),

R is continuous. The point s(b0) stays fixed throughout the deformation retraction

because Bis metric and we may therefore take X to be regular [10].

The Covering Homotopy Theorem takes the following form in the theory  of

fibred pairs.

Lemma 1.4.   Let E,B and Z be topological spaces and let E0 be a subspace of E.

Suppose the following diagram commutes

where iiz) = (z,0) and g, p and H are maps. Then (E, £0, p, B) is a fibred pair

if and only if for each such diagram there is a map G : Z x /->£ such that

pG =H, G| Z x 0 = g and if giz) eE0 then Giz, t) eE0 for all t eI.

We will denote the boundary of a set X (relative to a topological space con-

taining X) by ÔX.

Lemma 1.5.   Let iE,E0,p,B) be a gpb and let c be  a  closed  topological

n-cell in B. We parametrize c by a homeomorphism from the unit cell in E onto
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so we can denote by 0 the point in the interior of c corresponding to the origin

of E". If there is a cross-section o': dc -> £0 then there is a cross-section a : c^E

such that a(c — 0) c £0.

Proof. Consider the commutative diagram

o     ^^~-^

^^~^^ p

8c'^ *Cc ->   (8c) x I   ->   c
i H

where H(x, t) = (1 — t)x. Since (p_1(c),po'(c),p,c) is a fibred pair, there is a

covering homotopy £ : (Be) x I ->p_1(c). Let R denote the deformation retraction

of 1.3 and define/ : (8 c) x /->p_1(c) by f(x,t) = R(L(x,t),t). We observe that

pl.(x, 1) = 0 sof(x, 1) = 0 for all x 6 8c. Therefore we may set a =fH~l.

Let g = (E, E0, p, B) be a gpb and let er : B -> £ be a cross-section in g- If> for

beB, a(b) = s(b), then b is a singularity of the cross-section tr.

Lemma 1.6. Leí 5 =(E,E0,p,P;F,F0) be an «-gpb where P is a finite con-

nected n-dimensional polyhedron. Given L, a subpolyhedron of P, and a cross-

section a in (pq1(L),p0,L), we may extend a to a cross-section in $ with a finite

number of singularities.

Proof. Let K=P — L and let Km be its m-skeleton. We may extend a to

a: LuX°-+£0 by sending a vertex v into any point in p0_1(i>). Assume that cr

has been extended to a: Lu Km -» £0, m < « — 1. Let c be an (m + l)-simplex of

K, then cr is defined on 8c which is a topological m-sphere. Let

</>
Po  (c)< gc x Fo

¡Ä
be a fibre homotopy equivalence and let n: c x £0->£0 be projection. Then

7r</>c7 : 8c^> F0 maps an m-sphere, m < n — I, into £0 which is (« — 2)-connected

so ncpo can be extended to a map 2': c-»£0. We define £: c-^po"1 (c) by setting

S(x) = i//(x, £'(x)). We note that if x e 8c, then I(x) = i//c/)(t(x) so the fibre-

preserving homotopy taking ipep to the identity induces a fibre-preserving homotopy

Zi': (3c)xi"-> po"1 (c5c) such that Zi'(x, 0) = i//</>ct(x), Zi'(x, 1) = er(x). Let

T = \f(8c) x I)\j{c x 0)1 czc x I and define a map Zi : T->pö1^) by setting Zi

equal to Zi' on (8c) x I and equal to I on c x 0. By the Fibre Homotopy Extension

Theorem of [2], h may be extended to a fibre-preserving homotopy

H: cx /-> pa* (c). Setting cr(x) = H(x, 1) extends o to c. By repeating the same

construction on each (m + l)-simplex of K, we can extend a to Luíí"+1. When

o has been extended to Lu -K""1, we may apply 1.5 to each «-simplex of K to

obtain the required cross-section.
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The connectedness of P in the last lemma was needed only to guarantee that the

pre-image under p0 of every point of P, which we indiscriminately called F0, would

be of the same homotopy type.

Let X and B be topological spaces, then X dominates B if there exist maps

/: X -* B and g: B-* X such that /gis homotopic to the identity map on B.

Employing the definition of covering dimension n, we may modify the proof of

the Hanner Domination Theorem [7] to obtain:

Lemma 1.7. Let B be an n-dimensional compact metric ANR, then B is

dominated by a finite n-dimensional polyhedron X by means of maps f : X -* B

and g: £ -> X where g is a barycentric mapping.

Lemma 1.8. Let <y =iE,E0,p,B) be a fibred pair and let X be a space which

dominates B by means of maps f: X^B and g: B->X. The induced fibred

pair /*(5) = (/*(£), f*(E0), p*,X) admits a cross-section o* if and only if g

admits a cross-section a. If o* is a cross-section in f*(U) and xeX with

CT*(x)ef*(E0), then for a cross-section a in$ obtained from o* we have that if

beB with g(b) = x, then o(b)eE0.

Proof. The first part of the lemma is known [6]. We outline the proof here. If

there is a cross-section a: £-»£, define o*: X -»/*(£) by o*(x) = (x, of(x)).

Given a* we have

■> E

P

-B,

where f(x,e) = e and p*o* — id. Let H: B x I -* B be the homotopy connecting

fg and the identity. Define a': B->E by a' = fo*g, then pa' — fg so o' is a

homotopy cross-section. By 1.4 there is a homotopy covering H from which we

may obtain a true cross-section for $. The second part of the lemma follows

easily from 1.4 and the fact that /(/*(£0)) c £0.

A connected separable metric space B is an n-manifold if for each beB there is an

open subset U of B containing b and a homeomorphism h : E"-*U (onto). The set

U is called a Euclidean neighborhood of b.

We shall assume throughout this paper that the dimension of all manifolds

considered is at least two. The results are trivially true for lower dimensions,

but separate arguments would be required.

Lemma 1.9. Let $ =(E,E0,p,B) be a gpb where B is a manifold. If there

exists a cross-section a' of $r with a finite number of singularities, then there

exists a cross-section o with at most one singularity.

/*(£)
A

/

/
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Proof. Let x0, ■•-,x? be the singularities of cr'. The proof of a theorem of M.

Brown and B. Casier [3] can be modified slightly to obtain the following result.

Given an «-manifold B and points x0, •'•,xq in B there exists a map of the n-cell

C„ onto B such that the restriction of the map to the interior of C„ is a homeo-

morphism whose image contains x0, • ■ -, xq. Thus the singularities of cr' are contained

in a Euclidean neighborhood V in B and so there is a closed topological cell C in

V containing x0, ■■■,xq in its interior. By 1.5 there is a cross-section a over C such

that crl 8C = er'18C and cr(z)eE0 except at one point. Extend cr to B by setting it

equal to cr' on B — C.

We are now in a position to prove the main result of this section.

Theorem 1.10. If $ =(E,E0,p,B;F,F0) is an n-gpb and B is a compact

n-manifold, then there exists a cross-section g of ^ with at most one singularity.

Proof. Let X be the dominating finite «-polyhedron of 1.7, then f:X-*B

induces an «-gpb

/*(&) = (f*(E),f*(E0), p,X;F, £0).

Thus by 1.6, there is a cross-section a* in /*(,$) such that o*(X) has a finite set of

singularities {x¡}. Applying 1.8 we obtain a cross-section cr' for $ such that

a'(B)ns(B) = s(\^j g~1 (x¡)). The polyhedron X is the nerve of an open co ver of B,

a manifold, so we may assume that the cover consists of Euclidean neighborhoods.

From 1.5 we see that xx is in the interior of an «-simplex of X, so since g is a

barycentric mapping, g~1(xx) is a compact subset of a Euclidean neighborhood

and hence there is a closed topological cell c in B containing g~1(xx) in its interior.

Let d' denote the distance (in the metric of B) between g~1(xx) and (J;>1 g~1(xi),

let d" be the distance from g~l(xx) to 8c and set d = min (d',d"). Take a finite

triangulation of c of mesh less than d/3, then no (closed) simplex of c intersecting

g~1(xx) intersects a simplex which touches (\^)i>ig~l (x,))u(dc). Let P be the

subpolyhedron of c consisting of simplexes which do not intersect {Ji>xg~1 (x¡) and

let L be the subpolyhedron of P consisting of simplexes which do not intersect

g~1(xx). We observe that cr'¡L is a cross-section in (pq1^)^^,!). The poly-

hedron P may not be connected, but B is arcwise connected so pö' (b) is inde-

pendent of b e B up to homotopy type. Thus by the remark following 1.6, we may

apply that lemma again to obtain a cross-section £' in (p~i(P),p,P) which is

equal to a' on L and S' has only a finite number of singularities {bXJ}. Extend £'

to B by setting it equal to cr' on B — P, then the singularities of £' are

{bXj}u(\^Ji>i g~1(xi)). If we repeat this construction for each i> 1, we will

obtain in a finite number of steps a cross-section S of 5 with only a finite number

of singularities {biyj}. The application of 1.9 completes the proof.

Let B be an «-manifold. We define (see [11])

T0 = {oceB'l <x(0 = a(0) if and only if t = 0}.
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Let T cz B1 be the union of T0 and the constant paths on B with the compact-

open topology. Define q : T -> B by qia) = a(0). A path field is a cross-section in

iT,q,B); a nonsingular path field on B is a cross-section in (T0,q0,B) where

<7o = q\T0.

Theorem 1.11. Every compact n-manifold admits a path field with at most

one singularity.

Proof. By 1.10 it is sufficient to prove that $ = (T, T0,q,B;F,F0) is an n-gpb.

The canonical cross-section consists of the constant paths on B. Fadell [6] showed

that 5 is a locally trivial fibred pair. The contraction H: F x I-* F is defined

for aeF, r,tel by //(a,t)(r) = a((l - i) • r). Fadell also proved that (F,F0)

is the same homotopy type as (£ ", £" — 0).

Corollary 1.12. Let Bbe a compact n-manifold, then there is a map f : B->£

such that fis homotopic to the identity map and f has at most one fixed point.

Let B be a differentiable n-manifold. A vector field is a cross-section in the tangent

bundle (E,p',B) of B. A nonsingular vector field is a cross-section in the bundle

of nonzero tangent vectors (£0, p'0, B).

Theorem 1.13 (Alexandroff and Hopf [1]). Every compact differentiable

n-manifold admits a vector field with at most one singularity.

Proof. Fadell [6] has shown that when B is a differentiable manifold,

(E,E0,p',B) and (T,T0,q,B) are fibre homotopy equivalent, hence there is a

fibre-preserving map ep : (T, T0) -» (£, £0). By 1.11 there is a path field o : B -> T

with at most one singularity. If er(b)e T0 then epcr(b)eE0 and cpo : £-» E is the

required vector field.

A generalized n-sphere bundle (n-gsb), n ^ 1, is a map p: E —> B such that:

(1) (E,p,B) is a Hurewicz fibre space with fibre F;

(2) F is arcwise connected, and when n S; 2, nx(F) = 0;

(3)H*(F)s//*(S").

If 5  = (E, E0, p, B) is an n-gpb, then (£0, p0, B) is an (n — l)-gsb.

The proof of the following theorem follows step-by-step that of 1.10 and is

therefore omitted. The only modification required is that if, for a cross-section a

in the proof of 1.10, o(B) ds(B) = siY), then, in the proof of 1.14, that same <r

is defined only on B — Y.

Theorem 1.14. Let 5=(£,p,B) be an (n — l)-gsb where B is a compact

n-manifold; then$ admits a cross-section except at one point at most.

2.fExistence of nonsingular path fields. If/, ge Yx with / homotopic to g,

then we write/~ g.
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Let M be an «-manifold and let/: M^M be a map. A point xeM is an

isolated fixed point off if there is a Euclidean neighborhood U of x such that

for yeU, f(y) = y if and only if j> = x.

Consider the map p : M x M -+ M given by p(xi> ^2) = xi ar|d 'et

A = {(xx,x2)eM x M\ x, = x2};

then Fadell proved [6] that (M x M, M x M — A, p, M) is locally trivial fibred

pair, i.e., Fadell defined a homeomorphism Ç such that

(p'^UYPo^U)) —C->  (Ux M,Ux(M- x))

\ /

P\ /P

commutes. By excision, the inclusion i : (U,U — x)->(M, M — x) induces an

isomorphism i*. Let p e H"(M, M — x) = Z be a generator and let i*(p) = ßu. The

map / : M -> M induces

(1 x /) : (17, U - x) - (p-^LO.Po \U))

by (1 xf)(y) =(y,f(y))- Define % : U x M^M by n(u,y) = v. Let £* be the

homomorphism defined by the diagram

H"(U, U - x)   -—-> H"(U, U-x)

i*        X (1 xf)*

H"(M,M - x)   —-» H"(UxM,Ux(M- x))   -—> H"(p- » (l/), pö ' (I/)).
71* 4*

We define the iwdex of the isolated fixed point x of the map / : M ^> M, If(x) e Z,

by F*(pLi) = If(x) ■ pv. This definition of index is equivalent to the one given in [4]

so it is well defined.

Define/' : (17,17- x)-»(M,M - x) by/' = ttÇ(1 x f) and let F be a Euclidean

neighborhood of x such that Fu/'(F)c=L7. There is a homeomorphism

ft :{E",En -0)-*{V, V -x) and for S = h(S"~l) cz V we know that setting

f=f'\ s we have f(S) czU-x.

Lemma 2.1. Let M be an n-manifold and let f:M^M be a map with an

isolated fixed point x, then If(x) = 0 if and only iff: S-* U — xis homotopic to a

constant map.

Proof. Let /" =/'| V. If 1 : (17, U - x)->(M,M - x) is inclusion, then by

definition £*/* =/'* and for 7 : (V, V — x) -* (U, U — x) the inclusion,

j*p*i* =zj*f* =y"*¿*. Since i* is an isomorphism, /*£* =/"*. Let r : U — x -» S



1965] PATH FIELDS ON MANIFOLDS 189

be a strong deformation retraction and let k : S —> V — x be inclusion. From the

exact cohomology sequence of (U, U — x) we obtain the isomorphism

of, :H"~l(U - x) -> H (U, U - x).

The preceding remarks show that diagram (1) commutes. If/~ const : S -* U — x,

then /* is the zero homorphism so F* is also and /y(x)=0. Conversely,if If(x) = 0,

then F* is the zero homomorphism and therefore so is (r/)*. Thus the degree of

(rf): S->S is zero and by the Hopf Classification Theorem, rf~ const. Let

k' : S -» U — x be inclusion, then k'rf ~ const : S-+ U — x. Since /c'r~id:

U — x -» L — x, we have k'rf ~ /and /~ const.

//"(Í/, 1/ - x)

(1)

//"-HS)
(r/)*

//""HS)

Lemma 2.2.   Lei M £>e an n-manifold and let U be a Euclidean neighborhood

ofxeM. Define

F0 = {a 6 L/'l a(i) — x if and only if t =0}

and let i¡/': F'0 -> 1/ — x be given by t^'fa) — a(l); 'nen »A' »s a homotopy equiv-

alence.

Proof. Let ft :.(£", £" - 0) -» (17,1/ - x) be a homeomorphism and let

£0 = {ae(£n)/|a(i)=0  if and only if t = 0}.

Then n induces a homeomorphism A : £0 -> F0 given by Ä(a)(i) = n(a(i)). Define

^ : £0 -> £" — 0 by ^(a) = a(l) and since ij/ = n_11^'/;, it is sufficient to show that

\p is a homotopy equivalence. Define »7 : £" — 0 ->■ £0 by fjiy) it) = t ■ y then

ïj/fj = id. We observe that rj\Via)it) = t ■ ail) and it is clear that if we define the

homotopy H : £0 x / -> £0 by

//(a,r)(i)
_ ( (tfi) ■ *ir), 0i%ti%r^l,

0<r< t < 1,

then nij/ ~ id.
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Theorem 2.3. A compact orientable n-manifold M admits a nonsingular path

field if and only if x(M) = 0, where /(M) denotes the Euler characteristic of M.

Proof. (Compare [6, 3.8].) Let a : M-> T0 be a nonsingular path field. Define

a map /: M -» M by /(y) = <r(y) (1). The map / is fixed-point free so by the

Lefschetz Fixed-Point Theorem, Ay = 0, where Ay is the Lefschetz number of /.

Since fis homotopic to the identity, Ay = #(M) so %(M) — 0 which proves that the

condition is necessary. Conversely, if x(M) = 0 we must construct a nonsingular

path field on M. Consider the fibred pairs (T, T0, q, M), (M x M,M x M — A, p, M)

and define \¡i : (T,T0)-+(M x M,M x M - A) by i/r(a) = (a(0),a(l)), then \¡i is

fibre-preserving. By 1.11 there is a path field a': M -*T with one singularity; call

it x. Let U be a Euclidean neighborhood of x and make the usual identifications

Íp-\x),pZíix))=iM,M-x); iq-\x),q-0lix))=iF,F0).

Let

C:(p'\U),pôiiU))^iU xM,Ux (M-x))

be the homeomorphism defined by Fadell [6]. Define

C : iq-'iUyqô'iU))-^^ x F,U x F0)

by C'(a)(i) = C(a(0), a(i)), then £' is a homeomorphism such that

0»"1(ü),Po"1(lO)-► (U x M, U x (M - x))
A A

•A 1 Xl¡/'

(q~\U),qôl(U))-s;-► (t/ x F, 1/ x F0)

commutes, where (1 x \¡i')iy, a) = (y, a(l)) for y e 17, a e F. We define

S = 7tCV:([/,l7-x)^(F,Fo),

where it:(i/xF,l/xF0)->(F,F0) is projection. Since S(x) is the constant

path at x, there is a Euclidean neighborhood V of x contained in U such that

2(y) e U1 for all y 6 V. Let n' : (£", £" - 0) -► (F, V- x) be a homeomorphism and

set S = /j'IS"-1); then for rJ = 2 | S we have ri(S) c F0. Let/ : M -> M be given by

/CO = «t'OO (1) and define (1 x /) : M -> M x M by (1 x /)(y) = (y,/(y)). Let/:
S -> M be defined by /= «C(l x /) | S, then

■>'ff = ^'< V | S = 7i(l x ^)C'<t' | S = nCiK | S = nÇ(l x /) | S = /

and since «A'(-Fó) <= 17 — x we know that /(S)c [/ — x so the hypotheses of 2.1

are satisfied. By 2.2, f=\¡i'd implies that if /~ const, so also is cf. The map/has x

as its only fixed point and/ ~ id. Since M is compact and orientable (in the sense

of [6]), by the results of [4], I fix) = ( - l)"Ay = ( - l)"x(M). Therefore if

Z(M) = 0, Ifix) = 0 and by 2.1 /~ const: S -> U — x which implies

er~ const: S-+F'0. We recall the homeomorphism h' : (£",£"- 0)->(F,V - x)
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and let D" be the unitcellin £" centered at the origin. If C = «'(£>"), then S =8C.

Since d ~ const : S -> £0 we can extend ö to a map t : C -» £0. Define the non-

singular path field <r : M -> T0 by

ro'(y), yeM-C,

°(y) = \      .lt'-\y,<y)Y     yzc.

Corollary 2.4. Let M be a compact orientable n-manifold, then there is a

mapf:M-*M which is fixed-point free and homotopic to the identity if and

only if %(M) =0.

Proof. If there is a map f: M -> M which is fixed-point free and .homotopic

to the identity then 0 = Af = yt(M). Conversely, if jfM) = 0, then by 2.3, M

admits a nonsingular path field a and we may define the map/ by f(y) = <t(j>)(1).

Since o is nonsingular, / is fixed-point free. The map H : M x I -> M given by

H(y> 0 = OLVXOis a homotopy connecting / to the identity.

The preceding result answers the question of Hirsch [8] quoted in the intro-

duction for this category of spaces.

Nash [11] proved that when Mis a differentiable manifold, (T0,q0,M) is fibre

homotopy equivalent to the bundle of nonzero tangent vectors on M, so the

following result is a direct consequence of 2.3 (compare the proof of 1.13).

Corollary 2.5 (Hopf Existence Theorem [9]). A compact orientable dif-

ferentiable manifold admits a nonsingular vector field if and only i/x(M) = 0.
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