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1. Introduction. Let 5 be a semigroup, m(S) the space of all bounded real-

valued functions on S, where m(S) has the supremum norm. An element p e m(S)*

is a mean on m(S) if | p || -g 1 and p(e) = 1, where e denotes the constant 1 function

on S. A mean p is left [right] invariant if p(lj) = p(f) [p(rj) = p(f)] for all

fem(S) and seS, where the left [right] translation ls [/%,] of tn(S) by s is given

by (lsf)s' =f(ss') [(rj)s' —f(s's)]. An invariant mean is a left and a right in-

variant mean. A semigroup that has a left invariant mean (right invariant mean)

[invariant mean] is called left amenable (right amenable) [amenable].

Let S be a left amenable [right amenable] (amenable) semigroup, and let

f0e m(S). Then/0 is called left almost [right almost] (almost) convergent to the

real number a, if all left invariant [right invariant] (invariant) means on /0 have

the same value, a.

G.G. Lorentz [11, Theorem 1, p. 170] has shown that if S is the semigroup of

positive integers under addition, then an f0 e m(S) is almost convergent to a if

and only if the sequence/, converges uniformly to the constant function ae, where

/„ is given by/„ = n_12"=ii",/o- M. M. Day [1, Theorem 1, p. 539] generalized

this by showing that an f0 e m(S), where S is an amenable semigroup, is almost

convergent to a if and only if the constant function ae is the uniform limit of

finite averages of two-sided translates of /„. In the same spirit, K. Witz [14,

Theorem 4.4] proved that if S is a right amenable semigroup with identity, an

/o 6 m(S) is right almost convergent to a if and only if ae is the uniform limit of

finite averages of right translates of f0. (Left and right may be interchanged in

this result.)

One of the principal theorems in the present paper supplements the above

results by characterizing the values achieved by all left invariant means of m(S)

on an arbitrary (not necessarily left convergent) element f0 e m(S) in terms of
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pointwise convergence of finite averages of right translates of /0 to a constant

function. In addition, the other principal theorem obtains a characterization

of left amenability of S in such terms. We list these principal theorems

below.

Theorem 3.   Let S be a semigroup. Then the following are equivalent:

(a) For every fem(S), there exists a net of finite averages of right translates

of f which converges pointwise to a constant function.

(b) S is left amenable.

(c) There exists a net, {T3}, of finite averages of right translations such that

for every f in m(S), {Tsf} converges pointwise to a constant function.

Theorem 4. Let S be a left amenable semigroup, f0 an arbitrary element

in m(S), and a an arbitrary real number. Then the following are equivalent:

(a) There exists a net of finite averages of right translates off0, which con-

verges pointwise to cce.

(b) There exists a left invariant mean, p, on m(S) such that p(f0) = ot.

(c) -P*(-/o)=á*=£j>*C/o)-

The function pR in Theorem 4, condition (c), is defined in §3.

In §2, we state the basic nomenclature used throughout the paper. §3 is devoted

to the proof of implications (a) -* (b) of Theorems 3 and 4. The major steps in the

derivation exploit the w*-continuity of translation operators on m(S), the w*-

compactness of w*-closed norm-bounded subsets of m(S), and the commutativity

of a left with a right translation of m(S). These concepts are used to construct a

suitable sublinear functional on m(S), to which the Hahn-Banach extension

theorem is applied. §4 is mainly concerned with completing the proofs of the

principal theorems. The proof of the remaining implications of these theorems

makes use of an adaptation of a concept employed by Day in [1] and [3] ; that

of an introversion on m(S).

§5 obtains various results by the use of Theorems 3 and 4. The main topic in

that section is the introduction and investigation of left thick subsets of a semigroup

S, a generalization of subsets that contain a left ideal of S. A subset S' of a

semigroup S is called left thick in S if for each finite subset S" s S, there exists

ans'eS such that S"s" £ S'. It is shown that the left thick subsets of a left

amenable semigroup S axe precisely the subsets of S whose characteristic function,

/0, admits a left invariant mean p on m(S) such that p(/0) = 1. Further, a left

thick subsemigroup S' of S is left amenable if and only if S is left amenable. For

finite S, several of these results on S' reduce to cases which are implicit in the

work of Rosen [12].

2. Notation. For terms not given here or in a later section, see Day [1].

Topological terms shall follow the usage of Kelley [10]. If fee B, a linear topo-
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logical space, and peB*, then p(b) shall be alternatively designated by (p, b).

Let F be a subset of a topological space, then CL(V) designates the closure of V.

Now let F be a subset of a (real) linear space, then CO(F) is the convex hull of V,

the set of finite (weighted) averages of V.

Let S be a semigroup. Then Q: lx(S) -> m(S)* will denote the evaluation mapping

of the real semigroup algebra lx(S) into m(S)*. (See [1, Definition 3, p. 521] for

the product on /X(S).) For seS, Is is the characteristic function of s defined over S.

The products Iß and 9IS, where Oe i"(S), will be denoted by sO and 8s, respec-

tively. The set of finite means cp e /'(S) (see [1, Definition 2, p. 513]) is designated

by <£. The symbols [31] is the set of all left [right] translations of m(S) by ele-

ments of S. We denote A = CO(^?), P = CO(âS). For fe m(S), ZR(f) S m(S)

[ZL(f) £ m(S)] is given by

ZR(f)   = w*CL(CO(^/)) = w*CL(P/),

[ZLif)   = w*CL(CO(^/)) = w*CL(A/)].

And KR(f) = {ae; aeeZR(f)}, similarly KL(f) = {ae; aeeZL(f)}, where a ranges

over the real numbers.

3. Right stationary semigroups. This section investigates the properties of a

semigroup S that satisfies the requirement that for each / in m(S), the set

KR(f) [KL(f)] is nonempty. Such a semigroup is called right stationary [left

stationary]. The major goal of this section is to show that a right stationary

semigroup is left amenable. Additionally, some information is obtained regarding

the range of values attained by all left invariant means on an/e m(S).

Let X be a nonempty set, and let F be a mapping F: X -* X. By the translation

operator on m(X) induced by F, is meant the mapping TF: m(X)->m(X) given

by (Tpg)x = g(Fx), for xeX, and gem(X).

Lemma 1. // X,F,and TF are as above, then the translation operator

induced by F satisfies:

(a) TPe = e,

(b) ||FF||=1,

(c) TF is continuous in the w*-topology on m(X).

Proof,   (a) (TFe) (x) = e(Fx) = 1, for x e X.

(b) I TFf\\ = suPx eFW|/(x)| z% supx eX\fix)\ = |/|. Hence | 7>| ^ 1. By (a),

|T,||£1,bo|T,|«1.

(c) Let H = F~1, that is H(x) = {teX; F(t) = x}, for an x e X. Let

VF:ll(X)^lx(X)be defined by (VFff)x = 2telï(x)0(i), for 9elxiX) and xeX.

If fe m(X) and 6 e l\X), then
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(f,vF9) = £ fix)   £ ö(0
x e X t eH(x)

= £    £    f(x)9(t)
xeX  t eH(x)

=   £    £    f(x)9(t) = £ f(F(t))9(t)
teX   x=Ft teX

= (TFf,9).

So F* = TF. But the adjoint of a linear operator on a Banach space is w*-contin-

uous, by [4, Theorem 2, p. 18], hence TF is continuous in the \v*-topology on m(X).

Corollary 1.   If S is a semigroup, and if either Te P or Te A, then:

(a) Te = e,

(b) I T\\ = 1,
(c) Fis w*-continuous on m(S).

Proof. The operator /s. is the translation operator on m(S) induced by the

set map F: S->S, where F(s) = s's. Hence Lemma 1 applies to Te^C. But the

convex hull of any family of operators that has properties (a), (b), and (c), also

possesses these properties, A similar argument applies to Te P.

If we define d*ls.: l1(S)-*li(S), for an s'e S by */s.fl = s'9, for 9el\S), then

(*/s,)* = ls„ This may be verified by comparing the formula for s'9 with the VF

in the proof of Lemma 1, or a result of Day can be used. From [1, (D), p. 522],

lt(Q9) = Q(s9) for all seS, 9e /'(S). So for fe m(S),

dJ,0) = (Q(9),IJ) = (l*(Q9),f) = (Q(s9),f) = (f,s0),

which provides an additional proof of Corollary 1(c).

Lemma  2.    Let S be a semigroup, let f,gem(S), and let a be a real number.

Then:

(a)ZR(otf) = «ZR(f),

(b) ZR(f) is convex,

(c) geZR(f)^\\g\\è\\f\\,
(d) ZR(f) is w*-compact,

(e) ZR(f+g)^ZR(f) + ZR(g),

(î) TeP-*T(ZR(f))c:ZR(f),

(g)geZR(f)->ZR(g)çzZR(f).

Proof, (a) The space m(S) is a linear topological space in the w*-topology, by

[4, Corollary 1, p. 17]. And

ZR(af) = w*CL(CO(3t(af))) = w*CL(CO(a(á?/))).

But if A is a subset of a linear topological space, then

CL(COM)) = aCL(CCvl),
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by [6, Lemma 4, II, III, p. 415]. Hence,

w*CL(CO(a(^/))) = aw*CL(CCW)) = <xZR(J).

(b) The closure of a convex set in a linear topological space is convex [6,

Theorem 1, a, p. 413]. And ZR(f) = w*CL(P/), the w*-closure of a convex set.

(c) By Corollary 1(b), if geVf, then ||g| g ||/|. So P/ç= \\f¡U, where U is

the norm-closed unit ball of m(S). So,

ZR(f) = w*CL(P/) çz w*CL(||/| U),

by monotonicity of the set map CL in a topology, But w*CL(||/|t/) = \\f\\U,

since a norm-closed ball in a conjugate space of a Banach space is w*-closed

[4, Theorem  3, p. 40].  Hence ZR(f) £ \\f\\U.
(d) A norm-bounded w*-closed subset of a conjugate space of a Banach space

is w*-compact [4, Corollary 3, p. 41]. But ZR(f) is w*-closed by its definition,

and norm-bounded by (c).

(e) For Te 01, T(f+ g) = Tf+ Tg. Hence 0l(f+ g)^@f+ ®g. Then

ZR{f+ g) = w*CL(COW+ g))) <= w*CL(CCW+ ®g))

by monotonicity of the set maps w* CL, and CO. But if A, B axe subsets of a linear

topological space, and CL(CO(A)) is compact, then

CL(CO(A + B)) = CL(CO(A)) + CL(CO(B)),

by [6, Lemma 4, II, IV, p. 415]. Thus by (d),

w*CL(CCW+ ®g)) = w*CL(CCW)) + w*CL(CO(^^)) = ZR(f) + ZR(g),

which shows (e).

(f ) If A is a subset of a topological space X, and F is a continuous mapping,

F:X-+X, then F(CL(y4)) s CL(FL4)), by [6, Lemma" 16, d, p. 13]. Then by

Corollary 1(c), it follows that for TeP,

T(ZR(f)) = T(w*CL(Pf)) çz w*CL(TP/).

Since P is a semigroup of operators, TP £ p. Hence TP/s P/. Taking the w*-

closure, we obtain

w*CL(TP/) S w*CL(Pf) = ZR(f).

(g) From (f), it follows that if g e ZR(f), then Pg £ ZR(f). Taking the w*-closure,

we obtain

ZR(g) - w*CL(Pg) çz w*CUZR(f)) = ZR(f),

which completes the proof.
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Lemma 3. Let X be a nonempty set. A norm-bounded net, {f} where föem(X),

converges pointwise to f0em(X) if and only if {fs} converges w* to f0.

Proof.   Let w*limá(/á) = (/„). Since Ix,el\X), then for all x'eX,

lim (/,(*')) -  limifâ,Ix)=ifo,Ix)=foix').
ó s

Hence {/¡} converges pointwise to /0.

Let {fö} converge pointwise to/0, and let there exist a real number a ^ 0, such

that ||/. || ^ a for all ô e A, the directed set. Then for any ß>0, and for any 6 e lx(X),

there exists a finite subset, X'çX, such that 2X ex-x'|0(x)| =ß> because of

convergence of 2xeX|$(x)| to ||ö||. But pointwise convergence of {/.} implies

uniform convergence over any finite subset of X, in particular over X'. So there

exists <50eA such that for ö ^ <50, \fs(x) — /0(x)| ^ ß, for all xeX'. Hence for

|((/«-/o),fl)|=     S   (f(x) -fo(x))0(x)
x eX

Ú   2   |/ä(x)-/0(x)|-|ö(x)|+     2      |/,(x)-/o(x)|-|0(x)|
ieJ' xeX-X-

Û   2   ß\9(x)\+    2      (|/á(x)| + |-/o(x)|)-|0(x)|
xeX" xeX-X'

Ú ß\\e\\ +    2      2a|0(x)|^jS(||0|+2a).
xeX-X'

So {/.} converges w* to /0, which shows Lemma 3.

Let S be a semigroup, and let fe m(S). Then P(/) is a norm-bounded set by

Corollary 1(b). It follows from the correspondence shown above between point-

wise convergence and w*-convergence of norm-bounded nets in m(S), that the

set ZR(f) can also be described as the set of elements of m(S) that are limits of

pointwise convergent nets of elements of P(/). We shall be concerned with the

constant functions that are so obtained, that is, with the set KR(f).

Lemma  4.    Let S be a right stationary semigroup, and let f, gem(S). Then:

(a) The set {a; aeeKR(f), where a is real} is a closed interval, [a,,a2], where

at Ú a2,

(b) KR(f+ g) £ KRif) + KRig).

Proof, (a) This follows from Lemma 2, parts (b), (c), and (d). And since

KRif) is nonempty, then aj ^ a2.

(b) Let yeeKR(f+ g), where y is a real number. Since KR(f+ g) £ ZR(f+ g),

then by Lemma 2(e), there exist functions heZR(f) and keZR(g) such that

h + k = ye. Since S is right stationary, then there exists a constant function,

ae, such that aeeZR(h). So, there exists a net, {Tö}, where T¿eP, such that

w*limô(Tôh) — ae. But k = ye — h, so
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w*lim(T¿fc) = w*lim Tö(ye — h) = ye — ote = ße,
<5 s

where /? = y — a. Thus ße e ZR(k), and since k e ZR(g), then by Lemma 2(g), we

have ße e ZR(g). Hence ße e KR(g). Similarly, since ae e ZR(h), and h e ZR(f),

then by Lemma 2(g), we have ßeeKR(f). Then (b) follows, since ye = oce + ße,

which proves Lemma 4.

Let S be a right stationary semigroup, and let fe m(S). Then by pR(f) [pL(/)]

is meant

PR(f) = max {a ; ae e KR(f)} [pL(f) = max {ct;<xee KL(f)}~],

where a is real. The maximum, rather than the supremum, may be used because

of Lemma 4(a).

Lemma 5. Let S be a right stationary semigroup, let f,gem(S), and let a

be a real number. Then:

(a) |pfi(/)|^|/||,

(b) the   set   {ß; ße e KR(f)},   where   ß   is   real,   is   the   closed   interval

[- PÁ-f),PRÍf)l
(c) a ^ 0 -► pR(af) = <xpR(f),

(à)pR(f+g)ÛPR(f) + PR(g),
(e) - PR( - e) = pR(e) = 1.

Proof,   (a) This follows from Lemma 2(c).

(b) By Lemma 4(a), we have {/?; ßeeKR(f)} = [a,,a2], where at ^ a2. By

definition, pR(f) = a2. From Lemma 2(a), it follows that KR( —f) = — KR(f). So

{ß; ßeeKR( -/)} = [ - a2, - aj. Hence pR( -/) = - a1; so - pR( -/) = ax.

(c) This follows from Lemma 2(a).

(d) This follows from Lemma 4(b).

(e) From Corollary 1(a), we have ZR(e) = {e}. Hence from (b),

PR(e) = 1 = - PR( - e).

Theorem 1. Let S be a right stationary semigroup, f0 an arbitrary element

of m(S), and a an arbitrary real number. If there exists a net of finite averages

of right translates of f0 which converges pointwise to the constant function ae,

then there exists a left invariant mean, p, on m(S) such that p(/0) = a.

Proof. A net, {Tô} where Tôe P, exists such that {Tsf0} converges pointwise to

ae, if and only if aeeKR(f0), by Lemma 3 and Corollary 1(b). So

- Pr( -/o) = <* = PrUo),

by Lemma 5(b). And pR is a sublinear functional on m(S), by Lemma 5, parts

(c), (d). Hence by the Hahn-Banach theorem [4,Theorem 1, p. 9], there exists



1965] LEFT INVARIANT MEANS ON SEMIGROUPS 251

pem(S)* such that p(f0) = a, and p(f) ^ pR(f) for all/e m(S). Then || p | rg 1 by

Lemma 5(a), and p(e) = 1 by Lemma 5(e). Hence p is a mean on m(S).

We have only to show that p is left invariant. We shall show that for any

fem(S), and any l^eSe, that KR(f - lsf) = {0}, where 0 = Oe, the constant

zero function on S. Let yeeKR(f— lsf), and suppose y ^ 0. Then there exists a

net, {Ts} where T.êP, such that

w*lim(T.(/-/s/)) = ye.
i

Since TsfeZR(f), then by w*-compactness of ZR(f) (Lemma 2(d)), there exists a

subnet, {Tj of {Tá}, and a function geZR(f) such that w*lim,(T,/) = g. Since

{T,(/— Zs/)} is a subnet of the w*-convergent subnet {Ta(f— lsf)}, then

w*lim(T,(/-Zs/)) = K.
t

Thus

ye  = w*lim(T,(/-(/-/s/))

(1)

= w*hm(T,/)-w*lim(T,(/s/))
i i

= g - w*lim(ls,(Tnf)) =g-ls, (w*lim(T,/))
i) \      n '

=  g-h'g-

The third equality above follows from the fact that a left translation commutes

with a right translation(2), so Tnls. = ls.Tn; and the fourth equality follows from

the w*-continuity of Zs- (Corollary 1(c)). By substitution of (s')n, where the

exponent n is a positive integer, in (1), we obtain g((s')") — g((s')"+ ) = y. So,

k k

yk =   2   y= 2   (g((s')")-g((sT+1))
n=l n=l

= g(s')-g((s')k+1),

where k is any positive integer. So g((s')k + 1) = g(s') — yk. Thus g is unbounded

on S, since we can make fc arbitrarily large, and since we supposed that y # 0.

But this is a contradiction because geZR(f) ^ m(S). But S is right stationary, so

KR(f- IJ) = {0}.
Then by Lemma 2(a)

KR(lsf-f) = - KR(f- IJ) = - {0} = {0}.

(2) I initially attempted to prove that if S is right stationary, then Sis right amenable, which

is false as a counterexample later will indicate. The crucial observation that the incomplete

proof could be amended to show that 5 is left amenable by use of the commutativity of a left

with a right translation is due to R. J. Silverman.



252 THEODORE MITCHELL [August

So pR(lsf—f) = pR(f— lsf) = 0, for fe m(S), and for ls, e i?. So by domination

of p by pR, we have p(lj) - p(f) g 0, and p(f) - p(lj) S 0, thus p(f) = p(lsf),

for all fe m(S) and all ls. e &.

Corollary 2.   // S is a right stationary semigroup, then S is left amenable.

Proof. Let f0 e m(S). Since KR(f0) is nonempty, then by Lemma 3 and Corol-

lary 1(b), there exists the required net of finite averages of right translates of/0

which converges pointwise to ae, for some real a. The result follows from Theorem

1.

The commutativity of a left with a right translation was essential to the proof of

Theorem 1, hence Corollary 2. If we try to show that "S is right stationary implies

S is right amenable" the part of the proof that breaks down is equation (1)

Hence we cannot show that "0 is the unique constant function in KR(f — fs/)."

And indeed, a counterexample to both statements in quotes is provided by the two

element semigroup S = {a, fe}, where aa = ba = a, and ab = fefe = fe.

4. Left amenable semigroups. This section is concerned with proving the

converses to Theorem 1 and Corollary 2, and hence completing the characteri-

zation of left invariant means on semigroups in terms of constant functions. It

is shown, that if a semigroup is left amenable, it has a property that is formally

stronger than being right stationary, though in fact equivalent to it. This converse,

Theorem 2, together with Theorem 1 and Corollary 2 then yield the principal

theorems of this paper, Theorems 3 and 4.

Let S be a semigroup, and let pem(S)*. By the left [right] introversion on

m(S) induced by p is meant a mapping, p,: m(S) -* m(S), defined by (pf)s

= tihD l(Hrf)s = H(rsf)~] for fe m(S) and s e S, (cf. [1, p. 540]).

Theorem 2. Let S be a semigroup, f0 an arbitrary element of m(S), a a real

number and p a left invariant mean on m(S). If p(/0) = a, then there exists a

net, {Tô}, of finite averages of right translations such that:

(a) For any fem(S), the net {Tôf} converges pointwise to a constant function.

(b) The net {Tsf0} converges pointwise to ae.

Proof. Let v = Q(IS), for seS. Then the left introversion, v,, induced by v

satisfies v, = rs, the right translation by s, [1, p. 528, bottom 2 lines]. Also from

the definition of a left introversion, it follows that if pt, p2, p3 axe elements of

m(S)* such that px = ßp2 + yp3, where ß and y are real numbers, then

(ßi)i = ß(ßi)i + 7(^3)1-

Let $eO. Then the finite mean, (b, may be expressed as (b = £s t s(f>(s)Is. Let

9 = Q((b). Then 9¡= £s e s^>(s)rs. So 9¡ is a finite average of right translations

on m(S).
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But Q(<S>) is w*-dense in the set of means on m(S) [1, (D), p. 513]. So there

exists a net, {9S} where 9¡ = Q(eb9) and cba e i>, such that {9S} is w*-convergent to

the left invariant mean, p. Thus for any fe m(S),

lim ((9ô\f) (s) = lim (9Ö, IJ) = (p, IJ) = p(f),
a ô

for all se S. Hence {(9ö)f} converges pointwise to the constant function ße,

where ß = p(J). And since p(f0) = a, then {(9S)X] is the required net of finite averages

of right translations.

The principal theorems can now be given.

Theorem 3.   Let S be a semigroup. Then the following are equivalent:

(a) For every fem(S), there exists a net of finite averages of right translates

of f which converges pointwise to a constant function.

(b) S is left amenable.

(c) There exists a net, {Ta}, of finite averages of right translations such that

for every fin m(S), {Tô } converges pointwise to a constant function.

(a) —> (b) It follows from Lemma 3, Corollary 1(b), and condition (a) that S is

right stationary. Hence (b) follows by Corollary 2.

(b)->(c) This follows from Theorem 2(a).

(c)-*(a) Condition (c) is formally stronger than (a).

Theorem 4. Let S be a left amenable semigroup, f0 an arbitrary element in

m(S), and a an arbitrary real number. Then the following are equivalent:

(a) There exists a net of finite averages of right translates off0, which con-

verges pointwise to ae.

(b) There exists a left invariant mean, p, on m(S) such that p(f0) = a.

(c) - Pr( ~fo) á a ^ Pnifo)-

Proof. By Theorem 3, S is right stationary. So by Lemma 5(b), Corollary

1(b), and Lemma 3, it follows that conditions (a) and (c) are equivalent.

(a) -> (b) This follows from Theorem 1.

(b) -> (a) This follows from Theorem 2(b).

Corollary 3. Let S be a left amenable semigroup, f0 an arbitrary element of

miS), and a an arbitrary real number. Then the following are equivalent:

(a) f0 is left almost convergent to a.

(b) - PRi -/o) = PRifo) = a.

Corollary 4.   Let S be a  left amenable semigroup.  Then

Pr(D= max{p(/)},

where p is taken over all left invariant means on miS).
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Remarks, (a) Theorems 3 and 4, and Corollaries 3 and 4, remain true if the

words left and right are transposed along with pR and pL.

(b) If S is a finite semigroup, Theorem 3, conditions (a) and (c); and Theorem 4,

condition (a) do not require nets of finite averages of translations, but can use a

single finite average of translations. For example, Theorem 3, condition (c) becomes :

3(c') There exists a finite average of right translations, T, such that for every

fe m(S),  Tf is a constant function.

This follows from the fact that if S is finite, then P is a compact subset of the

bounded operators on m(S), in the uniform operator topology, say. Hence the net

{Tô}; Tô e P, of Theorem 3, condition (c), has a cluster point, Te P.

(c) If S is a countably infinite semigroup, then the nets in Theorem 3, condition

(a); and Theorem 4, condition (a) may be replaced by sequences. This follows

from the fact that if B is a Banach space, then the w*-topology of the closed unit

sphere of B* is metrizable if and only if B is separable [6, Theorem 1, p. 426].

If S is countable, then /'(S) is separable, so ZR(f) is metrizable in the w*-topology,

hence is first countable in that topology.

(d) Theorems 3 and 4, and Corollaries 3 and 4, remain true for left invariant

means over certain subspaces, X £ m(S), rather than m(S) itself. Let X £ m(S),

where S is a semigroup, have the following properties:

(1) X is a linear subspace of m(S),

(2) eeX,

(3) mX^X and &X £ X,

(4) X is w*-closed.

We say that peX* is a left invariant mean on X if |p|| g 1, p(e) = 1, and

ßif) = ¡¿ilj) for all ls e &. Then if we substitute, "fe X" for "fe miS)," "X has

a left invariant mean" for "S is left amenable," then Theorem 3, so modified,

remains valid. Similar substitutions in Theorem 4, and Corollary 3 and 4, and

the dual results indicated in remark (b) result in valid statements. The proof of

the modified statements goes through as before.

5. Consequences of the characterization. This section derives various results

by the use of Theorems 3 and 4. A new proof is given of Day's generalization

[2, Theorem 1, p. 586] of the Markov-Kakutani fixed point theorem (Theorem 5).

An extension of a result by Day [1, (c'), p. 521] on weak convergence of finite

means to left invariance is obtained (Theorem 6). The remainder of the section is

primarily concerned with the left thick subsets of a semigroup S.

A map, T:L^L', where Land L' are real linear spaces, is called affine if

T(ax + (1 + a)y) = aT(x) + (1 - a)T(y), for x, y e L and 0 ^ a ^ 1.

Theorem 5. Let K be a compact convex subset of a locally convex linear

topological space, X, and let S be a semigroup, under functional composition,

of continuous affine transformations of K into itself. If S, when regarded as an
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abstract semigroup, is left amenable, then K contains a common fixed point of

the family S.

Proof. Since S is left amenable, then by Theorem 3, there exists a net, {Ty}

where Tye P, such that for any/e m(S), {TJ} converges pointwise to a constant

function. For any Ty, there exists ebye(& such that Ty = 2S e s^j(s)rs. Let the map

Jy: K -> K be given by Jyk = 2S e scby(s)s(k), for k e K. For the remainder of the

proof, let y be a specific point in K. By compactness of K, there exists a subnet,

{J.} of {Jy], such that {Jôy} converges to some y0 6 K. And the associated subnet,

{T¿} of {T,,}, satisfies that for any/e m(S), {T¿¡/} converges pointwise to a constant

function, since {TJ} is a subnet of {TJ}.

We will show that for any s0 e S, that s0y0 is the required common fixed point.

(It can be shown by counterexample that y0 itself need not be one.) For each

peX*, define as in [2, p. 587], a real valued function,/, on S by fß(s) - p(sy),

for seS. Since p is continuous over the compact set K, then f e m(S). So for

s' eS,

(Tjy =   2   Us)({rsf)s')
seS

=   2   epaistfpis's) = 2   ebóis)pis'sy)
ss S seS

= p I 2   cbôis)s'sy\=p(s'il,   cböis)syj\

= pis'Jôy),

by linearity of p and affineness of s', in steps 4 and 5, respectively. Then

lim(ra/„)s' =   lim(p(s'(Jôy))) = p(s' ( lim(Jáy )))

by continuity of p and s', in step 2. Since for any s0 e S, UmgÇTJJsSo = lim^T^LJSo

(recall that for every/em(S), {TJ} converges pointwise to a constant function),

then piss0y0) = /"(Wo)* f°r au s e S anc- an i" e %*■ Since X is locally convex,

then X* is total over X [A, Theorem 2, p. 14], so 5(s0y0) = s0y0, for all seS,

which completes the proof.

An alternate proof of Theorem 5 is also given by Glicksberg [7, p. 98], and

for a special case of the space X, by Heyneman [9, 4.3.1, p. 1340].

By use of Theorem 3, Day's result on convergence of means to left invariance

may be extended. The inclusion of condition (a) in the equivalence below is new.

Theorem 6.   Let S be a semigroup. Then the following are equivalent:

(a) For each /0ew(S), there exists a net, {epn}, of finite means such that for

every seS, lim,(/0,s</>, - <£„) = 0.
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(b) S is left amenable.

(c) There exists a net, {(f>s}, of finite means such that for allfe m(S), and all

seS, limô(f,s(f)ô-ri)i) = 0.

Proof.   (b)«-»(c) This is [1, (c'), p. 521].

(c) -*■ (a) Condition (c) is formally stronger than (a).

(a) -» (b) By w*-compactness of the set of means on m(S) there exists a subnet,

{4>s}, of {<bn} such that {Q(f>s} is w*-convergent to some mean, p, on m(S). And

by w*-continuity of I* on m(S)*, w*limá(/s*(Q<bô)) = I*p, for all seS. Then

0 =   limC/o, s<bn - <bn) = lim(/o, s<pô - <p¡)
n à

=   \im(Q(s<b0 - <bâ), /0) = lim(l*(Q<bs) - Q<bs, f0)
ô â

= (J.V. /o) - iß, /o)-

So (l*p,fo) = (p,fo) for all se S. Recall that if cpeO, then (Q0),eP, from the

proof in Theorem 2. Then for every s e S,

lim(((2M/o)(s)) =   lim(Ô&, /Jo)

=   lim (l*(Qh), /o) = (l.*ft /o) = OV/o).

Thus {(ß^a)i} is a net in P such that {(Q<b0)Jo} converges pointwise to the constant

function (p,/0)e. Then S satisfies condition (a) of Theorem 3, hence (b) follows by

Theorem 3, which shows Theorem 6.

Let S' be a subset of S' a semigroup. Then S' is called left thick in S if for

each finite subset S" £ S, there exists an s" e S such that S"s" ç S'.

Remarks, (a) If S' is a left thick subset of S, then the s" above may ¡be chosen

to be in S'. For let S" = {sy,s2,---,s„}. Consider the finite set

S   = {s1s1,s2s1, •••,s„s1,s1).

There exists s'"eS such that S"V" S S', since S' is left thick in S. Thus

S"sys'" £S', where slS'"eS'.

(b) Let Sy be a left thick subset of a semigroup S. If SyS S2 £ S, then S2 is

left thick in S.

(c) Let Si £ S2 £ S, where S2 and S axe semigroups. If Sy is left thick in S2,

and S2 is left thick in S, then St is left thick in S.

(d) If F is a left ideal of a semigroup S, then F is left thick in S.

(e) A left thick subsemigroup S' of a semigroup S, need not be or contain a

left ideal of S. For example, let S' be the positive integers under addition, and let S

be the integers under addition. Then S' is left thick in S but contains no left ideal

of S.
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More generally, let F(n) be the free group on n generators {gy,g2,'",g„}, and

F+(n) the subsemigroup of reduced words with the property that for each i, the

sum of the exponents of g¡ in the word, is positive. Then F+(n) is left thick in

F(n), and contains no left ideal of F(n).

(f) Let S' be a left thick subset of a semigroup S. If v is a homomorphism on S

into a semigroup, then v(S') is left thick in v(S).

(g) Let S' be a subset of a finite semigroup S. Then S' is left thick in S if and

only if S' contains a left ideal of S. The "if" part follows from (b) and (d). For

the converse, since S is finite, there exists se S such that Ss £= S'. But Ss is a left

ideal of S.

(h) A recent result by C. Wilde and K. Witz clarifies the relationship between

left ideals and left thick subsets of a semigroup S. Let S' be a subset of S, let

ß(S) be the Stone-Cech compactification of S where S has the discrete topology,

and CL(S') is the closure of S' in ß(S). Then S' is left thick in S if and only if

CL(S') contains a left ideal of ß(S) [13, Lemma 5.1].

Theorem 7. Let S' be a subset of S, a left amenable semigroup. Letf0 be the

characteristic function of S'. Then the following are equivalent:

(a) S' is left thick in S.

(b) There exists a left invariant mean, p, on m(S) such that p(f0) = 1.

Proof, (a) ~> (b) Let T be the family of all finite subsets of S, ordered upwards

by inclusion. Then T is a directed set. For convenience, we will refer to a finite

subset of S as Sy, for y e T, rather than as y itself. Then by (a), for any Sy s S,

there exists s(y)eS such that Sys(y) £ S'. Let Ty = rsM. Then for any seS,

lim(Ty/0)s= lim/0(ss(v)) = 1.
y y

So TJo converges pointwise to e, hence (b) follows by Theorem 4.

(b) -» (a) Suppose (a) is not true. Then there exists a finite subset S" £ S such

that for every s'eS, S"s'^S'. Hence for each s'eS, there exists seS" such

that/o(ss') = 0. Let N be the cardinality of S". Then for any s'e S,

2   (rs/0)s=    2  foiss')z%N-l.
ssS" se S"

And for Te P, then T= 2s.eS<Ks')*V for some r/>eO. So

2  iTf0)s  =22   cbis')foiss')
s e S" se S"   s' <= S

=     2   ebis')    2 foiss')
s' eS seS"

^     2   cbis')iN - l) = N - l.
s' eS
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So for each Fe P, there exists se S" such that (Tf0)s^(N-l)¡N. Since S" is

finite, no net, {Tyf0} where TyeP, can converge pointwise to e. Hence (b) is not

true, by Theorem 4, if (a) is not true. So (b) -* (a), which completes the proof.

If S is the semigroup of positive integers, £, under addition, an invariant mean

p, on m(E) is called a Banach limit.

Corollary 5. Let f0 be a sequence consisting entirely of zeros and ones.

Then there exists a Banach limit, p, such that p(/0) = 1, if and only if for every

positive integer, n, there exists a consecutive block of at least n ones info-

Proof. Let £ designate the semigroup of positive integers under addition. It

is well known that £ is amenable. Let £' = {¡'e£;/0(i) = 1}. Then /0 is the

characteristic function of £'. Let, for n e£, £„ = {j eE; 1 ¿Ljr ̂  n}. Then £' is

left thick in £, if and only if for each £„ £ £, there exists ¿e£ such that

£„ + i £ £'. This holds since the E„ axe finite subsets of £, and are such that any

finite subset, E" £ E, is contained in some £„. But £„ + i is a consecutive block

of n ones. The result follows by Theorem 7.

Lemma 6. Let {Sy} be the family of finite subsets of a semigroup S, directed

upwards by inclusion.  Then these are equivalent:

(a) For eachf0em(S) and for each Sy^S, there exists a net, {Tyn} where

TyBeiP, such that the restriction of {Tynf0} to Sy converges pointwise, with respect

to n, to a constant function on Sy.

(b) S is left amenable.

Proof,   (b) -* (a) This follows from implication (b) -» (a) of Theorem 3.

(a) -* (b) There are two cases. Let S be finite, then S is some Sy. Then con-

dition (b) above follows by implication (a)->(b) of Theorem 3.

Now let S be infinite for the remainder of the proof. For any finite nonempty

Sy £ S, let the cardinality of Sy be Ny, a positive integer. Then for any /0 e m(S),

there exists an n', and a real number ay such that

| (T„/o)s - ay | ^ 1 / Ny   for all s e Sy,

since pointwise convergence on a finite set, Sy, implies uniform convergence on

Sr Designate this T„, by Ty. Since l¡Ny^l, and || Tyf01| g ||/0 | by Corollary

1(b), then | ay | ^ |/0 | + 1 for all ay. By compactness of the closed real interval

[ — |/o I — 1, |/o I + 1], there exists a subnet, {aö} of {ay}, such that {aô} con-

verges to a real number, a. Let {T3} be the corresponding subnet of {Ty}. Then

for seS,

\(Tâfo)s-cc\  =  |(TJo)S-aa + (aä-a)|

rg  |(Tä/o)s - «,| + |a4 - a| ^ (IINs) + |a, - a|.

Since S is infinite, and {Sö} is a subnet of {Sy}, then Nô becomes arbitrarily large.
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Hence

lim \iTsf0)s -a\z%   limai/JV,) + \as - a\) = 0,
ö 5

for seS. So {T./0} converges pointwise to the constant function ae. Thus (b)

follows by Theorem 3.

Lemma 7. Let S be a semigroup, and let {Sy} be any system of subsets of S

such that {Sy} forms a set directed upwards by inclusion, and such that

iJySy = S. Then these are equivalent:

(a) For each /0em(S), and for each Sy^S, there exists a net, {Tyv} where

Tyne P, such that the restriction of {TyJ0} to Sy converges pointwise with n to a

constant function on Sy.

(b) S is left amenable.

Proof.   (b)->(a) This follows from the implication (b)->(c) of Theorem 3.

(a) -* (b) Let S' be any finite subset of n elements of S. Since [JySy = S, then

for each s¡ e S', there exists Sy(¡) such that s¡ e Sr(i). Since the {Sy} forms a directed

set by inclusion, there exists Sy such that Sy 2 Sv(i) for i = 1,2, •••,«. So Sy 2 S'.

Then condition (a) above, implies condition (a) of Lemma 6. Hence by Lemma 6,

there follows (b), which completes the proof.

The next result is a generalization of a theorem by Dixmier [5, Theorem 2(<5),

p. 215], and by Day [3, Corollary 8, p. 287].

Theorem 8. Let S be a semigroup, and let {Sy} be any system of subsets of S

such that {Sy} forms a set directed upwards by inclusion, and such that

UySj, = S. Then these are equivalent:

(a) For each Sy ç S, there exists a left amenable subsemigroup, S'y s S, and

an element s(y) e S, such that Sys(y) £ Sy.

(b) S is left amenable.

Proof, (b) -» (a) For each Sy, let Sy = S, and let s(y) e S be arbitrary. Then

(a) follows.

(a)->(b) For each of the left amenable semigroups, Sy, let {T'yv} be the net

whose existence is asserted by Theorem 3, condition (c). For each T'yn, there

exists cbn e <S>iS'y), the set of finite means on miS'y), such that Tyn = 2seS'<¡f>71I(s)rs.

Let Tyn, where Tn is a finite average of right translations on zri(S), be defined by

the same expression, but where the r, are now regarded as right translations on

miS), rather than on miS'y). Then for/0 e m(S), we have for each S'y, lim,(TyJ0)s=a

for s e Sy, where a is a real number depending on Sy and/0, but not on s e Sy. Hence

limirs(y)TyJo)s = lim(Ty,,/0)(ss(j)) = a.
i i

So {rs,y)Tyn} is the required net in condition (a) of Lemma 7, thus (b) follows by

Lemma 7, which proves the theorem.



260 THEODORE MITCHELL [August

Corollary 6. Let S be a semigroup such that for each s, s' eS, there exists

s"eS so that ss" = s's" Then S is left amenable.

Proof.   First we show that S satisfies property (a) below:

(a) For every finite subset S" £ S, there exists s" £ S such that S"s" = {s"}.

We proceed by induction on the number n of elements in S". For n = 1, S" = {s}.

By hypothesis there exists s'eS such that (s)s' = (ss)s'. Letting s" = ss', then

ss" = s", proving (a) for « = 1.

Suppose (a) holds for all subsets of S that contain n elements. Let S" contain

n + 1 elements. Then S" = SN\J {s} where s e S" and SN contains n elements.

By supposition, there exists s'eS such that SNs' = {s'}. By hypothesis, there

exists s"eS such that (s')s" = (ss')s". Since (a) is shown for n — 1, there exists

s'"e S such that (s's")s'" =s'". It follows by direct computation that S"(s's"s'")

= {s's"s'"}, which completes the proof of (a).

Let {Sy} be the family of finite subsets of S directed upwards by inclusion.

By (a), for each SysS, there exists s(y)eS such that Sys(y) = {s(y)}. Let

S'y = {(s(y))n; n = 1,2, •••}. Then S'y is an Abelian semigroup, hence left amenable.

Since Sys(y) £ S'y, then the result follows by Theorem 8.

Theorem 9. Let S' be a left thick subsemigroup of a semigroup S. Then S'

is left amenable if and only if S is left amenable.

Proof, (a) Let S be left amenable. Let/0 be the characteristic function of S'.

By Theorem 7, there exists a left invariant mean p on m(S) such that p(/0) = 1.

By Day [1, Theorem 2, p. 518], S' is left amenable.

(b) Let S' be left amenable. Then S is left amenable by Theorem 8.

Implication (b) of Theorem 9 also follows from a result of Granirer [8, Corollary

5.1, p. 43].
By combining Theorem 9 with remark (d) of this section, there follows directly

the known result that if Fis a left ideal of a semigroup S, then Fis left amenable

if and only if S is left amenable.

A direct proof of this result can also be simply obtained. Let n: m(S)-* m(V)

be the projection map (nf)s =f(s) for fem(S) and seV. Let s' be any element

of the left ideal V. Let Ts.: m(V) -» m(S) be given by (Ts.g)(s) = g(ss') for gem(V)

and seS. Then the following can be shown by direct computation. If p' and A

are left invariant means on m(V) and m(S) respectively, then p = n*p' and

A' = T*X are left invariant means on m(S) and m(V) respectively.
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