CONTINUOUS STOLZ EXTENSIONS
AND BOUNDARY FUNCTIONS(')

BY
LARRY E. SNYDER(?)

Introduction. This paper is concerned with properties of the boundary limit
function f, defined on the x-axis, of a function ® defined in the upper half-plane.
For @ arbitrary, except that each point x on the x-axis is the vertex of a Stolz
angle S, in which the limit of ® at x exists, the Stolz angle limit function f is
always of Baire class 2 but not necessarily of Baire class 1. However, under
quite general conditions on the collection {S,} of Stolz angles used in taking the
limits, the function f is always of Baire class 1.

On the other hand, given any f of Baire class 1, defined on the x-axis, there is a
continuous function @, defined in the upper half-plane, such that ® converges to f,
where ateach x the limit exists in every Stolz angle with vertex at x. Also, a
number of extensions and variants of these results are given. In particular,
n-dimensional problems as well as boundary limits along arcs will be consid-
ered.

Let R, R*, and R" respectively denote the real numbers, the positive real
numbers, and euclidean n-space. For f: R"> R and N an open set in R", let
5(f,N)=sup{lf(u)—-f(v)]:u,veN}. The oscillation of f at xeR" is w(f,x)
=inf{6(f,N): N is a neighborhood of x}.

2. Stolz angle limit functions. By a Stolz angle we mean an angular sector
which lies in the upper half-plane with its vertex on the x-axis and which meets
the x-axis only at its vertex. A function f: R — R will be called a Stolz angle limit
function for a function ®: R x R* - R if there is a collection of Stolz angles
{S,: x e R} such that, for each x in R, S, has vertex (x,0) and ®(p) - f(x) as p
approaches (x,0) from within S,.

For xeR and 0 < 6 < =, let I(x,6) denote the line in the plane through (x,0)
with angle 6 between the x-axis and the line. A collection of Stolz angles is said to
be uniformly directed if there is a fixed 6, such that, for every Stolz angle S in
the collection, I(x,0,) meets S if (x,0) is the vertex of S. In this section we con-
sider Stolz angle limit functions obtained bylimits relative to a uniformly directed
collection of Stolz angles.
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THEOREM 1. If f: R— R is a Stolz angle limit function for a function
®: R X R* >R, and if the collection {S,:xe R} of Stolz angles, relative to
which the limits are taken, is uniformly directed, then f is in the first Baire class.

Proof. For the proof we will show that f | P has a point of continuity for any
nonempty perfect set P < R. From this and Baire’s theorem (see [3]), it follows
that the function f is in the first Baire class.

Suppose there is a nonempty perfect set P = R for which f | P has no point of
continuity. For each n=1,2,---, let D,={xeP: w(flP, x) 2 1/n}. It follows
that P = U‘,’,°=ID,,. Since P is of the second category in itself, there is an open
interval J and an integer n, such that J NP # J and D, isdensein J N P. Since
the oscillation function is upper semi-continuous, each D, is closed, and hence
D, oJNP.

Let Q@ =closure [J N P]. Q is a perfect set, and f IQ, which is identical with
f |P on J, has oscillation greater than or equal to 1/n, at each point of J N P.

Let S,,={peS,: p=(u,v) and v < 1/n}, and choose M so that M > 16n,.
Define 4, = {x€ Q: pe S, , =|®(p) — f(x)| < 1/ M}. It follows that @ = | J- 4,
and 4, c A,.,. Since @ is of the second category in itself, there is an integer k
and an open interval I< J, with I N Q # &, such that 4, is dense in I N Q.

Let z be a fixed element of I N Q, and let n(z) be the smallest positive integer n
such that ze 4,. We assert that there is an open interval V< I with ze V such
that S,;NS,;# J for any xe 4, NV and for j= max{n(Z),k}. There is an
angle 0, for which I(x,6,) meets the interior of S, for every x € R. Let the interval
(a,b) be the result when S, ; is projected in a direction parallel to I(z,6,) onto
the x-axis. The set V= (a,b) NI possesses the required property.

Suppose that {x;} is any sequence of points in Q with z as limit. There is a
positive integer N such that i >N implies x; € V. Let i greater than N be fixed and
let n be a positive integer such that x; € 4,. Since 4, is dense in V' N Q, there is a
weAd, NV such that S, NS, ,#J. If {eS,;NS,, and nes,, NS,,,, we
have

1@ 1) £ 1@ - 0®] +] 0@ - f)|
+ |10 — 0|+ @) ~1(x)| S v < zfr .

However, this implies that w(f | P, z) < 1/n,. This is a contradiction, and hence
fis in the first Baire class..

ReEMARK. Theorem 1 remains valid if the limit of ® is only assumed to exist
relative to two simple arcs which lie in the upper half-plane except for their com-
mon end-point (x,0) and which are separated by I(x,0,) where 6, is independent
of x.

The following example shows that if the Stolz angles are not restricted, the
Stolz angle limit function may not be in the first Baire class.
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ExaMPLE 1. Let B be the relative complement of the Cantor set C in [0,1].
B is the union of a countable collection of disjoint open intervals, say
B =U,‘}°=1(a,,, b,). For each n=1,2,---, construct in the upper half-plane an
equilateral triangle with the interval [a,, b,] as its base. Define a function @ in the
upper half-plane by letting ® have the value 1 at each point which lies in the
interior of one of the triangles constructed above and letting ® have the value O
elsewhere.

If x =a, or x = b, for some n, let S, be a Stolz angle lying in the equilateral
triangle associated with the interval (a,, b,) and having vertex (x,0). If x is any
other point, let S, be the Stolz angle whose sides are I(x,57/12) and I(x,7xn[12).
It is easily seen that the Stolz angle limit of @ exists for this collection of Stolz
angles, and the Stolz angle limit function is the function defined by

0 fx=21lorx<0,
f(x) = ] 1 if x € [a,, b,] for some n,
L 0 ifx e [0,1] ~{Jr=1 [an bs]-

However, f l C has no point of continuity, so f is not in the first Baire class. We
note that f is in the second Baire class.
We will return to arbitrary Stolz angle limit functions in § 4.

3. Varying directions. Some restriction on the Stolz angles is necessaryin order
to have the Stolz angle limit function in the first Baire class. In this section we
consider less stringent conditions than those of Theorem 1.

DErFINITION. Let {S,: xe R} be a collection of Stolz angles such that S, has
vertex (x,0) for each x. If there is a function 6: R — (0,7), with 6 in the first
Baire class, such that Int.(S,) N I(x,0(x)) # & for each x, then the class of Stolz
angles is said to be B-directed.

THEOREM 2. If f: R— R is a Stolz angle limit function for ®: R x R* - R,
and if the collection of Stolz angles (relative to which the limits are taken) is
B-directed, then f is in the first Baire class.

Proof. Suppose there is a perfect set P for which f |P has no points of con-
tinuity. Let D,, D,,, O, S, M, and A, be as in the proof of Theorem 1.

Let 0: R — (0, n) be a function in the first Baire class which ‘“‘directs”’ the given
collection on Stolz angles. For each x € R, let a(x) be the angle between the x-axis
and the left side of S, and let f(x) be the angle between the x-axis and the right side
of S,. For each pair of positive integers (n,j) define 4, ; to be the set of points x
in A, for which a(x)—6(x)=1/j and 6(x)— f(x)=1/j. If follows that
Q0= U,‘:°=,U;°=1A,, jand A,; < A,;,,. Since Q is of the second category in itself,

there is a pair of integers (m, k) and an open interval I such that 4,,, is dense in

QNI #g.
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The function 6 is in the first Baire class, so 0|Q has a point of continuity in
Q N 1. Let z be such a point, and let n(z) be the smallest positive integer n such
that z € 4,, and let j(z) be the smallest positive integer j such that z e 4,,;. Set
¢ =4 'min{1/j(z),1/k}. There is an open interval U containing z such that if
xeQ@NINU, then |0(z) —0(x)| <eEe.

Let r = max {n(z), m}. The projection of S,, onto the x-axis parallel to I(z, 6(z))
is an interval, say (a,b). Let V=1N(a,b) NU. It is readily verified that if
x€A, NV, then S,, NS,, # .

Suppose that {x;} is any sequence of points in Q with z as limit. Then there
is an N > O such that i > N implies x;€ V. Let i > N be fixed and let n(x;) be the
smallest integer n such that x; € 4,. For any xeQ N V we have that | 0(x)
- O(xi)| < 1/2k, and hence for xe A,; NV we have a(x) = 0(x) +1/k = 0(x,)
+1/2k and B(x) £ 6(x)—1/k < 6(x;)—1/2k.From the fact that 4,,, is dense in
Q NV and from the previous statement, it follows that there is we 4,,; NV for
which S, NSy, nxy # F- Also, Sym NS,y # J-

The proof is completed in the same way as in Theorem 1.

Next we consider boundary functions f which are obtained by taking the limit
of the function ® of two variables along two simple arcs with endpoint (x,0), the
arcs being ‘‘separated’’ by a line I(x, 0). First, we give an example which shows that
we cannot expect to get as “‘good’’ a result in this case as in Theorem 2.

ExaMPLE 2. Let U,‘?: 1(an,b,) be the complement relative to [0,1] of the
Cantor set in [0,1]. For each n =1,2,--, construct an isosceles triangle in the
upper half-plane with [a,, b,] as base and with the angles at ““a,’” and “‘b,”” equal
to (m/2 — 1/2"). Then let T, be the set of all points (u,v) inside or on the triangle
with base [a,,b,] for which 0 <v =1/n. Define ®:R x R* >R as follows:

o0
0if (u,v)e |J T,
O(u,v) = =1

1.if(u,v)¢0T,,.
n=1

The “‘angle’’ function 6: R — (0,7) is defined to be equal to n/2 on

R ~ Q [a,,,b,,],

equal to ©/2—1/2""! at x = a,, and equal to n/2+1/2""! at x = b, and is
defined linearly between each a, and b,. Then 0 is in the first Baire class.

For each x in R we select two simple arcs I't and I'2, each with (x, 0) as an end-
point, which except for the point (x,0) lie in the upper half-plane and on opposite
sides of the line I(x, 0(x)). For x = a, we further require I'} to be the side of 7, and
I'? to lie inside T, to the right of I(x,0(x)). Similarly, for x = b, we require
I'2 to be the side of T, and I'; to lie inside T, to the left of I(x,6(x)). Also for
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points x in [0,1] ~ [ Ji>,[a,b,], T; and I'Z are chosen so as to avoid | J¥1]T,
as they pass from the line y =1/k to the line y =1/(k + 1).

It is clear that the boundary limit of ® relative to the simple arcs I': and I'2
exists for each x, and the boundary function f thus obtained is equal to zero on
U2 1[4, b,] and is equal to one on the complement of | J,2,[a,,b,]. As we
have observed before, this function f is not in the first Baire class.

DEFINITION. Let € be a family of simple arcs lying in the upper half-plane
except that each has an end point on the x-axis. Suppose also that for each x in R
there are exactly two arcs having (x,0) as an end point and these two arcs are
separated by a line I(x,0(x)) where 6: R - (0,7n) is some continuous function.
Then % is said to be continuously directed.

THEOREM 3. If f is a boundary function of a function ®:R x R* - R
obtained by taking limits of ® relative to a continuously directed family € of
simple arcs, then f is in the first Baire class.

Proof. Let 8: R—(0,n) be a continuous function which ‘‘directs’’ the arcs
and for each x, let I'} denote the arc lying to the left of I(x,0(x)) and I'Z the
other arc. Also, let I', denote the union of I'} and I'2.

The first part of the proof proceeds as the proof of Theorem 1 except that I',
plays the role of S, and I', , is the set of points (u,v) inI', for which0 <v < 1/n.
Then let D,, D,,, Q, M, A,, k, and I be as in the proof of Theorem 1.

Let z be a fixed point in Q@ N1, and let n(z) be the smallest positive integer n
such that z e A,. We assert that there is an open interval V< I with ze€ V such
that T, NT,, #  for j = max{n(z),k} and any x € A, N V. Moving from (z,0)
along I'} let p, be the first point which lies on the line y = 1/j. Similarly, let p,
be the first point on I'Z which lies on y = 1/j. There are numbers a and § between
0 and 7 such that p, lies on I(z,x) and P, lies on I(z,B). Set ¢ equal to 27!
-min {o — 0(2), 0(z) — B}. Since 0 is continuous and ¢ is positive, there is an open
interval U containing z such that if x e U, then |0(z) - 9(x)| < &. Let (a, b) be the
interval obtained by projecting p, in a direction parallel to /(z,x — &) onto the
x-axis and by projecting p, in a direction parallel to I(z, f + ¢) onto the x-axis.
Let V= U N(a,b). If xisin 4, NV and x < z, then the arc at x which lies to the
right of I(x, 0(x)) must meet I’} below the line y = 1/j. Likewise, if x is in 4, NV
and x > z, then the arc at x which lies to the left of I(x,0(x)) must meet I'> below
the line y =1/j.

Let {x;} be any sequence of points in Q with z as limit. There is a positive
number N such that i > N implies x;€ V. Let k > N be fixed, and let n(x;) be the
smallest positive integer n such that x; € 4,. Since 4, is dense in V and 0 is con-
tinuous, there is an x* in 4; NV such that Ty N T, () # O (this is verified by
using the same method as in the previous paragraph).

The proof is now completed as in the proof of Theorem 1.
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DEFINITION. Two simple arcs I'!and I'? (which lie in the upper half-plane
except that each has (x,0) as an end-point) are Stolz separated if there is a Stolz
angle S, with vertex (x,0) which lies between I's and I' 2except for the point (x, 0).

THEOREM 4. If f is a boundary function of ® obtained by taking the limit
of ® relative to two Stolz separated arcs at each point (x,0) on the real line,
and if the family of Stolz angles which separate the arcs is B-directed, then f is
in the first Baire class.

The proof is like the proof of Theorem 2 except for a few obvious modifications.

4. Arbitrary Stolz angles. In §2 an example was given which showed that if
a real-valued function f of one variable is a Stolz angle limit of a function of two
variables, without any restriction on the Stolz angles, then the function f may
not be in the first Baire class. However, the function f in the example was in the
second Baire class, and f was equal to a Baire one function except on a countable
set. Bagemihl and Piranian [1] refer to such functions as honorary functions of
the first Baire class. We will show that any function which is a Stolz angle limit
of a function of two variables is an honorary function of the first Baire class.

We now refer to some results due to G. Lederer [5] which will be used in the
proof of the next theorem.

Let A4~ be a countably additive hereditary class of sets. A proposition will be
said to hold a.e. in a set E if the subset of E where the proposition fails to hold is a
member of A"

Let o be an ordinal number, o = 1.

DEFINITION. A function f is said to have the property D(x) with respect to a
closed set F at a point x in F if and only if for any positive ¢ there is a neighborhood
G of x and a function g in the Baire class « such that |f— g| <& a.e.in GNF.

DEerFINITION. A function fis said to have the property A(e) if and only if for any
nonempty closed set F there is an x in F such that f has the property D(x) with
respect to F at x.

Lederer has shown that if a function f: R — R has the property A(c), then the
function is equal a.e. in R to a function in the Baire class .

NortaTioN. If P is a nonempty perfect subset of the real line, we will denote by
P the set consisting of P minus the end-points of the complementary intervals.

LemmAa. If f: R—>R is a Stolz angle limit function for ®:R x R¥ > R,
then f IP has a point of continuity for any nonempty perfect set P.

Proof. Suppose there is a nonempty perfect set P for which f | P has no point
of continuity. Let D,={xeP:o(f|P,x)21/n}. Then P=|J2,D, and
P=|J?-1D, U(P ~ P).Since P ~ P is countable and P is of the second category
in itself, there is an integer n and an open interval I such that INP # @ and D,
is dense in I NP. Since D,  is closed relative to P, we have that D, oI NP.
We will denote I NP by Q.
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Let A,={xeQ: peS,, implies I(I)(p) —f(x)l <1/M}, where M is a fixed
number greater than 16n,. Since @ converges at each x relative to the set S,, we
have Q = U,,“l_ 14,. Thus there is an A, which is second category in P since Q is of
the second category in P.

For each rational number r between 0 and =, let B, be the set of points x in A4,
for which I(x, r) meets the interior of S,. It follows that 4, = U,B,. Hence thereis a
rational number g such that B, is of the second category in P, and so there is an
open interval J contained in I for which J NP # ¢f and B, is dense in J N P.

Let z be a fixed point in B, N J. Project S, to the x-axis parallel to the line
I(z, q), and denote by (a, b) the interval determined by this projection. The interval
(a,b) contains z, and also S,, NS, # & for any x in B,NJ N(a,b).

Let {x;} be any sequence of points in P N J with z as limit. There is a number N
such that i > N implies x; € (a,b)NJ. Let i greater than N be fixed. Since x; is
a bilateral limit point of B,, there is an x* in B, N (a, b) N J for which

Sx‘h N ng n(xi) # Q,

where n(x;) is the smallest positive integer n for which x; € 4,. Let ¢ be a point in
Sk NS+, and let y be a point in S, NS, u(x,)- It follows that

@ =] < |f) - 0@+ [0 64|
+ 156 - o) + 00 ~f6)] S 5 < -

This implies that w(f|P,z) < 1/2n,, which is a contradiction. Therefore f|P
has a point of continuity.

THEOREM 5. If f: R— R is a Stolz angle limit function for ®: R X R+ - R,
then f is an honorary function of the first Baire class.

Proof. We will show that f has the property A(1) for 4" being the class of all
countable subsets of R. Thus from Lederer’s theorem we conclude that f is equal
to a function in Baire class one except on a countable set.

Let F be any nonempty closed subset of R. If F has an isolated point x, then
trivially f has D(1) with respect to F at x.

Let us assume F is a perfect set. Then f IF has a point of continuity, say x,.
Let ¢ >0 be given. There is a neighborhood G of x, such that for any x in
GNF, If(x) —f(xo)l <eé. Let g(x) =f(x,). Then |g —f] <ég on GNF except
for a countable set. Therefore f has the property D(1) with respect to F at x, in F,
and so f has property A(1) and the proof is complete.

From the lemma preceding Theorem 5 it is easily seen that not all honorary
functions of the first Baire class are arbitrary Stolz angle limit functions. For
example, the function f which is 1 on the rationals and O on the irrationals is an
honorary function of the first Baire class. However, this function restricted to
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the open interval (0,1) has no points of continuity and so fails to satisfy the
condition thai f | P has a point of continuity for any nonempty perfect set P.

Theorem S remains true if Stolz separated arcs are used in place of the Stolz
angles as the sets on which the limits are taken. The proof involves only a few
modifications of the proof of Theorem 5.

5. Continuous Stolz extensions. In this section we let [£] denote the n-tuple
(&4,-+,&,) of real numbers and let € denote the complex numbers. We use super-
scripts to index sequences of points in R".

Theorem 6 is an improvement of a theorem due to Jarnik [4]. Except for the
continuity assertion and the functions being complex-valued, his theorem is the
same as Theorem 6.

Let I be a compact interval in R". Then A will denote the subset of I x I consis-
ting of those points of the form ([&], [&]).

THEOREM 6. If f:I—% is a function in the first Baire class, then there is a
continuous function ®:(I x I ~A)—»% such that lim,, ®[E]%[nT) = F([x]
whenever (a) lim,_, o[£]* = lim,_, [#]*= [x] and (b) (&5~ x;)) (n*~ x;) 0 for
eachi=1,---nand k=1,2,---.

Proof. Let {f,} be a sequence of continuous functions on I for which
lim,, of([x]) =f([x]) for every [x] in I. Define H: I x (0,1]— % by letting
H ([x], 1/m) =f,,[(x)] and extending H linearly, that is,for 1/(m+1) <y <1/m,
H([x],y) = G(y) * fur 1([)] + (1 = G()) * ful[x]), Where

o0~ (4-3) (5~ )

Then H is continuous on I x (0,1], and lim,,,+H ([x],y) =f([x]).

Since I is compact, each f,, is uniformly continuous. For each m and ¢ > 0,
let 5,(¢) be a positive number such that |f,([x]) — f,([¥])| <& whenever the
distance from [x] to [y] is less than J,(¢), and set {; = min{d,(1), 8,(1),1}.
Inductively, define {,, = min {6,,(1/m), J,,4,(1/m), (m —1)/2} for m =2,3,---.
The sequence {£,} converges monotonically to zero. Next, define 7: R ¥ — (0,1]
by letting t©(r) =1, if r = {, and letting t({;,) = 1/k and by extending linearly.
Then the function 0: (I x I ~A)—(0,1] defined by 6 =10 p, where p is the
usual metric on R", is continuous.

For ([¢], [nDe( x I~ A), define ®([£], [7]) = H([E]+[nD/2, 0EL. [n]).
The function ® is continuous and, as we will now show, possesses the desired
property.

Let [£]* and []* satisfy (a) and (b) of the theorem for some [x]. Since
(& =x) (x; — 15 =0, we have

n

PP 2z X [(& = %) + (nf — x)*]
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and

P ) < § [Em =]
Thus
) p (1200, 1) 5 1 aet .

Let ¢ greater than zero be given. There is a positive integer M such that
1/M <¢e/2 and a positive integer K such that k > K implies p([£]%[1]") < Cu-
Hence 0[], [n]) S 1/M for k> K. From the definition of the sequence
{¢.} and that of H it follows, in view of (1), that for k > K,

@ |o(CE oet, o) - et oy | <o

Since lim, o, O[T, [71]) = O, it follows from the definition of H that
limy ., o H([x], 0[(¢T", [1]%) = f([x]). Thus there is a positive integer K’ such
that k> K’ implies

3 | H(Cx], 0CET% [ — S]] < -

Let K"=max{K,K'}. Then, if k> K", both (2) and (3) hold, which together with
@ | ([T, [715) — F(xD |

< |H(ﬂ'i_;_'ﬂ".,e<[¢]k, ['1]")) — H(Ox], 6T, [

imply | ®([&T, [11) — f([x])| <1/M + 1/ M <e. This completes the proof.

We now consider the 1-dimensional case of this theorem. Suppose that
f:I1-%,I=[a,b], is in the first Baire class. According to Theorem 6, there is a
continuous function ®: (I x I ~ A)—% with the property that lim,_, ®(¢* 7"
= f(x) for any sequence {(£*,7")} of points converging to (x,x) such that each
(&, 1) lies either in the sector to the right of the line & = x and below the line
n = x or in the sector to the left of the line ¢ = x and above the line = x.In
this section we will use the term Stolz angle to refer to angular sectors in
(I x I~ A) with their vertices on A, and we will show that ® converges to f for
any such Stolz angles.

CoOROLLARY 1. If f:I->%,1=[a,b], is in the first Baire class, then there
exists a continuous function ®: (I X I ~ A)— € such that, for each x, im®(&,n)
= f(x) as (£,n) = (x,x) relative to any Stolz angle with vertex (x,x).
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Proof. Let ®:(I xI ~A)— % be the continuous function constructed in
the proof of Theorem 6, and let (x,x) be any point on A. In order to prove the
corollary, it suffices to show that, for any positive integer N, ® converges to f(x)
relative to the Stolz angle Sy lying below the line 1 = & whose sides lie on the
lines through (x,x) with slopes (N + 1)/ N and N /(N + 1).

Let N be given, and let (£,,7,) be any sequence of points, lying in the Stolz
angle described above, with limit (x,x). First, let us consider the case where
&> x, g, > x for every k=1,2,---. Let W, = &, — n,, and associate with (&, n,)
the point (x + W,,x). Since the points (&, n,) lie below the line = £, we have
(M —x)[(—x)SN[(N +1). Thus n, —x < N - W,

Let {{,} be the sequence defined as in the proof of Theorem 6. Since W, — 0,
we may assume W, < {, for each k. Then define m(k) to be the largest integer m
for which W, < ¢,,. Since W, — 0, we have that m(k) —» oc.

Also, let 8 be defined as in the proof of Theorem 6, and note that 6(&,,n,)
=0(x + W,,x). Since 0= (&, +n)/2—(x+W,+x)/]2ZN- W, and 0(&,n)
<1/m(), we have |®(E,nm)—®(x + Wex)| = [H(EG+ 112 0G0m)
—H((x+ W, +x)/2, 0(&, qk))| < N-1/m(k). Now it is easily seen that the
sequence (x + W,,x) satisfies the conditions (a) and (b) of Theorem 6. Therefore
limy, ,®(x + W, x) = f(x), and so limy, x®(&i, 1) = f(%).

The case where &, < x, n, < x (for every k =1,2,---) is treated similarly, and
the case where &, = x and 5, < x has already been done by Theorem 6. For an
arbitrary sequence, one considers the three subsequences determined by the three
cases. For each subsequence ® has limit f(x); hence ® has limit f(x) relative to
the Stolz angle S,.

Gleyzal [1] has shown that if a function f: [a,b] — R is in thefirst Baire class,
then there is a convergent interval function ¢ with f as its limit, i.e., there is a
function ¢ defined on the collection of subintervals of [a,b] such that if I, is a
sequence of intervals with lengths going to zero and with x € ﬂ I, then ¢(I,)—f(x).
Indeed, Theorem 6 yields an interval function with this property. For if ® is the
function given by Theorem 6, then, for I = [a,b], let ¢(I) = ®(u,v), where u
and v are the left and right end-points, respectively, of 1. Let {I,} be a sequence of
intervals each containing x € [a, b] such that the lengths converge to zero, and let
{(u,,v,)} be the sequence of points in [a,b] x [a,b] such that u, and v, are the
left and right end-points of I,. It is easily checked that this sequence of points
satisfies the conditions (a) and (b) of Theorem 6. Hence

lim ¢(I,) = lim ®(u,,v,) = f(x).

n— o n=> o
In addition, this interval function is ‘‘continuous’’ in the sense that if I, < [a, b]
and I is another interval in [a,b] such that the measure of the symmetric dif-
ference of I, and I is sufficiently small, then the difference | o) — dJ(I)l is small.

Moreover, Corollary 1 implies that the convergence property of the interval
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function ¢ is even stronger. To illustrate this, let us suppose that {I,} is a sequence
of intervals lying to the right of x such that (i) given any ¢ > U, there is an integer
K >0 such that n> K implies I, = (x,x + €) and (i) |I,|/d(x,I,) 2 1/ N for
some integer N > 0, where II,,I denotes the length of I, and d(x,I,) denotes the
distance from x to I,. Letting u, and v, denote the end-points of I,, we have
1/N= II,,I [d(x,1,) = (v, — u,) [ (u,—x). From this we have that u,—x < N(v,—u,,)
and (N +1) - (u, — x) < N(v, — x). Thus (v, — x)/(u, — x) = (N + 1)/ N. There-
fore the sequence of points (u,,v,) in [a,b] x [a,b] lies in a Stolz angle with
vertex (x, x) and converges to (x, x). Hence, by Corollary 1, f(x) = lim,_, ,®(u,,v,)
=lim,, o ¢(I,).

Similarly, if {I,} is a sequence of intervals lying to the left of x which get arbit-
rarily near x as described above and such that | I, |/d(x,I,) = 1/N for some N > 0,
then the sequence {(u,,v,)} of associated points in [a,b] x [a,b] lies in a Stolz
angle with vertex at (x, x) and the sequence converges to (x,x). Thus again we have
by Corollary 1 that

f(x)= lim ®(u,,v,) = lim ¢(I,).
n— o0 n=+00

ReMARK. The above condition that the ratio of |I,| to d(x,I,) be bounded
away from zero cannot be omitted.

From Corollary 1 it is not difficult to obtain the following slightly different
result

COROLLARY 2. If f is a complex-valued function of Baire class one on the unit
circle, then there is a continuous F defined on the unit disk such that the nontan-
gential limit of F at e" exists and is equal to f(e') for each 6.

The author is grateful to the referee for his helpful suggestions for improvements
in the paper.
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