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Introduction. This paper is concerned with properties of the boundary limit

function/, defined on the x-axis, of a function <P defined in the upper half-plane.

For 3) arbitrary, except that each point x on the x-axis is the vertex of a Stolz

angle Sx in which the limit of $ at x exists, the Stolz angle limit function /is

always of Baire class 2 but not necessarily of Baire class 1. However, under

quite general conditions on the collection {Sx} of Stolz angles used in taking the

limits, the function /is always of Baire class 1.

On the other hand, given any /of Baire class 1, defined on the x-axis, there is a

continuous function <5, defined in the upper half-plane, such that <I> converges to/

where at each x the limit exists in every Stolz angle with vertex at x. Also, a

number of extensions and variants of these results are given. In particular,

n-dimensional problems as well as boundary limits along arcs will be consid-

ered.

Let R, R+, and R" respectively denote the real numbers, the positive real

numbers, and euclidean n-space. For f:R"-yR and JV an open set in R", let

á(/,JV) = sup{|/(u)-/(u)|:u,t>6JV}. The oscillation of / at xeR" is co(f,x)

= inf{<5(/,JV): JV is a neighborhood of x}.

2. Stolz angle limit functions. By a Stolz angle we mean an angular sector

which lies in the upper half-plane with its vertex on the x-axis and which meets

the x-axis only at its vertex. A function/: R-> R will be called a Stolz angle limit

function for a function <I>: R x R+ ->R if there is a collection of Stolz angles

{Sx: xeR} such that, for each x in R, Sx has vertex (x,0) and $(p) -*f(x) as p

approaches (x,0) from within Sx.

For xeR and 0 < 8 < n, let /(x,0) denote the line in the plane through (x,0)

with angle 8 between the x-axis and the line. A collection of Stolz angles is said to

be uniformly directed if there is a fixed 80 such that, for every Stolz angle S in

the collection, l(x, 80) meets S if (x, 0) is the vertex of S. In this section we con-

sider Stolz angle limit functions obtained by limits relative to a uniformly directed

collection of Stolz angles.
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Theorem 1. If f:R-*R is a Stolz angle limit function for a function

($: R x R +-> R, and if the collection {Sx:xeR} of Stolz angles, relative to

which the limits are taken, is uniformly directed, then fis in the first Baire class.

Proof. For the proof we will show that/| P has a point of continuity for any

nonempty perfect set P cz R. From this and Baire's theorem (see [3]), it follows

that the function / is in the first Baire class.

Suppose there is a nonempty perfect set P <= R for which f\P has no point of

continuity. For each n = l,2,•••, let D„ = {xeP: co(f\P, x) ^ 1/n}. It follows

that P = [J™=yDn. Since P is of the second category in itself, there is an open

interval J and an integer n0 such that J r\P # 0 and D„0 is dense in J C\P. Since

the oscillation function is upper semi-continuous, each D„ is closed, and hence

Dno =>jnP.

Let Q = closure [J OP]. Q is a perfect set, and /| Q, which is identical with

/ |P on J, has oscillation greater than or equal to 1 / n0 at each point of J n P.

Let Sx„ = {peSx: p = (u,t>) and v g 1/n}, and choose M so that M > 16n0.

Define ¿B = {x e Q:peSx „ =>|<B(p) -/(x)| < 1/M}. It follows that Q = \Jf=iAn

and An cz An+y. Since Q is of the second category in itself, there is an integer k

and an open interval Icz J, with I n Q # 0, such that Ak is dense in I n Q.

Let z be a fixed element of I (~,Q, and let n(z) be the smallest positive integer n

such that zeAn. We assert that there is an open interval Vcz I with zeV such

that Sxj C\Szj + 0 for any xeAkC\V and for j = max{n(Z),fe}. There is an

angle 0o for which l(x,90) meets the interior of Sx for every xeR. Let the interval

(a,b) be the result when SzJ is projected in a direction parallel to l(z,60) onto

the x-axis. The set V=(a,b)(~\I possesses the required property.

Suppose that {xf} is any sequence of points in Q with z as limit. There is a

positive integer N such that i >N implies x, £ V. Let i greater than N be fixed and

let n be a positive integer such that x¡eAn. Since Ak is dense in Vr,Q, there is a

weAkC\V such that Swk f~\Sx¡n # 0. If £,eSzj nSWJ and ne Swk r,SXl„, we

have

|/(z)-/(x()|   z%  |/(z)-O(0| + |4>(0-/(w)|

+  |/0) - O(n) | + | <D(n) -/(x;) | ^ ¿ < ¿- .

However, this implies that co(/| P, z) < 1 / n0. This is a contradiction, and hence

/is in the first Baire class.

Remark. Theorem 1 remains valid if the limit of dp is only assumed to exist

relative to two simple arcs which lie in the upper half-plane except for their com-

mon end-point (x,0) and which are separated by /(x,0o) where 60 is independent

of x.

The following example shows that if the Stolz angles are not restricted, the

Stolz angle limit function may not be in the first Baire class.
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Example 1. Let B be the relative complement of the Cantor set C in [0,1].

B is the union of a countable collection of disjoint open intervals, say

B =\\™=x(a„, bn). For each n = l,2, ••-, construct in the upper half-plane an

equilateral triangle with the interval [an, b„\ as its base. Define a function d> in the

upper half-plane by letting <t> have the value 1 at each point which lies in the

interior of one of the triangles constructed above and letting <P have the value 0

elsewhere.

If x = a„ or x = bn for some n, let Sx be a Stolz angle lying in the equilateral

triangle associated with the interval (a„,bn) and having vertex (x,0). If x is any

other point, let Sx be the Stolz angle whose sides are l(x,5n/12) and I(x,7n/12).

It is easily seen that the Stolz angle limit of <P exists for this collection of Stolz

angles, and the Stolz angle limit function is the function defined by

-  0   if x ^ 1 or x ^ 0,

f(x) =   •    1   ifx e [a„, b„~] for some n,

[ 0 ifx e [0,1] -IJ-iKA]-

However, f\C has no point of continuity, so/ is not in the first Baire class. We

note that/is in the second Baire class.

We will return to arbitrary Stolz angle limit functions in § 4.

3. Varying directions. Some restriction on the Stolz angles is necessary in order

to have the Stolz angle limit function in the first Baire class. In this section we

consider less stringent conditions than those of Theorem 1.

Definition. Let {SjixsÄ} be a collection of Stolz angles such that Sx has

vertex (x,0) for each x. If there is a function 0:R->(O,7r), with 8 in the first

Baire class, such that Int.(SJ r\l(x,8(x)) # 0 for each x, then the class of Stolz

angles is said to be B-directed.

Theorem 2. ///: R^R is a Stolz angle limit function for <1>: R x R+ ^> R,

and if the collection of Stolz angles (relative to which the limits are taken) is

B-directed, then f is in the first Baire class.

Proof. Suppose there is a perfect set P for which f\P has no points of con-

tinuity. Let £>„, D„0, Q, Snx, M, and A„ be as in the proof of Theorem 1.

Let 8: R -* (0,n) be a function in the first Baire class which "directs" the given

collection on Stolz angles. For each x e R, let <x(x) be the angle between the x-axis

and the left side of Sx and let ß(x) be the angle between the x-axis and the right side

of Sx. For each pair of positive integers (n,j) define AnJ to be the set of points x

in A„ for which a(x) - 0(x) ^ 1 ¡j and 6(x) - ß(x) ^ 1 ¡j. If follows that

Q = ]<jT=XJT=iAnj an£l AnjcAnj+i- Since Q is of the second category in itself,

there is a pair of integers (m,k) and an open interval I such that Amk is dense in

ßn/^0.
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The function 0 is in the first Baire class, so 01Q has a point of continuity in

ßn/. Let z be such a point, and let niz) be the smallest positive integer n such

that zeA„, and let ;'(z) be the smallest positive integer j such that zeA„lz)j. Set

£ =4~1min{l/y'(z), 1/fc}. There is an open interval U containing z such that if

x e Q n I n U, then 10(z) - 0(x) | < e.
Let r = max {niz), m}. The projection of Szr onto the x-axis parallel to /(z, 0(z))

is an interval, say ia,b). Let V= I n(a,¿») n (/. It is readily verified that if

xe^U n V, then SxrnS„ # 0.

Suppose that {x,} is any sequence of points in Q with z as limit. Then there

is an N > 0 such that i > N implies x¡ e V. Let i > N be fixed and let n(x¡) be the

smallest integer n such that x¡ e A„. For any x e Q O F we have that | 0(x)

- 0(x.) | < 1 / 2k, and hence for xeAmknV v/e have <x(x) ̂ 0(x) + 1 / k £ 0(x,)

+ 1 / 2fc and p\x) ^ 0(x)-1 / fc ̂  0(x,)-1 /2fc. From the fact that Amk is dense in

gnl' and from the previous statement, it follows that there is we Amkr\V for

which SwmnSXiHxO¥=0. Also,  Swm nSzn(z) ¥= 0.

The proof is completed in the same way as in Theorem 1.

Next we consider boundary functions / which are obtained by taking the limit

of the function <J> of two variables along two simple arcs with endpoint (x, 0), the

arcs being "separated" by a line /(x, 0). First, we give an example which shows that

we cannot expect to get as "good" a result in this case as in Theorem 2.

Example 2. Let (J "= yia„, bn) be the complement relative to [0,1] of the

Cantor set in [0,1]. For each n = 1,2, ••», construct an isosceles triangle in the

upper half-plane with [an, b„] as base and with the angles at "a„" and "b„" equal

to in 12 - 1 / 2"). Then let T„ be the set of all points (m, v) inside or on the triangle

with base [a„,b„] for which 0<t>^l/n. Define (¡>: R x R +-> R as follows:

(J>iu,v) =

Oifiu,v)e\jTn,
B = l

1-if («,»)* (jT,.

The "angle" function 0:R->(O,7t) is defined to be equal to n/2 on

R ~ Ü  [a.,6J,
n = l

equal to n/2 — 1/2""1 at x = an, and equal to -r/2 + 1/2""1 at x = bn and is

defined linearly between each a„ and b„. Then 0 is in the first Baire class.

For each x in R we select two simple arcs Tx and Tx, each with (x, 0) as an end-

point, which except for the point (x, 0) lie in the upper half-plane and on opposite

sides of the line /(x, 0(x)). For x = an we further require Tl to be the side of Tn and

r2 to lie inside T„ to the right of Z(x,0(x)). Similarly, for x = b„ we require

r2 to be the side of T„ and T1 to lie inside T„ to the left of /(x,0(x)). Also for
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points x in [0,1] ~ [J7=y[a„,b„'], Tx and r2 are chosen so as to avoid U*tiT„

as they pass from the line y = ljk to the line y = 1 ¡ (k + 1).

It is clear that the boundary limit of <J> relative to the simple arcs Tx and r2

exists for each x, and the boundary function / thus obtained is equal to zero on

Un = i[a"'k/>] and is equal to one on the complement of {J™=y[an,b„~]. As we

have observed before, this function / is not in the first Baire class.

Definition. Let f be a family of simple arcs lying in the upper half-plane

except that each has an end point on the x-axis. Suppose also that for each x in R

there are exactly two arcs having (x,0) as an end point and these two arcs are

separated by a line l(x, 0(x)) where 8 : R -* (0, n) is some continuous function.

Then f€ is said to be continuously directed.

Theorem 3. /// is a boundary function of a function <S>: R x R+ -> R

obtained by taking limits of í> relative to a continuously directed family tf of

simple arcs, then f is in the first Baire class.

Proof. Let 0:R->(O,7r) be a continuous function which "directs" the arcs

and for each x, let Tx denote the arc lying to the left of l(x, 8(x)) and Tx the

other arc. Also, let Tx denote the union of T1 and Tx.

The first part of the proof proceeds as the proof of Theorem 1 except that Tx

plays the role of Sx and Tx „ is the set of points (w, v) in Tx for which 0 < v ^ 1 / n.

Then let £>„, D„0, Q, M, A„, k, and I be as in the proof of Theorem 1.

Let z be a fixed point in QC\I, and let n(z) be the smallest positive integer n

such that z e A„. We assert that there is an open interval Vcz I with zeV such

that TXJ O TZj / 0 for j = max {n(z), k} and any x e Ak n V. Moving from (z,0)

along r* let py be the first point which lies on the line y = 1 ¡j. Similarly, let p2

be the first point on T2 which lies on y = 1 ¡j. There are numbers a and ß between

0 and 7i such that pj lies on l(z,a) and P2 lies on l(z,ß). Set e equal to 2_1

• min {a — 8(z), 6(z) — ß}. Since 0 is continuous and s is positive, there is an open

interval U containing z such that if xeU, then j 0(z) - 0(x) | < e. Let (a, b) be the

interval obtained by projecting pt in a direction parallel to l(z,a — s) onto the

x-axis and by projecting p2 in a direction parallel to l(z, ß + e) onto the x-axis.

Let V = U n (a, b). If x is in Ak n V and x < z, then the arc at x which lies to the

right of l(x, 8(x)) must meet T\ below the line y = I ¡j. Likewise, if x is in Ak n F

and x > z, then the arc at x which lies to the left of /(x,0(x)) must meet T2 below

the line y = 1 ¡j.

Let {x¡} be any sequence of points in Q with z as limit. There is a positive

number JV such that i > JV implies x¡ e V. Let k > JV be fixed, and let n(x¡) be the

smallest positive integer n such that x¡ e A„. Since Ak is dense in F and 0 is con-

tinuous, there is an x* in Ak n F such that Tx,k n rx.„(Xj) # 0 (this is verified by

using the same method as in the previous paragraph).

The proof is now completed as in the proof of Theorem 1.
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Definition. Two simple arcs T1 and T2 (which lie in the upper half-plane

except that each has (x,0) as an end-point) are Stolz separated if there is a Stolz

angle Sx with vertex (x,0) which lies between Tx and F2 except for the point (x,0).

Theorem 4. /// is a boundary function of <5 obtained by taking the limit

of Q> relative to two Stolz separated arcs at each point (x,0) on the real line,

and if the family of Stolz angles which separate the arcs is B-directed, then f is

in the first Baire class.

The proof is like the proof of Theorem 2 except for a few obvious modifications.

4. Arbitrary Stolz angles. In §2 an example was given which showed that if

a real-valued function / of one variable is a Stolz angle limit of a function of two

variables, without any restriction on the Stolz angles, then the function / may

not be in the first Baire class. However, the function / in the example was in the

second Baire class, and / was equal to a Baire one function except on a countable

set. Bagemihl and Piranian [1] refer to such functions as honorary functions of

the first Baire class. We will show that any function which is a Stolz angle limit

of a function of two variables is an honorary function of the first Baire class.

We now refer to some results due to G. Lederer [5] which will be used in the

proof of the next theorem.

Let J^bea countably additive hereditary class of sets. A proposition will be

said to hold a.e. in a set E if the subset of E where the proposition fails to hold is a

member of Jf.

Let a be an ordinal number, a ^ 1.

Definition. A function / is said to have the property 0(a) with respect to a

closed set F at a point x in F if and only if for any positive e there is a neighborhood

G of x and a function g in the Baire class a such that |/ — g | < s a.e. inGnf.

Definition. A function/is said to have the property A(a) if and only if for any

nonempty closed set F there is an x in F such that / has the property Z)(a) with

respect to F at x.

Lederer has shown that if a function f:R-+R has the property A(a), then the

function is equal a.e. in R to a function in the Baire class a.

Notation. If P is a nonempty perfect subset of the real line, we will denote by

P the set consisting of P minus the end-points of the complementary intervals.

Lemma. Iff:R-*R is a Stolz angle limit function for <&:RxR+-+R,

then f\P has a point of continuity for any nonempty perfect set P.

Proof. Suppose there is a nonempty perfect set P for which/| P has no point

of continuity. Let D„= {xeP: eo(/|P,x) ^ 1/n}. Then P = \JZLyD„ and

P = (J™= yD„ u (P ~ P). Since P ~ P is countable and P is of the second category

in itself, there is an integer n and an open interval / such that Jn P ^ 0 and D„n

is dense in I C\P. Since D„0 is closed relative to P, we have that D„n zz> I r, P.

We will denote J O P by Q.
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Let A„ = {xeQ: peSxn implies |<D(p) —/(x)| < 1/M}, where M is a fixed

number greater than 16n0. Since <5 converges at each x relative to the set Sx, we

have 2 = [_J„°i yA„. Thus there is an Ak which is second category in P since Q is of

the second category in P.

For each rational number r between 0 and n, let Br be the set of points x in Ak

for which l(x, r) meets the interior of Sx. It follows that Ak = (J,iL. Hence there is a

rational number q such that Bq is of the second category in P, and so there is an

open interval J contained in J for which J C\P # 0 and Bq is dense in J D P.

Let z be a fixed point in J3? n J. Project Sz k to the x-axis parallel to the line

l(z,q), and denote by (a, b) the interval determined by this projection. The interval

(a, b) contains z, and also Sxk dSzk # 0 for any x in B? nj n(a,b).

Let {x¡} be any sequence of points in P n J with z as limit. There is a number JV

such that i > JV implies x¿e(a,ft)nj. Let i greater than JV be fixed. Since x¡ is

a bilateral limit point of Bq, there is an x* in Bq n (a, b) CiJ for which

Sx»a C\ SX| B(xi) 7e 0»

where n(x¡) is the smallest positive integer n for which x¡ e An. Let £ be a point in

S,,n Sx*k and let n be a point in Sxt n Sx. „(x¡). It follows that

|/(z)-/(x()|   Ú  |/(z)-*«)| + |*tf)-/(**)|

+  |/(x*) - <D(n)| + |<5(n) -/(xf) | £   ¿ < ¿-.

This implies that tu(/|P,z)^ l/2w0, which is a contradiction. Therefore f\P

has a point of continuity.

Theorem 5. ///: R->R is a Stolz angle limit function for Q>: R x R+ -* R,

then fis an honorary function of the first Baire class.

Proof. We will show that /has the property A(l) for JÍ being the class of all

countable subsets of R. Thus from Lederer's theorem we conclude that/is equal

to a function in Baire class one except on a countable set.

Let F be any nonempty closed subset of R. If F has an isolated point x, then

trivially / has D(l) with respect to F at x.

Let us assume F is a perfect set. Then f\F has a point of continuity, say x0.

Let s > 0 be given. There is a neighborhood G of x0 such that for any x in

G C\F, \f(x) -/(x0)| < b. Let g(x) =/(x0). Then \g-f\<s on G C\F except

for a countable set. Therefore/has the property D(l) with respect to F at x0 in F,

and so / has property A(l) and the proof is complete.

From the lemma preceding Theorem 5 it is easily seen that not all honorary

functions of the first Baire class are arbitrary Stolz angle limit functions. For

example, the function / which is 1 on the rationals and 0 on the irrationals is an

honorary function of the first Baire class. However, this function restricted to
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the open interval (0,1) has no points of continuity and so fails to satisfy the

condition thac/|P has a point of continuity for any nonempty perfect set P.

Theorem 5 remains true if Stolz separated arcs are used in place of the Stolz

angles as the sets on which the limits are taken. The proof involves only a few

modifications of the proof of Theorem 5.

5. Continuous Stolz extensions. In this section we let [£] denote the «-tuple

i¿ly,---,e;„) of real numbers and let *tf denote the complex numbers. We use super-

scripts to index sequences of points in R".

Theorem 6 is an improvement of a theorem due to Jarnik [4]. Except for the

continuity assertion and the functions being complex-valued, his theorem is the

same as Theorem 6.

Let / be a compact interval in R". Then A will denote the subset of I x I consis-

ting of those points of the form ([£], [£]).

Theorem 6. Iff-.I-tlf is a function in the first Baire class, then there is a

continuous function <D: (/ x / ~ A)->r^ such that lim4_„<!>([<!;]*,[r]]k) =/([x])

whenever (a) limHoo[{]'= lim*_,„[»]*= [x] and (b) (£k-x) (nk- x) ^ 0 for

each i = 1, •••,« and k = 1,2, •■•.

Proof. Let {fm} be a sequence of continuous functions on I for which

lim„_00/m([x]) =/([x]) for every [x] in L Define H: I x (0,1] -»"if by letting

H ([x], Ijm) =fm [(x)] and extending H linearly, that is, for lj(m +1) < y :§ Ijm,

H([x],y) = G(y) -/m+1([x)] +(1 - G(y)) •/m([x]), where

GW = (^-^)/(^-(^Tir)

Then H is continuous on / x (0,1], and lim^o+íí ([x],y) =/([x]).

Since / is compact, each fm is uniformly continuous. For each m and e > 0,

let ôm(e) be a positive number such that |/m([x]) — /m([v])| <s whenever the

distance from [x] to [y] is less than ôm(e), and set Ci = min^^l), ö2(l), I}.

Inductively, define (m = min{<5m(l/m), ôm+x(ljm), (m — l)/2} for m = 2,3,---.

The sequence {£,„} converges monotonically to zero. Next, define t: R + ->(0,1]

by letting x(r) = 1, if r 2: (, and letting x(Çk) = I j k and by extending linearly.

Then the function 0: (/x / ~ A)-+(0,1] defined by 0 = x o p, where p is the

usual metric on R", is continuous.

For i[Q, [n])e(/x/~A), define <!>([£], [«]) = H(([f] + [»;])/2, 0([É],[>])).

The function <P is continuous and, as we will now show, possesses the desired

property.

Let [¿t]k and [n]k satisfy (a) and (b) of the theorem for some [x]. Since

(# - x;) • (x,. - nk) ^ 0, we have

p\[Ct, [n]k) > i   [(£ - x)2 + ink - x)2]
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and

Thus

^Bt+Iffi.Mjsf jS^ + Sfc^fj.

CD /> (B] ;M ■ [>])4 KB]'.W).

Let e greater than zero be given. There is a positive integer M such that

1/M < e/2 and a positive integer K such that fc > K implies p([i]* ["]*) ^ Cm-

Hence 0([£]*, [n]fc) ̂  1 / M for k> K. From the definition of the sequence

{Cm} and that of H it follows, in view of (1), that for k> K,

(2) | H py+M*, flflff, [„]')) _ H([x], 0([£]\ [n]*))
1

Since lim^^œ 6([Çf, [n]*) = 0, it follows from the definition of H that

limÄ^ooH([x],0[(^]*,[n]'£))=/([x]). Thus there is a positive integer K' such

that k> K' implies

(3) \H([xld([^k,[nf))-f([x-])\ < -1-.

Let K"=max{K,K'}. Then, if k>K", both (2) and (3) hold, which together with

(4) | <!>([{]*, W)-/(M) |

á |H/^M)0([^)M^  - H([xie([^k,[nf))

imply 1<&([£]*, [n]*) -/([x]) |<l/M+l/M<e. This completes the proof.

We now consider the 1-dimensional case of this theorem. Suppose that

f:I-*1ê,I = [a,b~\, is in the first Baire class. According to Theorem 6, there is a

continuous function <D: (/ x I ~ A)-+'£ with the property that \imk^a0O(^k,nh)

=f(x) for any sequence {(Çk,nk)} of points converging to (x,x) such that each

(£*, nk) lies either in the sector to the right of the line £ = x and below the line

» = x or in the sector to the left of the line £ = x and above the line n = x. In

this section we will use the term Stolz angle to refer to angular sectors in

(7 x J~ A) with their vertices on A, and we will show that <P converges to/for

any such Stolz angles.

Corollary 1. If f: I-ttf, I = [a,b~], is in the first Baire class, then there

exists a continuous function 5>: (7 X I ~ A)->'£ such that, for each x, limí>(¿;, n)

=/(x) as (<!;, n)-> (x, x) relative to any Stolz angle with vertex (x,x).
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Proof. Let 0 : (/ x I ~ A) -> <€ be the continuous function constructed in

the proof of Theorem 6, and let (x, x) be any point on A. In order to prove the

corollary, it suffices to show that, for any positive integer N, 0 converges to f(x)

relative to the Stolz angle SN lying below the line n = £ whose sides lie on the

lines through (x,x) with slopes (N + 1)1 N and N ¡(N + 1).

Let N be given, and let (e;k,nk) be any sequence of points, lying in the Stolz

angle described above, with limit (x, x). First, let us consider the case where

£,k > x, nk > x for every k = 1,2, •••. Let Wk = Ck — nk, and associate with (£,k,nk)

the point (x + Wk,x). Since the points (Çk,nk) lie below the line n = Ç, we have

(% - x)JiHk -x)£ NUN + 1). Thus nk-xz%N-Wk.

Let {Cm} be the sequence defined as in the proof of Theorem 6. Since Wk -* 0,

we may assume Wk z% £t for each k. Then define m(/c) to be the largest integer m

for which Wk z% £m. Since Wk -* 0, we have that m(fe) -» oo .

Also, let 0 be defined as in the proof of Theorem 6, and note that 9(£,k,iik)

= 6(x+Wk,x). Since 0£(& + ifc)/2 -(x + Wk + x)/2^N ■ Wk and 0(^,nt)

:g 1 /m(k), we have 14>(^,nk) - 4>(x + Wk,x)\ = \H((ik + nk)j2, 0(£t,nk))

-HHx+Wk + x)j2, emk,nk))\z%N ■ Ijmik). Now it is easily seen that the

sequence (x + Wk,x) satisfies the conditions (a) and (b) of Theorem 6. Therefore

lim/._00<l>(x + Wk,x) =/(x), and so lim^ ^(¿)k, nk) =f(x).

The case where £,k < x, nk< x (for every k = 1,2, •••) is treated similarly, and

the case where i\k 2: x and nkfix has already been done by Theorem 6. For an

arbitrary sequence, one considers the three subsequences determined by the three

cases. For each subsequence ■$ has limit f(x) ; hence <P has limit f(x) relative to

the Stolz angle SN.

Gleyzal [1] has shown that if a function/: [a,b] -* R is in thefirst Baire class,

then there is a convergent interval function cp with / as its limit, i.e., there is a

function cp defined on the collection of subintervals of [a,b] such that if /„ is a

sequence of intervals with lengths going to zero and with xeQ/,, then ep(In)-*f(x).

Indeed, Theorem 6 yields an interval function with this property. For if <I> is the

function given by Theorem 6, then, for / c [a, b], let ep(I) = <S>(u, v), where u

and v are the left and right end-points, respectively, of /. Let {/„} be a sequence of

intervals each containing x e [a, b] such that the lengths converge to zero, and let

{(u„,vn)} be the sequence of points in [a,b] x [a,b] such that u„ and v„ are the

left and right end-points of L,. It is easily checked that this sequence of points

satisfies the conditions (a) and (b) of Theorem 6. Hence

lim (/>(/„)= Hmd(un,v„)=f(x).
n-»oo n-»oo

In addition, this interval function is "continuous" in the sense that if I0 cz [a,b]

and / is another interval in [a,b] such that the measure of the symmetric dif-

ference of I0 and / is sufficiently small, then the difference | ep(I0) — ep(I) | is small.

Moreover, Corollary 1 implies that the convergence property of the interval
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function </> is even stronger. To illustrate this, let us suppose that {/„} is a sequence

of intervals lying to the right of x such that (i) given any e > U, there is an integer

K > 0 such that n>K implies I„cz(x,x + e) and (ii) \ln\¡d(x,I„) S; 1/JV for

some integer N > 0, where | /„ | denotes the length of /„ and d(x, IH) denotes the

distance from x to /„. Letting u„ and v„ denote the end-points of /„, we have

1 / JV g 11„ | / d(x, /„) = (v„ - u„) j(u„ — x). From this we have that un — x ^ N(v„ — u„)

and (JV + 1) • (un - x) ^ N(vn - x). Thus (v„ - x)l(u„ - x) ^ (JV + 1)/JV. There-

fore the sequence of points (un,v„) in [a,ft] x [a, 6] lies in a Stolz angle with

vertex (x,x) and converges to (x,x). Hence, by Corollary l,/(x) = limn-,»^(«b, v„)

= lim„^ „(/>(/„).

Similarly, if {/„} is a sequence of intervals lying to the left of x which get arbit-

rarily near x as described above and such that \ltt\/d(x,I„) = 1/N for some JV > 0,

then the sequence {(u„,v„)} of associated points in [a,b~\ x [a,b~\ lies in a Stolz

angle with vertex at (x,x) and the sequence converges to (x,x). Thus again we have

by Corollary 1 that

/(x)= lim ®(u„,v„)= lim  (b(I„).
B-*00 B-*0O

Remark. The above condition that the ratio of |/„| to d(x,I„) be bounded

away from zero cannot be omitted.

From Corollary 1 it is not difficult to obtain the following slightly different

result

Corollary 2. /// is a complex-valued function of Baire class one on the unit

circle, then there is a continuous F defined on the unit disk such that the nontan-

gential limit of F at e'e exists and is equal tof(e'e)for each 8.

The author is grateful to the referee for his helpful suggestions for improvements

in the paper.
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