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1. Introduction. Dual integral equations arise in many problems of mathe-

matical physics, especially those with mixed boundary conditions. A well-known

example is

(1) u"Jll(ux)f(u)du  = g(x),       0<x<l,
J» 00

/• oo

(2) u" J y(ux) f(u)du  = h(x),       x>l,
Jo

where JÁ(x) is the usual Bessel function, g(x) and n(x) are given and/(x) is to be

found.

The case when a = p = v = 0, ß = 1, g(x) is equal to a constant and n(x) = 0

occurs in the problem of finding the electrostatic field arising from a flat circular

disk charged to a constant potential. This was solved by Weber in 1873 and since

then much complicated analysis [1], [3], [7], [8], has been developed to deal with

the more general case (1), (2).

In this paper I deal with dual integral equations of a much more general nature

than (1), (2). Instead of Bessel functions, the kernels will be H functions of order n,

defined below. These H functions contain Bessel functions as special cases and my

aim is to show that, with the help of a suitable terminology, it is possible to write

down a solution by inspection. This solution has then to be verified by sub-

stitution, an operation which may prove to be quite difficult.

The H functions of order n used here are described in equations (3) and (4)

below. On the left of (3) the H function of order n is expressed in abbreviated

form, on the right of (3) it is expressed with all the constants displayed and on

the right of (4) is given its definition :

\    A.«i     / \   lp\.ai  ßz,a2        ßn,an J
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We assume that the following conditions are satisfied ; some of these conditions

are necessary and some serve to simplify the problem.

(i)    a¡, (X[, ßt are all real, i = 1,2, • • -, n.

(ii)   a¡>0, i = l,2,-,n.

(iii) Let s = o + it, where a and t are real ; then the contour C along which

the integral of (4) is taken is the straight line whose equation is a = tr0, where a0

is a constant. This line is parallel to the imaginary axis in the complex s plane.

(iv) All the poles of the integrand of (4) are simple and he to the left of the Une

o = Oq. This requires o0> ~ atlah i = 1,2, •--, n.

Together with these conditions we require either (va) or (vb) below:

(va)2(T0Z?=1ai< lUiißi-oi),

(vb)2<70Z?=1ai<Z?=1(j?i-ai)-L

The integral of (4), taken along the line o = a0, converges if (va) holds and con-

verges absolutely if (vb) holds. This can be verified by using the asymptotic ex-

pansion of the Gamma function.

The asymptotic expansion also shows that the contour C of (4) can be closed

by a large semicircle on the left. On computing the residues we then find that the H

function of order n can be expressed as the sum of n power series, the ¿th of

which is multiplied by x"'1"'. Each of these power series is an entire function.

In particular, for the H function of order 1 we have

(5) H{x\2l :l)=2x"-"+1Jt[+,_1(2x),

where J denotes a Bessel function.

The dual integral equations we consider here are as follows:

(6) f    H(ux\aoi,ai:n)fiu)du = gix),      0<x<l,
Jo       \     IPi.fli    /

and

(7) f°° h(ux   X"a':n)fiu)du = hix),       x>l,
Jo       \       &>«<     /

where g(x) and fc(x) are given and /(x) is to be determined. Note that the con-

stants at, i = 1,2,•••,«, are the same for both (6) and (7).

We assume that the H function of (6) satisfies the five conditions above and

that the H function of (7) satisfies these conditions with a¡ replaced by X¡ and /?,•

replaced by p¡, i = 1,2,•••,«. We also assume that a common value of a0 can be

found for both the H functions. When « = 1 the dual equations (6) and (7) reduce

to (1) and (2) as a very special case, by using (5).

Our aim is to find a formal solution of (6), (7) which can be written down by

inspection of these equations. The solution, which makes use of the terminology of

fractional integration, is given by equation (36).
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2. The Mellin transform. We make much use of the Mellin transform. We

denote the Mellin transform of/(u) by SR[/(u)] and if 9Jt[/(u)] = F(s) we shall

write f(u)=m~1[F(s)l
Formally we have

(8) 9W[/(«)] = F(s) =(C°f(u)us-i du

and

(9) aR_1[F(S)] =/(«) = ¿ £ F(s)x-° ds,

where the contour C, in (9), is usually a straight line parallel to the imaginary

axis in the complex s ( = a + it) plane, with equation a = <t0.

Associated  with these transforms is the Parseval theorem  as follows: if

9K[p(«)] = P(s) and 2R[/(u)] = F(s) then

(10) f  p(u)f(u) du=~   \   P(s) F(l-s) ds.
Jo 2ni Jc

Again the contour C is some straight line whose equation is of the form a = a0.

From (8) or (9) it is easy to deduce that if f(ux) is considered to be a function

of u with x as a parameter, where x > 0, then

(11) 2R[/(ux)] = x-sail[/(«)].

From (11) and (10) we may deduce that

(12) f  p(ux)f(u) du=~   ( P(s) x"sF(l - s) ds,

and this is the form in which we shall use the Parseval theorem here.

Conditions for the validity of (8), (9) and (10) can be found in [9, §§1.29, 3.17

and 4.14].

From (4) and (9) we may infer that

and this follows from (4) if condition (vb) of §1 holds [9, Theorem 29, p. 46],

It may still be true, however, if only condition (va) holds.

On using 9K[/(m)] = F(s) we may apply the Parseval theorem (12) to (6) and (7)

and, from (13), rewrite these equations in the forms
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(15) ^   f ft    F(^ + M»)| xsF{i _s)ds = h{x)        X>L
2/Ti  Jcl=ly   [Tipt-sa)!

We assume that the contour C is the same straight line a = a0 for both (14) and

(15).
(14) and (15) can be deduced from (6) and (7) only if we know something about

the properties of /(x) and since these are not known at present we must proceed

formally. The method used here works more easily with (14) and (15) than with

(6) and (7).

3. The reduction of (15) and (16) to equations with a common kernel. In dealing

with dual integral equations it is customary to transform the given equations

into two others with a common kernel and the problem is then reduced to

solving one integral equation. Our procedure here is to transform the denominator

of (14) to that of (15) and the numerator of (15) to that of (14).

In order to transform T(ß„ — sa„) of (14) to T(pn — sa„) of (16) we make use of

the Beta function. If b„ = 1 / a„

f
Jo

(x6» - ifi>Y~->--lvb"f"-1-tdv

(16)
rpi. - ßn) xK,„-K-sT(ßn-san)

b„ T(p„ - sa„)

Certain conditions of convergence are required for (16), p„ > ß„ and b„ßn

= ß„lan> a0 (s = er0 + •'»* on tne nne a — °o)- When fractional integration is

introduced the first of these conditions may no longer be necessary and the second

may be relaxed.

In (14) replace x by v, multiply by (xK - vKY"~ß"~l vb-^-\ where b„= 1 jan,

and integrate through the integral sign with respect to v from 0 to x, where

0< x< 1. We obtain

¿7 f ÏÏ   f^r^l   ff* + 5V  x-°Fil-s)ds2niJci-i   \r(fi,-sa,)l   Tip„-sa„) v

(17)
= I

n~ ßn) JO

where 0 < x < 1 and b„ = lj a„.

We now introduce the first operator of fractional integration, denoted by 3.

When operating on w(x) the operation is written as on the left of (18) below and

defined as on the right of (18):

(18) 3[y,£: m: w(x)] = =£-_ x-»-m+m-t  f *(x« _ „»y-Vw(iO
i (y) Jo

dv.
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The case m = 1 has been studied in detail by Kober [5] and the formulae for the

more general case when m > 0 has been given by Erdelyi [2]. There is, however,

no essential difference between these two cases as can be seen from the formula

(19) 3[y, e : m : w(x)] = 3[y, m x (s + 1) - 1: 1 : W(X)~],

where xm = X,vm = Fand w(x) = W(X).

The operator 3 exists if w(x) e Lp(0, oo ), p — 1, y > 0, e > (1 — p)/p [2, §2].

If, in addition, w(x) can be differentiated sufficiently often then the operator 3

exists for negative as well as positive values of y [2, §2, p. 222].

For brevity we write (note a(~l = b¡)

(20) 3[(p; - ßd, (p>r* - 1): of1 : w(x)] - 3f[w(x)]

and then it is evident that the right-hand side of (17) is equal to 3„[g(x)], with

0 < x < 1. In other words we can transform T(ßt — sa¡), in (14), to T(pf — sa¡)

if, at the same time, we apply the operator 3¡ to the right of (14). Consequently,

on transforming step by step for i = n, (n — 1),—,2,1, we obtain from (14)

(21) 2ni Jc fa  {Tin-sadi v

= 3T32-3TJKX)]-],       0<x<l.

The 3 operators of (21) are commutative.

We next transform the numerator of (15) to that of (14) and for this purpose

make use of the Beta function (note bn = lja„ as before)

/;Jx

(22)
= T(A„ - «„) x-M„-s r(a„ + san)

K T(Xn + san) "

For convergence of (22) we require X„ > a„ at the lower limit and ana0 + a„ > 0 at

the upper limit. But when the fractional integration operator 51 is introduced

some of these conditions may no longer be necessary. Here, as before, a0 is the

real part of s and also x > 0.

Now replace x by v in (15), multiply by (ti6" - xb")x"~''"~1vb"~''"*-'~l and integrate

from x to oo, with respect to v, through the integral sign. The result is

™ )ci=\   ir(p¡-sa¿
)\r(a„ +sa„)  x-sFii_s)ds

2jk Jc ¡=i   mpi-soi)) T(pn-san)

(23) rœ
= TTT*-ïXb"*~       (vb" - xb")x"-'"-1vb"-b"x"-1 h(v) dv,

1 (x„ - «„) Jx

together with x > 1 and bn = l¡ a„.
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We now introduce the second operation of fractional integration denoted by 5\

which, when operating upon w(x), is written as on the left of (24) below and

defined by the expression on the right of (24) :

/»GO

(24) <H[y,e: m: w(x)] = ^ xc        (/" - xm)y~1ir£"my+m"1H'(tf) dv.

As in the case of 3, if w(x) e Lp(0, oo ), p 2: 1, and w(x) can be differentiated suf-

ficiently often then Si exists if m > 0, £ > — lj p while y can take any positive or

negative value. The references for the operator 3, of (18), give detailed infor-

mation concerning S\. There are, in fact, simple relations between 5\ acting on

w(x) and 3 acting upon w(l/x), see also (39).

For brevity we write

(25) Ä[(A( - a), otfij l:af': w(x)] = 5v,[w(x)]

and then it is evident that the right-hand side of (23) is i\„[/i(x)], where x > 1.

Consequently we can transform the factor r(A¡ + sa) in (15) to T(a¡ + sa) if,

at the same time, the operator 5\¡ is applied to the right-hand side of (15).

On transforming step by step for / = n, (n — 1),•••,2,1 we obtain from (15)

(26) 2niJci = i   \T(Pi-sa)j

=  fti[fl2 •••«„[/»«]•••].     x>l.

Finally on writing

nTi ,wJ,[3r"%W]-],   0<x<l,
(      ' W Äl[Ä2-Ä.[Ä(x)]-].    *>1.

we have, from (21) and (26)

(28) is the reduction of (14) and (15) to two equations with a common kernel.

We can use the Parseval theorem of (12) to replace the left-hand side by an integral

involving the product of an H function of order n and f(u), but it is easier to work

with (28) as it stands.

4. The formal solution of (6) and (7). We must now solve (28) for

f(x) =ffll~1[F(s)], using the terminology of §2. For this purpose we use the

generalized Fourier transform which consists of the reciprocity

/. 00

(29) eP(x)  =   I   p(ux)/(w)dH,

/• CO

(30) f(x)   = J   qiux)ePiu) du.



1965]   A FORMAL SOLUTION OF CERTAIN DUAL INTEGRAL EQUATIONS    395

The functions p(x) and q(x) axe known as the kernels and the transformation is

said to be symmetrical if p(x) = q(x) and unsymmetrical otherwise. A full and

detailed account of this transform is given in [9, Chapter 8, especially §8.9].

Not every pair of functions can form the kernels of a transform such as (29),

(30). With the Mellin transform notation of §2 let "HR^uf] = P(s) and sJJt[q(u)]

= Q(s). Then among the conditions required for the validity of (29), (30) is the

satisfaction of the functional equation

(31) P(s)ß(l-s) = l.

In addition to this P(s) and Q(s) must be bounded and regular in certain strips of

the complex s-plane parallel to the imaginary axis and also f(x) or (b(x) must

belong to Lp(0, oo) for some p 2: 1. Since our method is formal we need consider

(31) only here.

We apply the Parseval theorem, (12) of §2, to the right-hand sides of (29) and

(30). Writing 9ft[/(t/)] = F(s), from (29) we obtain

(32) </>(x) =ir  f P(s)x ~SF(1 - s) ds.
2ni jc

Also, on writing 9Ji[(/>(t<)] = <S(s) and using (31) we deduce from (30) that

(33) /(x) = ¿£_^)JC-'<D(l-s)*.

Hence, if P(s) and </>(x) are known in (32) we can solve for/(x) = SPii~1[F(s)] by

means of equation (33).

On applying this idea to (28) and writing 5öl[fc(x)] = K(s) we deduce that

(34) f(x) « -L   f ft   (JfolZfLtÄ X->K{1 - s) ds.
2ni  Jcii\   |r(aI. + fli-sfli)/

This is the formal solution of (14) and (15) and many important properties of

f(x) can be obtained from it. But, by using the Parseval theorem, (12) of §2, we

can transform the integral of (34) so that the equation takes the form

(35) f(x) = f   h(mx Ia*' ~a" 0i: n )k(u) du,
Jo      \     i<*i + ah a¡     J

where k(x) is given by (27). From conditions (iv) and (va) of §1 the H function

of (35) exists if we can find a constant a0 such that  o-0a¡ > a¡ — p¡, i = 1,2, ■•-, n,

and 2(T0 S,"=1 a, <  £?=1 (2at + a, - p¡).

Written out in full (35) becomes

(36)

fix) =   VhÍux ßi    aj'a,':n)31[32-3„[g(u)]-]í/u
Jo      \        a¡ t "¡> a¡    /

+   ChÍux ßi~ai' ai:n)8.y[8.2-$tn[h(uy]-]du,
Ji     \      ai + a¡> at   l
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where the H function of order n is defined in (3) and (4), 3; is defined by (20) and

(18) and it, by (25) and (24). It is evident that the formal solution given by (36)

can be written down by inspection from (6) and (7).

In the case when n = 1 we can compare our result with known solutions of

(1), (2). A solution of (1), (2) for the case ß = 0 is given by Peters, [8, equations

(3.1), (3.2), p. 7] and the solution is given by (3.8) [8, p. 10]. On writing n = I,

ay = 1/2, a.y=(p + co)j2, ßy = (p - co + 2)/2, Xy = v/2 and pt = (v + 2)/2 in

(36) we obtain a formula which agrees completely with Peter's (3.8) of [8]. Our

method is formal, however, and so does not give conditions for the validity of the

solution.

5. Properties of the operators 3 and 5v and of the H function. In this section I

consider, very briefly, some properties of 3 and Si and of the H function of order n.

These may be useful when verifying that, under suitable conditions, (35) or (36) is a

solution of (6) and (7).

As in §2 denote the Mellin transform by 9Ti. Then we have

(37) SR[3[y,£: m:/(x)]] = ^+^+7-^]  aTO*)]

and

(38) 5öc[iv[y,£: m:/(x)]] =   rff^ffim] «C/W].

When m = 1 proofs of (37) and (38) are given in [5, p. 203]. When m > 0, we

can deduce (37) from the case m = 1 by means of (19). The equation for the Si

operator analogous to (19) is

(39) R[y, £ : m : w(x)] = St[y, tm 1:1 : WiX)],

where xm = X and w(x) = WiX). When m > 0 equation (38) can be deduced from

the case m = 1 by means of (39).

The methods used here are essentially based upon (37) and (38). We could have

applied 3 and R directly to (6) and (7) respectively but it is quicker and better to

apply them to (14) and (15) as we have done in §3. This is mainly because the

various steps are more openly exposed and so are easier to follow.

The proofs of (37) and (38) described above require that y > 0 in both cases,

but this restriction is easily removed. For, on applying the operator SCR-1 to

(37) we obtain an equation for 3 in which the right-hand side frequently exists

even when y is negative. We therefore define 3, with negative y, to be equal to the

right-hand side of (37) after being operated on by MR ~ S whenever this has a

meaning. Similarly for 51 with negative y, obtained from (38). For m = 1 the

formulae for 3 and Si are given in [3, (2.4), p. 688]. They are as follows.

With y negative, let n be any positive integer such that n + y ^ 0; then
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(40) 3[r,e:l:/(*)]  = x"'-¿ {*ï+"+"3[» + y, e:l:/(x)]}

and

(41) Si[y,s:l:fix)] = (-l)V+£+n  -^   {x^'Si^ + y, e: l:/(x)]}.

The general formulae for the case m > 0 can be obtained from these results by

using (19) and (39). In particular, when y = 0 we have, from (37) and (38)

(42) 3[0, £:m:/(x)]=/(x)

and

(42) Si[0, e: m:/(x)] =/(x).

From (37) and (38) we can also find formulae for 3_1 and Si'1. If we

replace 3 on the left of (37) by 3_1 we should expect the right-hand Gamma

function ratio to become inverted. This gives us

(43) 3_1[y, e: m:/(x)]   = 3[ - y, e + my: m:/(x)]

and from (38)

(44) 5\_1[v, e: m:/(x)] = 5\[- y, e + my: m:/(x)].

To complete (43) and (44) we make use of the formula for 3 and Si with negative

y derived from (40) and (41). For the case m = 1 formulae for 3_1 and 5\_1

are given in [3, p. 688, (2.3)]. The solution (35) can be verified by reversing all the

steps from (6), (7) to (35) and establishing conditions which justify each of these

reversals. For this procedure the formulae for 3 - x and Si ~' are needed in going

back from (28) to (14) and (15).

In §4 the H function of order n has been used as a generalized Fourier

kernel. For a discussion of the H function as a symmetrical Fourier kernel see [4].

The symmetrical case occurs when p(x) = g(x) in (29) and (30) and on comparing

(28) and (34) we see that the symmetrical case occurs here when

(45) p¡ = a; + a¡,    i = l,2,---,n.

When

(46) ay = a2 = -=an

the H function reduces to a Meijer G function and the conditions under which

two G functions can form a pair of unsymmetrical Fourier kernels are given in [6].

When neither (45) nor (46) hold there appears to be no general investigations

about H functions as Fourier kernels. In this case the general results obtained in

[9, §8.9] may be useful for functions in L2 space.
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