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Recently it has been noted that the minimal surface equation, and other

related quasi-linear elliptic equations have the property that the boundary values

of a solution on only part of its domain, may impose bounds upon the solution

of all points of its domain. A result of this type first appeared in [6] as a conse-

quence of the fact that the minimal surface equation possesses a solution;e.g.,

the minimal surface of Scherk; which becomes positively infinite on a straight

boundary segment. Finn [4] has obtained stronger results of this type, by showing

that if D is a domain, bounded in part by an arc T; and if </> is a solution of an

elliptic equation in D whose gradient becomes infinite as T is approached ; then

</> majorizes in D, any solution which it majorizes on dD — T. In particular, the

catenoid (b0(r) = — a cos h~1r/a is a solution of the minimal surface equation in

r > a; and limr_a d(b0ldr = — oo , while \imr_a(po(r) is finite. It follows therefore

that (¡>o(r) majorizes in a <r < b, any solution which is :£ 4>0(b) on r = b, and

hence any such solution is uniformly bounded in a < r < b.

By applying the above argument to a solution defined in the punctured disc,

and letting a -* 0, Finn obtained an elegant new proof of the removability of

isolated singularities of solutions of the minimal surface equation. These results

extend immediately to the class of radially symmetric variational problems in

n-variables, whose radially symmetric solutions have the essential properties of

the catenoid. This class was characterized by Finn in [4]. Extensions to a wide

class of quasi-linear elliptic equations in 2 variables was given by the author,

in reference [1], by constructing "catenoid-like" super-solutions.

Using the catenoid, or "catenoid-like" solutions or super-solutions as compar-

ison functions the argument of Finn leads to the following theorem, which is

valid for the class of equations possessing such solutions or super-solutions:

Let D be a domain lying exterior to a circle, and bounded in part, by an arc T

of the circle. Then there is a uniform bound on </> in D0 which depends only upon

the supremum of (b on dD — T.
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We remark that the uniformity of the bound results from the fact that the

comparison function remains finite on the inner radius. Solutions, or super-

solutions, which become infinite on the inner radius imply, by a classical argument,

the existance of a pointwise bound which depends on the distance to the boundary,

and the supremum of cp on 8D — T. Results of this nature have been given by

J. C. C. and J. A. Nitsche for a class of radially symmetric variational problems

in two variables [7].

The theorem stated above includes the results which can be obtained by using

comparison functions which become infinite on straight boundary segments, and is

therefore stronger and more widely applicable than Theorem 1 of reference [1]. It is

contained implicitly in the theorems of Finn in [4] and is used there in applications.

Through an apparent oversight however, the general statement appearing there

(Theorem 6) is somewhat weaker.

It is our purpose in this paper, to generalize some of the results of [1] and [4]

to a class of quasi-linear equations in «-variables. This is accomplished by ex-

tending the method of constructing radially symmetric super-solutions which was

developed in [1] for equations in 2-variables, to an analogous class in n-variables.

It turns out, however, that the radially symmetric super-solutions so constructed,

remain super-solutions when all but j ^ 2 of the variables are suppressed. The

strongest results are then obtained by using the super-solutions arising by taking

; = 2.
Let x = ixy,---,xn); p = (p1;■•-,pn); and let ^4(x,u,p) denote a symmetric,

positive definite n x n matrix function. Assume that the elements Auix, u,p) of A

are defined and continuous for all values of the variables x,u,p. We shall consider

the  quasi-linear  elliptic  equation

(1) ![>]= lAo<x..p.VMXlX, = 0.

We define super-solutions and sub-solutions as in [1]. Let i>(x) be a continuous

function in a domain D. t)(x) is a super-solution for equation (1), in D, if for every

closed bounded sub-domain S cz D, and every solution cp, continuous in S; v 2: cp

on dS implies v >: cp in the interior of S. If v -g cp on dS implies v ^ cp on the in-

terior, then v is a sub-solution.

Let Pip) denote the matrix with elements Pxj = ôu + ptpj, and note that if

u(x) is a C1 function, HijPiJi^7v)dxidxJ is the Euclidean metric on the surface

z = t>(x). It follows from Lemma 3 that the eigenvalues of the product matrix PA

are all real and positive. Let d¡(x, u, P) denote the eigenvalues of PA indexed in

order  of decreasing magnitude, and put A(x,u,p) = dyjd„.

The minimal surface equation in n-variables is an equation of the form of

equation (1), for which A = P~1. Hence A = 1 for the minimal surface equation.

If A is uniformly bounded, then we shall say that equation (1) is of "minimal

surface type." This definition generalizes the concept of minimal surface type;
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which was originally introduced by Finn in reference [2], for equations in two

independent variables. Equations of minimal surface type arise in a natural way,

in the study of regular parametric variational problems (see [3, Theorem 2]).

We shall assume that A is a bounded function of x, u for each fixed p, and we

introduce the notation

A'(x,p) = sup  A(x, u,p),
u

A(p) = sup A(x,u,p),
x,u

A*(p) = max A(p).
\p\=p

If F is a function of x,u,p and / is a C1 function of x, we shall abbreviate

F(x,f, Vf) by F[/] ; i.e., A(x,/, Vf) = A[/] etc. Also, we shall abbreviate A*(| V/|)

by A*[/].
We shall not require that A is bounded, but we shall impose certain growth

conditions upon A*. Thus, our results will apply to a class of equations which

includes the class of equations of minimal surface type.

1. Statement of results. In Theorems 1 and 2, we shall assume that D is a

bounded open domain, whose boundary is the union of two disjoint sets r1,r2.

We shall assume that </> is a solution of equation (1) in D, and that

lim inf (b(x) = m > — oo,      lim sup (b(x) = M < oo .

We introduce the following notation. Let Tn-k denote an arbitrary n — k plane,

2 5¡ k ^ n, and let rk(x) denote the distance from the point x to Ta-k. Thus, in an

appropriate coordinate system xx, — ,x„, T„-k is the locus xx = x2 = ••• = xk = 0,

and rk(x) = {x\ + --+ x*}1/2.

Theorem 1. Assume that D lies exterior to a cylinder C of the form r2(x) = a,

and assume that T2 lies on C. Then, if {°°A*(p)/p3c/p is convergent, and xeD,

there is a bound on |</>(x)| which depends only upon m,M,A*(p),a; and the

distance from x to C. If J°°A*(p)/ p2dp is convergent, then \(b(x)\ is uniformly

bounded in D.

Corollary 1. Assume that J"00 A* /p3dp is convergent, and that D lies in a

half space defined by an n — 1 plane T, and T2 lies on T. Then there is a bound

on \(b(x)\ which depends only upon m,M,A*(p) and the distance from x to T.

It should be noted that for a very general class of nonconvex domains, Theorem 1

imposes a limitation upon the boundary values for which the boundary value

problem is solvable. In order to make a precise statement, it is convenient to

introduce the concept of "inner boundary point." Let D be a domain, and let x0

be a point of D. Suppose that there is a cylinder C of the form r2(x) =a, with
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the property that x0 lies on C; and such that there is a deleted neighborhood of x0

whose intersection with the exterior of C (i.e., with the set r2(x) > a) lies in D.

Under these conditions, x0 is said to be an inner boundary point of D. This

definition generalizes the definition originally given by Finn [4] for domains

in 2 dimensions.

Corollary 2. Assume that Jœ A*(p)/p2dp is convergent, and assume that D

is a domain which possesses at least one inner boundary point. Then it is possible

to prescribe boundary data on D in such a way that the boundary value problem

is not solvable.

Theorem 2. Assume that J" °°A*(p)/p3dp is convergent. Assume also that

T2 consists of a finite number of disjoint point sets Y\,---,Y2 lying respectively

in distinct n — 2 planes Tn^2, •••,TB*_2, and such that T2nT;j_2=0 '/ i-*4/

If n = 2, T1q, and hence T2 are to be interpreted as points. The conclusion is

that throughout D, m zi cp z%.M.

We remark that Theorem 2 implies that a solution of the minimal surface

equation in n-variables, is bounded in the neighborhood of a singularity lying

on an n — 2 plane.

It will become evident, in proving Theorems 1 and 2, that they remain true if

r2(x) is replaced by rk(x). However, a moments reflection will indicate that the

most general situation is obtained by putting k = 2.

Theorem 3. Let ep(x) be a solution of equation (I). Let kx[cb], i= 1,••»,»,

denote the principal curvatures of the surface z — ep(x), indexed in order of

decreasing numerical value. Then at points where the k¡[ep] do not vanish

simultaneously, ky[cp] > 0,  kn[ep] < 0, and

(n - l)A[ep]        ky[cp]

Note that if equation (1) is of minimal surface type, then the ratio | k„ | / kx is

uniformly bounded from zero and infinity. In the two variable case, this implies

the known result that the spherical image mapping is quasi-conformal on solution

surfaces of equations of minimal surface type.

2. Basic lemmas.

Lemma 1. Let v(x) be a C2 function in a domain D. Let k¡[v], i = l,-,n,

denote the principal curvatures of the surface z = v(x), indexed in order of

decreasing numerical value. Assume that ky[v] > 0, and that k„[v] < 0. Let c be

an arbitrary constant, h an arbitrary vector, and a a positive constant. Let

v' — v + c, v(x) = c + ocv(x(x)jcc), where x(x) = x + h; and let v*(x*)

= c + av(x(x*) I a), where x(x*) = Rx* + h, and R is a rotation matrix. The

conclusions are:
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(a) If \k„[v]\lky[v] >(n- l)A[u] at each point of D, then L[v] <0 in D.

V \km[v] //c¿] < l/((n - 1)A[»]), then L[v~] > 0 in D.

(b) If y»]|/ti[i']>('i-l)A'[i']. then v' is a super-solution in D. If

|feB[f]|/fei[ü] < l/((« — l)A'[t>]), then v' is a sub-solution in D.

(c) If | k„[v\ \¡kx[v] > (n — l)Ä[ti], then ô is a super-solution. If

|fc„M|//c1M<l/((n-l)Ä[I;]),

then v is a sub-solution.

(d) If |fc,,[i>]|/fei[i>] > (n — l)A*[u], then v* is a super-solution. If

\kn[v]\lky[v]<ll((n-l)A*[vJ),

then v*  is a sub-solution.

Lemma 2 (Finn). Let D be a bounded domain in E" whose boundary is

the union of two closed sets Tx, Tß, Assume that each interior point of Tx is the

end point of a line segment lying in D, and let s denote arc length along these

segments. Let M[(/>] = 0, be an elliptic partial differential equation which

possesses a super-solution (bx(x) with the following properties: (i) (/>i(x) is

continuously differentiable in the interior of D, and continuous on Tß. (ii)

lim^-.p d(bylds= — oo, where P is any point interior to Ta, and the limit is

taken along the above mentioned line segment, (iii) If c is any constant, then

(by + c is again a super-solution. Let </>(x) be a solution of the equation M[(/>] = 0,

with the following properties: if) (b(x) is continuous in D. (ii) V</> is continuous

on Ta. (iii) lim infx_r/! ((px — </>) ̂ 0. The conclusion is that (b <:(bx every-

where in D. An analogous result holds if the equation has an appropriate sub-

solution.

This lemma is a somewhat abridged version of a lemma given in [4] by Finn.

A special case is stated and proved in [1]. The proof will not be given

here.

Proof of Lemma 1. In order to prove Lemma 1, we shall need two additional

lemmas.

Lemma 3. Let a = [a¡f], b = [b¡f] be symmetric matrices, and consider

the quadratic forms Q = J^atjUtUj, P = Hb¡jU¡Uj. Assume that Q is positive

definite. Then the eigenvalues of the product matrix ba~l are all real, and

they are the stationary values of the ratio P¡Q.

Proof. Put a = PJQ, then the stationary values of a satisfy the equation

(cf. Lemma 2 of [1])

(4) det(b - aa) = 0.

It follows from standard results of matrix theory, that the eigenvalues of

ba'1 axe all real (cf. the simultaneous diagonalization theorem).
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Lemma 4. Let v(x) be a C2 function in a domain D, having the property

that for every constant c, L[v + c] < 0. Then v is a super-solution in D. If for

every c, L[v + c] > 0, then v is a sub-solution.

Proof. The proof proceeds by showing that if cp is any solution in D, then v — cp

cannot have a minimum at an interior point of D. The proof will not be given here,

since it does not differ significantly from the proof for equations in two independent

variables. The reader is referred to [1], where the two variable case is proven.

Proof of Lemma 1. Let l[v], ll[v] denote respectively, the first and second

fundamental forms of the surface z = v(x), i.e.,

, l[v] = ZPyMdXidx,-,

H[t>]= (1 / W)IvXfiCidx,dxj,

where W=il + | Vt;|2)1/2. Define

(6) 1*[V]=   ZXy^dXidX,,

The principal curvatures k¡ [v] of the surface z = i'(x) are then the stationary

values of the ratio II[t;]/I[u]. Denote the stationary values of the ratio II[i>]/I*[i>],

indexed in order of decreasing magnitude, byk*[v],i = l,---,n. Then, according to

Lemma 3,

(7) k*y[v] + ■- + k*[v] = trace VA = i\¡W)L[v],

where Vdenotes the matrix with elements vx.Xj. For simplicity, during the remain-

der of the proof of Lemma 1, we shall omit the argument i; from the quantities

l[v], ll[v], l*[v], k¡[v], kf[v], A[v], A*[t;]; and denote them simply by I, k¡, A,

etc. Since, by assumption fct > 0, and k„ < 0,

(8) k* = min "j*" = mini— jjj z% kndn.

Since k* is a value of (II/I) • (I/I*), it is clear that

(9) k^kydy,       i = l,-,n-l.

Similarly,

(10)

Hence,

fcf = max Í— —\^kyd„,

kf^kndy,       i = 2, ••-,«.

(H)       Mi{¿ - (« - 1)^} == *î + - + kU feid„((n - 1)A - i^-lj.

Thus, using (7), if \kn\jkx> in - 1)A, then L[v] < 0, and if | k„ \jkx < l/(n - 1)A,

then L[v] > 0. This proves part (a). Parts (b), (c), and (d) follow from Lemma 4,
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and the fact that the ratio of any two of the principal curvatures of a surface is

invariant under rigid motions and similarity transformations. We shall give the

proof of part (d). Note that the surface z = v*(x*) is obtained from the surface

z = v(x) by a rigid motion, followed by a similarity transformation. Therefore

(m kn[v*(x*)] __ kjjvjx)-]

K   ' kx[v*(x*)-]     kx[v(x)Y

Since | Vv(x)\ = | Vu*(x*)|, it is clear that A*[t>(x)] = A[u*(x*)]. Thus, if it is

assumed that \k„\lkx > (n — l)A*, then

(13) L_ij > A[,*].

It is obvious that (13) continues to hold if v* is replaced with v* + c. Under

the above assumption on v, Lemma 4 now implies that v* is a super-solution. In

like fashion, if | k„ | / kx < 1 ¡(n — 1)A*, then

I Kb* + c] | ¡kx[v* + c] < 1 ¡(n - l)A[t;* + c],

and t;* is a sub-solution. This proves part (d); parts (b) and (c) may be proved in a

similar manner.

We remark that since kx[ — v']= — k„[v\, it follows that k„[ — v\jkx[ — v]

= kx[v\lk„[v~\. Hence if v is a super-solution satisfying one of the various criteria

of Lemma 1, then — v is a sub-solution satisfying the analogous criteria.

Lemma 5.    Assume that J°°A*(p)/p3 dp converges, and put

Letf  '(v) denote the inverse of the function f(p), and let a < b. Define

(15) U(s;a,b) = ^r1(log(tla))dt.

Then Uk(x;a,b) = U(rk(x);a,b) is a super-solution, and — Uk(x; a,b) is a

sub-solution for equation (1) in the domain rk(x)>a, k = 2,3,---,n.

Proof. It suffices to show that the function Uk(x; a,b) satisfies the hypothesis

of part (d) of Lemma 1, in the special case where rk(x) = (x\ + •■• + xf)1'2. The

general case then follows, since for such functions the property of being a super-

solution is invariant under rigid motions. The proof proceeds by showing that

the principal curvatures of a surface of the form z = v(rk(x)) axe: v'¡(rkW) with

multiplicity k- 1, v" ¡W3 with multiplicity 1, and 0 with multiplicity n — k. As

before, W= (1 + | Vu|2)1/2. It is easily verified that Us < 0, and Uss > 0. Hence

for the surface z= Uk(x;a,b),
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(16) \kTM = ¡m^Mï..nA*(|VUkl)>(n_im|VfJt().
1L     f J k     ss

Therefore, by Lemma 1, Uk is a super-solution in the domain rt(x)> a. An analogous

procedure shows that — Uk is a sub-solution. (Cf. also, the remarks following the

proof of Lemma 1.) It remains to determine the principal curvatures of a surface

of the form z = v(rk(x)). The principal curvatures are the stationary values of the

ratio H[v]/I[v], hence they are the eigenvalues of the matrix (ljW)VP~1[v],

where as before V is the matrix with elements VXJ = vx.Xj, and P[v] is the matrix

with elements P^v] = ÔXJ + vx¡Xj. Let oirk) = v'jrk, t(rk) = (I j rk)(v'j rk)'; and

let (S>k denote the matrix with elements <$kjj, where <5Mj- = x¡x,- if i,j ^ k, and

(f>kyiJ = 0 otherwise. Also, let Ik denote the matrix with l's in the first k places along

the main diagonal, and O's elsewhere. Noting that <P2 = r23>,., one may easily

verify that P_1[u] -I - (o2 ¡ W3)<l>k. A calculation then yields

<"> Oh-* - (¿)'.+ (^K
Now, the rank of a matrix of the form alk + b<J>k is at most k. Hence 0 is an

eigenvalue of multiplicity at least n — k. The rank of <5fc is 1, and its trace is r2.

It follows that the other eigenvalues of alk + b<$k are: a, with multiplicity k — 1,

and a + br2 with multiplicity 1. The desired result now follows from (17).

The function Uis;a,b) has the following useful properties: (i) Uis;a,b) is

monotonically decreasing in s, and U(b; a,b) = 0. (ii) lims_a dUjds= — oo .

(iii) For any fixed s, limfl_0 U(s; a,b) = 0. (iv) lims-fl l/(s; a,b) is finite if and

only if Jc0A*(p)/p2 dp is convergent. These properties are easy consequences

of the definition, They are derived in detail in [1] for a function Uir;ry,r2),

which is essentially the same as the function Uix;a,b) defined here. In case

JœA*(p)/p2 dp is convergent, we shall put lims-,aI/(s; a,b) = Uia,b).

Note that property (ii) implies that the partial derivative of Ukix;a,b) in

the direction of increasing rk, is negatively infinite on the surface rkix) = a. Thus,

Uk will satisfy the hypotheses of Lemma 2 in domains for which Ta lies on the

surface rt(x) = a.

Proof of the theorems.

Proof of Theorem 1. Choose b sufficiently large so that D lies in the region

defined by a < r2(x) < b. Let AE denote the region a + e < r2(x) < b, and let Cc

denote the cylinder r2(x) = a + e. According to Lemma 5, then, U2(x; a + e,b)

is a super-solution and — U2(x; a + e,b) is a sub-solution in Dn AE. We now

apply Lemma 2 in Dr\At with r„ = Dn Cc, Tß = ô(D n AE) — Ta. Letting

£ -» 0 we have in D,

m — U2(x; a,b)^ep ^ M + U2(x; a,b).

If   (coA*(p) jp2 dp is convergent, then  U2(x; a,b) ^ U(a,b) and



1965] SOLUTIONS OF QUASI-LINEAR ELLIPTIC EQUATIONS 415

m - U(a,b)£(pSM+ U(a,b)

holds throughout D.

Proof of Corollary 1. Let x0 be any point of D. Then for sufficiently large a,

there is a cylinder C of the form r2(x) — a such that X0 lies exterior to C and T2

lies interior to C. The result now follows by applying Theorem 1 in the inter-

section of D with the exterior of C.

Proof of Corollary 2. If x0 is an inner boundary point of D, then by

hypothesis, there is a neighborhood JV(x0) of x0 on dD, and a cylinder r2(x) = a,

such that x0 lies on the cylinder, and all points of JV(x0) lie either on, or in the

interior of the cylinder. Choose b so that b — a exceeds the diameter of D. Let

f(x) be a function defined on 3D with the properties : (i) f(x) is continuous on dD,

(ii) fix) = 0 on 3D - JV(x0), (iii) /(*„) > U(a,b).

However, the argument used in the proof of Theorem 2 implies that any solution

which has zero boundary values on dD — N(x0), cannot exceed U(a, b) at x0.

Thus, there can be no solution which assumes the values f(x) on dD.

Proof of Theorem 2. Let r2(x) denote the distance from x to the n — 2 plane

Tln-2, i = 1,2, —,j; and let b¡ be small enough so that the cylinder Ct, defined by

r'2(x) = b¡ does not contain any points of TJ2, if i # j. Let G\ denote the domain

e < r2(x) < b¡, and as in the proof of Theorem 1, apply Lemma 2 in the domain

DC\Gl Let Mj'=maxxeCfnn </>(x), and let Mf = max{M[,M}. It follows from

Lemma 2, that in D n G\, </>(x) ^ M* + U2(x; e, bt). Since lim£^0l/2(x;e,fc,.) = 0,

we let £ -* 0, and obtain the inequality </>(x) ̂ M * in D C\Gl, where G ' denotes

the domain r2(x) ^ b¡. Now, it is well known, that a nonconstant solution of an

elliptic equation of the form of equation (1), cannot attain its maximum at an

interior point. It follows therefore, that </>(x) ^ max,Jli*. Suppose

M* = maXjM* > M. Then M* = M'¡, and </> must attain the value M* on Cj n D,

i.e., at an interior point of D. This is impossible, hence M* ^ M. An analogous

argument shows that </>(x) 2: m in D.

Proof of Theorem 3. Since L[c/>] = JF(fcî[</>] + ••• + /c*[</>]) = 0, it is clear

that either kf [</>] = 0 for all i, or else k*x[4f] > 0, and £*[</>] < 0. Since the kf

are the stationary values of II/I*, it follows that either II/I* vanishes for all

directions, at a point x, or it takes both positive and negative values. Since the

principal curvatures fe¡[</>] are the stationary values of II/II = (II/I*) (I*/I)

and I*/I > 0, it follows that the same is true of the ratio II/I. Thus at a given

point, either all of the principal curvatures vanish, or else kx[4>~\ > 0, and /c„[</>] <0.

The result now follows from part (a) of Lemma 1.
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