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Introduction. In this work a concrete nonlinear problem in the theory of elliptic

partial differential equations is studied by the methods of functional analysis on

Sobolev spaces. More specifically, let G be a bounded domain in Euclidean N-space

RN, and let .4 be a formally self-adjoint linear elliptic differential operator of order

2m defined on G. Then we consider the boundary value problem

Au — Xfiu,x) = 0,

(1) u\sa = Du\eG=-=D""1u\eG = 0,

where X is a real number and/(i,x) is a real-valued function defined on R1 x G

with /(0, x) s 0.
If/(u,x) = u, the study of the boundary value problem (1) forms the foundation

of the spectral analysis of A, a problem of great importance both in mathematics

and its applications. If f(u,x) does not depend on « in a linear manner, one

enters the relatively uncharted world of nonlinear functional analysis.

We shall be concerned with the existence of real-valued nontrivial solutions

of (1), i.e. eigenfunctions. There are basically two different approaches to such

nonlinear existence problems: first the methods of fixed point theory and other

topological principles used with success in the study of elliptic partial differential

equations since the pioneering work of S. Bernstein and J. Schauder; second the

variational method, dating back to Gauss, Dirichlet and Riemann, and currently,

in combination with the new methods of Sobolev spaces, undergoing a rapid

development. Throughout this study we shall rely on this latter approach.

For second order operators A, one of the first treatments of boundary value

problems of the type considered here was given by A. Hammerstein [17], in 1930,

as an application of his study of nonlinear integral equations.

The approach used in this dissertation is based on a direct study of elliptic

differential operators without recourse to integral equations and Green's functions.

By focusing attention on the so-called generalized solutions of (1), we are able to

use a variety of Hubert spaces in our study and to eliminate the auxiliary analytic

machinery of a priori estimates, and smoothness properties on the domain G.

The following questions will occupy our attention in this study.

(i) (Existence Problem). Under what restrictions on the function f(t,x) does
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the boundary value problem (1) possess a real-valued generalized eigenfunction

with associated real eigenvalue XI

(ii) Is there a generalized eigenfunction for (1) whose associated eigenvalue X

is the first eigenvalue for (1) in some sense?

(iii) (Regularity Problem). Under what condition on (1) is every generalized

eigenfunction sufficiently smooth to be an eigenfunction for (1) in the classical

sense?

(iv) What features of the boundary value problem (1) distinguish it from its

linear analogue when f(u,x) = g(x)u:

(v) In the case of second order operators A, what are the positivity properties

of the generalized and classical eigenfunctions obtained? Can the above results be

sharpened for ordinary differential equations? For bounded domains G in R2?

The basic notations and results used throughout are summarized in §1. In §11 we

state the existence problem in full detail and show how its solution can be

reduced to consideration of a certain operator equation in the Hubert space

W2m\G).

Tentative solutions of this operator equation are normalized, but not, as in the

linear case, by the requirement that they be of norm 1. Rather, they lie on an

"energy level" set dMR in W2m)(G). The study and definition of these sets are

taken up in §111. From the point of view of the geometry of Banach spaces, the

energy level 8MR is the boundary of a closed convex but unbounded set in

Hr2m)(G). Surprisingly however, 3MR is both weakly closed and bounded away

from 0.

In §IV, the variational problem inf a(u,u) over the energy level dMR is con-

sidered, where a(u,v) is the associated Dirichlet form for the elliptic operator A.

This variational problem is solved by the direct method of the calculus of varia-

tions, and its solution is also a generalized eigenfunction for the boundary value

problem (1). This method is a complete analogue of the linear case (cf. Rieszand

Nagy [31]). The most important restriction on the function f(t,x) is a polynomial

growth condition similar to that arising in the studies of Visik [37] and Brow-

der [7].

By imposing natural smoothness restrictions on the boundary value problem (1)

and retaining the growth condition on f(t,x) mentioned above, we show that any

generalized eigenfunction of (1) is actually an eigenfunction in the classical sense.

This is the main result of §V. Its proof is based on a powerful bootstrap procedure

developed by F. E. Browder using the LP regularity theory for nonhomogeneous

linear elliptic differential equations.

The investigation of one distinctively nonlinear feature of (1) is the subject

of §VI. In particular we study the dependence of the eigenvalue X, characterized

in §IV, on the normalization constants. In sharp contrast to the linear situation, in

many cases the set of numbers {/l(R)|0<R< oo} contains subsequences tending

both to 0 and + oo.



1965] NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 147

In §VII, we sharpen the results on the existence problem. First, for second

order operators A, we obtain a partial extension of the Courant Nodal Line

Theorem to a nonlinear context. In case 2m > N, we show the existence theorem

of §IV holds without growth restrictions on f(t, x) (cf. M. Golomb [15]). Finally

for second order operators A, in R2, we mention N. Levinson's result [23] on

exponential rates of growth for the function f(t,x).

Previous studies of nonlinear eigenvalue problems fall into several categories.

First, there are special studies for ordinary second order differential equations

such as Nehari [27], Ljusternik [25] and Pimbley [30], Secondly, there are general

studies in abstract function spaces, of which the works Banach [3], Krein-

Rutman [21], Golomb [15], Ljusternik [26] and Schaeffer [32] are representative.

Some of the results obtained apply to partial differential equations but only at the

cost of placing extremely strong restrictions on the function f(t,x). For example in

Golomb [15], |/(/,x)| must be bounded above by a linear function in t. Finally

there are studies directly applicable to partial differential equations. Representative

works are Levinson [23], Vainberg [35], [36] and Duff [11]. The present work

extends Levinson's study from R2 to R Nand from the Laplace operator to a large

class of elliptic operators of order 2m. Further, by replacing a study of Green's

functions with Garding's inequality and Sobolev's Imbedding Theorem we are

able to fit Vainberg's studies into a unified pattern.

In [11], Duff proves the existence of a real positive solution Uy(u) for the second

order boundary value problem

Au-XF(u,x) = 0,       F(u,x)^o>0,

(2)
u\sg = Six).

Our study gives conditions under which (2) has still another distinct real positive

solution m2(x) with the same number X, for setting v(x) = u2(x) — w1(x), the

equation

Av — X[F(v + Uy,x) — F(uy,x)]= 0,

»U = o,

is a boundary value problem of type (1).

This research represents part of a dissertation submitted to the Graduate

School of Yale University in candidacy for the degree of Doctor of Philosophy.

The author extends a most hearty thanks to Professor F. E. Browder for constant

encouragement and numerous helpful suggestions. This research was partially

supported by the National Science Foundation (NSF-GP-2283) and (NSF-

GP-2280).

I. Preliminaries. In this section we set down the basic terminology and

auxiliary results needed in the present study.

1.1. Domains in RN. Let G be a fixed bounded domain in Euclidean N-space,
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RN, with boundary ÔG and closure G = G U 8G. A general point of G will be

denoted by x = (xx,---,xN). G is said to be of class Cm, if the boundary ÔG can be

covered by a finite number of open sets, each admitting a representation of the

form
xk — Sk(Xl,X2, ■■•,xk-y,xk+l, ■••,xN), k = 1,—Ar,

where the functions gk have continuous derivatives of all orders up to and including

order m. All functions defined on G will be assumed to be real-valued. Integration

over G will always be taken with respect to Lebesgue iV-dimensional measure.

1.2. Differential operators. We proceed to discuss differential operators

defined on G. (All derivatives are taken in the generalized sense of L. Schwartz

[33].) The following notation is very convenient: the elementary differential

operators are written D¡ = d\idx¡ (1 ^ j ^ N) and for any A'-tuple of nonnegative

integers a = (a1,a2, •••,%), the corresponding differential operator of order

|oc| =<*! + a2 — +aN is written D* = D^Df — DS'.

Thus, in this notation, a general real linear differential operator of order 2m

is written: Au = Z|ct|á2maa(x)DtIu, where aa(x) axe real-valued functions defined

on G. The formal adjoint A1 of A is defined as the differential operator

A1u= Z|Il|g2mßa[atl(x)ii]. If the differential operators A and A1 axe identical

A is called formally self-adjoint. An operator A is said to be in divergence form,

if it can be written Au = H\ct\j\ß\^mDII[aIXß(x)Dßu]. In particular, if a0lß(x)= aßx(x),

A is formally self-adjoint.

It is useful to classify differential operators by their properties which remain

invariant under differentiable coordinate transformations x = (xy,---,xN) ->x'

= (x{,---,Xh). For linear differential operators A, the so-called homogeneous

characteristic form, having simple transformation properties, is a valuable clas-

sifying device.

The homogeneous characteristic form of A is the multinomial a(x,Ç)

= Z|a| =2max(x)Ç*, where £ = (Çy,Ç2, •••,£#) is an AT-vector of real indeterminates

£i>—»{»j and £,"= ¿i"1^2 ■■■£$*• Properties of a(x,£f) invariant under nonsingular

real linear transformations are invariant under all differentiable coordinate trans-

formations. Thus, we say the linear differential operator A is elliptic in G if

a(x, Ç) =t 0 for any x e G, and any nonzero ÇeRN. The linear differential operator

A is uniformly elliptic in G, if there is a constant c0 > 0, such that

a(x,0^c0\C\2m for any xeG and all £eRN, where | g| = (£,\ + ■■■ + S,2)1'2

is the length of the real N-vector £.

1.3. Function spaces. Our study of elliptic differential operators will be ex-

pressed in the language of functional analysis. In particular, three special classes

of Banach spaces enter the theory of elliptic differential equations in a natural

manner. (We recall a Banach space is a normed vector space, complete with

respect to the norm.)

(1) Cm(G) spaces, (a) Cm(G) is the collection of functions u(x), such that u and

all its derivatives of order îS m axe defined and continuous on G.
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(b) Cm(G) is the collection of functions in Cm(G) such that D"u for | a. | ^ m are

uniformly bounded on G. Cm(G) is a Banach space with respect to the norm

¡"II = -£i<xia™supGlo°'"00|.
(c) Cq(G) is the collection of functions in Cm(G) which vanish outside a compact

subset of G.

If m > /, C\G) zz, Cm(G) in the sense that each function u(x) in Cm(G) is also

in C!(G), and convergence with respect to the Cm(G) norm implies convergence

with respect to the Cl(G) norm. Further, the Arzela-Ascoli theorem shows any

bounded set in Cm(G) is a precompact subset of Cl(G). Thus the imbedding

Cm(G) -* C'(G) is a compact linear transformation which is one-to-one.

We formalize the notion of imbedding as follows. Let X and Xy be two Banach

spaces; then X is imbedded in Xy (we write X c Xf) if: (1) every element yeX

is also an element of Xy, and (2) every strongly convergent sequence in X is also

a strongly convergent sequence in Xy. Thus the imbedding operator i:X-+Xy

defined by i(y) = y is a continuous linear mapping between two Banach spaces

and hence bounded, i.e. there is a positive number fc such that || y \\Xl ̂  k |] y ||x,

for all yeX. The imbedding X -> Zj is compact if the linear operator i is compact.

(2) Cm,y(G) spaces (Holder spaces), (a) A function u(x) defined on G is said

to satisfy a Holder condition with exponent y (0 < y < 1), if there is a positive

constant fc such that | u(x) — u(y) | :g k | x — y\y  for any x, y e G.

(b) Cm'y(G) is the collection of functions in Cm(G) whose derivatives of all

orders ^ m satisfy a Holder condition of exponent y. Cm'y(G) is a Banach space

with respect to the norm

«    ,. v i\D"u(x)-D"u(y)\)1 « I = || « ||C,„(G) +     £      sup    1— J_ W|   .

We note that C^Í/j^cC"^), and again, by the Arzela-Ascoli theorem the im-

bedding Cm'y(G) -* Cm(G) is compact.

The subject of elliptic differential equations based on functional analysis and

the Cm'y(G) spaces was first extensively studied by the Polish mathematician

J. Schauder, in the decade prior to the Second World War.

(3) Wp(G) spaces (Sobolev spaces). First, we define the Lebesgue spaces

LP(G) = W° (G), 1 ^ p < oo. (a) Lp(G) is the collection of equivalence classes

a.e. of functions u(x) defined on G such that j"G|w(x)|p< oo, for fixed p with

1 zi p < oo. Lp(G) is a Banach space with respect to the norm | u \\" = JG | w(x)|"

(1 S P < oo).

(b) L2(G) is a Hubert space (i.e. a vector space with inner product, complete

with respect to the norm | w || = yj(u,u) with respect to the inner product

(u,v) = jGu(x)t;(x). For 1 < p < oo, LpiG) is a separable reflexive Banach space,

with conjugate space LqiG), where l/p + l/a = l. Further if ueLJfG) and

v e LqiG) then by Holder's Inequality uv is integrable over G, and
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IH = IMkHU •/.
If  G   is   a   bounded   domain   and   1 ^ px Si p < co,   Lp(G) <= Lpi(G).   Hence

I " ||¿„(o á fc01 « ¡MO)» for ail m e Lp(G).

(c) 1FP(G) is the collection of fonctions on Lp(G) such that D"u, for ail | a :£ m,

again lies in LP(G). WP(G) is a Banach space with respect to the norm

\\u\\l„ =   Z   \\D*u\\p(G).

(d) JF2(G)    is    a    Hubert    space    with   respect   to    the    inner    product

<«,»>m¿   = l,a[ám(D"u,D"v)Ll(G).

(e) W^(G) is the closure of C%(G) in IFÍm)(G). W™(G) is closed linear

subspace of lF2m)(G), and thus can be regarded itself as a Hubert space.

1.4. Sobolev's Imbedding Theorem and Corollaries. The following basic re-

sult, known as Sobolev's Imbedding Theorem, gives conditions under which

W™(G) can be imbedded in various Banach spaces in a continuous and, sometimes

compact manner.

Theorem 1.4.1 (Sobolev-Kondrachov). Suppose G is a bounded domain of

class C1 in RN. Then

(!) WP(G) cz W¡(G),for any number r, satisfying the relation

1        (m-j)        1        1

p N       ~~  r ~ pi

Hence there is a number kx>0 such that

\\u\\j,r^kx\\u\\mtP,       foranyueW?(G).

The imbedding is compact if 1/p — (m —j)/N < 1/r ^ 1/p.

(ii)  Wp(G) c C\G),for any number j, satisfying the relation

1      m —j      .

p N

Hence there is a number fc2 > 0 such that

1 « ¡cj fa) = k2 J « |m>p,       for any u e W^(G).

The imbedding is compact.

(iii) Wp(G) <= Cj'r(G)for any numbers j,r satisfying the relation

1_m-2-JL<0
p N

This imbedding is also compact.
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For the proof of this result we refer to Browder [5] and Nirenberg [28]. For

our purposes the following corollary to Sobolev's Imbedding Theorem is parti-

cularly important.

Corollary 1.4.1. Let G be a bounded domain of class C1 in RN. Then

W™iG) e= LAG) for any r satisfying the relation, 1 ^ r z% NpUN - mp). In this

case, there is a constant fc3 > 0 such that

|| u I M6) Ú fc31 « |Up      for all u e Wpm(G).

This imbedding is compact if 1 ;£ r < NpUN — mp). In case N g mp, the im-

bedding is compact for any r, 1 z% r < oo.

The following results show how new inequalities can be derived from the prop-

erties of imbedding mappings.

Lemma 1.4.2. Let Xy,X2,X3 be three Banach spaces such that Xy c I2 c I3,

Suppose the imbedding Xy -* X2 is compact. Then given any e>0, there is a

Ki¿) > 0 such that for all yeXy

\\y\\X2z%e\\y¡Xl + Kie)\\y\\x¡.

Proof. (Lions [24]). Assume the inequality is false. Thus there is a sequence

{y„} in Xy such that \\yn\\X2 ̂  e\\yn\\Xl + n \\ y„\\X3. Setting vn = yj\\y„¡Xi, we

obtain

(1) IKIU = 1   and   II v« II« ̂ e + n I ». ||xj»
By the properties of the imbeddings Xy a X2 cz X3, there is a subsequence of vn,

which we label v„, such that v„-* v strongly in X2 and X3. On the other hand,

using (1) we must have both || v |X3 = 0 and | v \\X2 ̂ £ > 0, a contradiction.

Lemma 1.4.3. Let G be a bounded domain in RN. Then for any e>0, there is a

Kie) > 0, such that for all us iT{2m\G)

1 « |l2(G) Ú «I « Ü*7(G) + Kie) I u \\LliG).

Proof. As we are considering functions w(x) e W%"XG), without loss of generality

we may assume G is of class C1. Thus by Sobolev's Imbedding Theorem the

imbedding W2m\G) -* L2(G) is compact for any integers m, N. Further as G is a

bounded domain, L2(G) <zz Ly(G). Hence the required result follows from Lemma

1.4.2, by setting X, = W2m)(G), X2 = L2(G), X3 = LyiG).

1.5. Elementary facts concerning Banach and Hubert spaces. Two general

notions of convergence will be useful: (1) y„-+ y strongly in a Banach space X if

|| yn — y Ix —» 0 as n —> oo, and (2) yn-* y weakly in a Banach space X if Z(y„) -> /(y)

as n -» oo, for every bounded linear functional I defined on the space X. If yn -» y

weakly in a Banach space X, and X-*■ Xy is a compact imbedding, then y„-*y

strongly in the Banach space Xy.
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We note the following facts concerning weak convergence in the Banach space X :

(a) weak limits are unique ; (b) if yn -* y weakly in X, then the set of X-norms

of the sequence {y„} is uniformly bounded ; (c) if X is a separable, reflexive

Banach space, any set of elements in X, with uniformly bounded X-norms, is

weakly precompact.

(d) Riesz Representation Theorem. Let l(y) be a bounded linear functional

defined on the Hubert space H. Then l(y) has the unique representation

l{y) = (y,z)H, where z is a fixed element of H.

1.6. Operators in Banach and Hubert spaces. Two types of operators mapping

the Banach space Xx into the Banach space X2 arise in the present work.

(a) Nonlinear composition operators. Bu=f(u), where/(r) is a real-valued

continuous function on R1, and the Banach spaces Xx and X2 axe considered

as spaces of real-valued functions.

(b) Linear elliptic differential operators A. We shall show that many elliptic

differential operators A of order 2m can be uniquely associated with a bounded

linear operator sä mapping W2m)(G) into itself.

The following standard definitions are convenient. Let B be an operator from

the Banach space Xx into the Banach space X2; then B is continuous if it maps

strongly convergent sequences in Xx into strongly convergent sequences in X2,

B is bounded if it maps bounded sets in Xx into bounded sets in X2, B is uniformly

continuous if for every number £ > 0 there is a 8 > 0 such that 0 y — y L < Ô

implies I By — By ^x¡ < e, B is compact if B maps every bounded set in Xx into

a precompact set in X2. A functional is an operator, not necessarily linear, defined

on a Banach space Xx with range in the real numbers R1. A functional F is called

weakly continuous if F maps weakly convergent sequences in Xx, into convergent

sequences of real numbers.

Let/(i,x) be a real-valued function defined on R1 x G, continuous in both

the í and x variables. Denote by B the operator defined on the set of real-valued

functions u(x) on G by

Bu(x)=f(u(x),x).

We note that B maps measurable functions on G into measurable functions on G.

Further B maps C(G) into itself. The following result, due to M. Vainberg [34],

gives conditions under which B maps Lpi(G) into LP2(G) in a continuous and

bounded manner, without imposing additional smoothness properties on the

function f(t,x).

Theorem 1.6.1 (Vainberg). Suppose the operator B(u(x)) =f(u(x),x) maps the

space LP(G) into the space Lpi(G). Then the operator B is a continuous and

bounded mapping if and only if the function f(t, x) satisfies the growth condition

\f(t,x)\^A + k\t\p'Pl    for all ueG, teR1,

where A and k are positive constants.
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For the proof of this result we refer to Vainberg's paper [34],

We turn now to the second class of operators considered here, linear elliptic

differential operators. The following definitions will be convenient. Let .s/ be a

bounded linear mapping of a real Hubert space H into itself, sé is self-adjoint

if (séu,v)H = (u,sév)H for all u,veH. sé is semi-bounded if there is a constant

c0 such that (séu, u)H ^ c0(u, u)H for all u e H. sé is positive definite if sé is semi-

bounded and the constant c0 is positive.

We now sketch a well-known procedure which associates a linear elliptic dif-

ferential operator A uniquely to a bounded linear operator sé in a Hubert space H

(cf. II.3).

Let A be a linear elliptic differential operator of order 2m defined on a

bounded domain G. Suppose A can be written in the divergence form

Au = H\a\t\ß\amD0C(aXß(x)Dßu) where aaß(x) are real-valued uniformly bounded

functions defined on G. Associated with A is the Dirichlet form a(u,v) defined

for all w,ve'W'ifXG) by a(u,v) = £|tt|,|^|¿m §(iaaiß(x)DxuD0v. Using Schwarz's

inequality and the uniform boundedness of the coefficients a^(x) we conclude

|a(u,t;)| ^ fc || W ||m,2 || u||m,2.

Thus a(u,v) is a bilinear bounded functional on W2m)(G). Thus by the Riesz

representation theorem there is a bounded linear operator sé mapping W2m)(G)

into itself such that <[séu,v) = a(u,v).

Examples, (a) If A is formally self-adjoint, i.e. axß(x) = aßx(x), sé is a self-

adjoint operator in W2(G). (b) Let A0 = HMSmDxD''. Differentiation by parts

shows for functions u in W2(G), 040w,w)L2(G) = <w,u>^(2m)G. Thus in the

Hubert space W2(G), there is a positive definite operator sé0 uniquely associated

with A0.

The following important result allows us to establish the semi-boundedness

of a large class of uniformly elliptic operators.

Theorem 1.6.2 (Garding's inequality). Suppose G is a bounded domain in

RN, and A is a real uniformly elliptic linear differential operator of order 2m

with uniformly bounded coefficients and uniformly continuous top order terms;

then there are constants Cy > 0 and c2 ^ 0 such that for all u e W™ (G)

a(u,u) ^Cy\\u \\2wT - c2\\u ¡i2(G).

For a proof of this result we refer to the paper of Garding [13].

II. The eigenvalue problem and its associated operator equation. In this

section we state the basic problem of our study and show its equation can be

reduced to the solution of an operator equation in the Hubert space ?F2m)(G).

ILL The boundary value problem. We shall consider the boundary value

problem
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Au — Xf(u,x) = 0,

(ILL1) u\eG = Du\dG=-=Dm-1u\ÔG = 0,

where (a) G is a fixed bounded domain in RN, (b) A is a formally self-adjoint

uniformly elliptic real linear operator of order 2m with uniformly bounded

measurable coefficients and top order terms uniformly continuous (A is assumed

to be given in the divergence form Au — Z|«|, \f^„D"(aae(x)Dfu)), (c) X is a real

number, and (d) f(t,x) is a real-valued function defined on R1 x G, jointly

continuous in the t and x variables, with the following properties :

1./(0,x)e=0.

2. tf(t,x) > 0 (í ¿ 0) for all xeG.

3.f(-t,x)=-f(t,x).
4. f(t, x) is a nondecreasing function of t for fixed x.

5. For some fixed Xy e G and some positive constant fc and all xeG,

f(t,x) ^ kf(t,xy) > 0 for t > 0.

6. (Polynomial growth condition.) \f(t,x)\^a + ky \t\p for all (t,x)eR1 xG,

where a, ky axe nonnegative constants and p = p(m, N), i.e. p depends on the

order of the operator A and the dimension of the Euclidean space RN containing

G.
If/(i,x) is analytic in t, f(t,x), for each x, reduces to a polynomial in t

with terms of odd degree and coefficients bk(x), i.e. /(i, x) = Zt = 0 bk(x)t2k +l where

(21 + 1) = p(m, N). We shall call the family of functions /(i,x) which satisfy

all conditions of II. 1 (d) 3P(p), where this family is indexed by the exponent p

occuring in the polynomial growth condition.

In many special circumstances the conditions defining !F(p) can be greatly

reduced; we shall make special note of such circumstances as they arise. We note

that property 4 is motivated by physical considerations (cf. Duff [11]).

II.2. Classical and generalized eigenfunctions. Recent studies of nonlinear

elliptic partial differential equations (cf. Browder [7], [8] and Ladyzenskaya [22])

have shown the advantage to be gained by broadening the meaning of equation

(II. 1.1) to allow solutions that are not necessarily smooth enough to satisfy (II. 1.1)

in an exact sense. Thus we make the following definitions.

Definition H.2.1. A classical solution of the boundary value problem (II. 1.1) is

a function u(x) with the following properties : (1) u(x) e C2m(G), (2) u(x) eCm~ \G),

(3) u(x) satisfies the equation Au — Xf(u, x) = 0 in G, as well as the boundary

values u(x) |8G = Du(x)\eG = ■•• = Dm-1ii(x)|aG = Oat each point x of ÔG.

Definition II.2.2. A generalized solution of the boundary value problem

(II. 1.1) is a function u(x) with the following properties: (1) u(x)eiV(r^(G) and

(2)ZW,|,|S. $Gaxß(x)D"uDßv = X jGf(u,x)v, for all  functions v(x)eiT2m\G).

Differentiation by parts shows that every classical solution of (II. 1.1) is a

generalized solution. The converse is, in general, not true. The following lemma

gives a partial converse.
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Lemma II.2.1. Suppose u(x) is any generalized solution of the boundary

value problem (II.l.l). Suppose in addition that u(x)eCm~1(G)nC2m(G) and

G is of class Cm; then u(x) is a classical solution of (II. 1.1).

We postpone the proof of this lemma to §V, where the discussion of the regularity

of generalized solutions is systematically investigated.

The boundary value problem (II.l.l) always has a classical solution, namely

the trivial one, m(x) = 0 in G. The following definitions focus attention on non-

trivial solutions.

Definition II.2.3. A classical eigenfunction for (II.l.l) is a classical solution

of (II.l.l) such that u(x)#0 in G.

Definition II.2.4. A generalized eigenfunction for (II.l.l) is a generalized

solution of (II.l.l) such that w(x) ̂ 0, apart from a set of measure 0, in G.

II.3. The operator equation. A special feature of generalized solutions

is the fact that they are often expressible as solutions of an operator equation in a

Hubert space, or more generally, in a reflexive, separable Banach space. Indeed,

the following result holds in the present situation.

Theorem II.3.1. Suppose the function fit, x) is a member of the class ^ip),

where

N + 2m   A7     „
0^p< „   -   , N>2m,

N — 2m

0 z% p < oo, JVâ2m.

Then the generalized solutions of the boundary valueproblem(ll.l.l)are identical

with the solutions of the operator equation 2Iu — XBu = 0 defined on the Hilbert

space iV^iG), where % is a self-adjoint bounded linear operator mapping

W^\G) into itself and B is a continuous, compact, not necessarily linear, mapping

of W^\G) into itself with P(0) = 0.

The proof of this theorem is based on the following two lemmas.

Lemma II.3.2. Let A be an elliptic differential operator of order 2m defined

on G with the properties described in II.l (b). Then for any u,veW^2\G),

aiu,v) = < 9lH,«>m>2 (cf. 1.3) where 21 is a self-adjoint bounded linear mapping

of W2m\G) into itself. Further there are constants ct > 0 and c2 ^ 0 such that

forallueiT^iG)

<91",">m,2 ̂ Cy I U fm¡2 -C2\\u |o,2 •

Proof. We write a(u,v) = £|a|,|ß|gm jrGaC[ß(x)D"uDßv. Let M be the uniform

bound of the coefficients aaß(x). Hence by Schwarz' s inequality

\aiu,v)\\%M\u\mA\v\m¿.

Thus, for any u, v e iT^XG), a{u,v) defines a bounded bilinear functional
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on the Hubert space W2m)(G). Thus by the Riesz representation theorem, there

is a uniquely defined bounded linear operator 21 mapping W(2\G) into itself

and such that a(u,v) = <îfu,u>m2. As A is formally self-adjoint, a(u,v) is sym-

metric and as a(u,v) = < '$iu,v)ma, % is self-adjoint. The final inequality is an

immediate consequence of Garding's inequality, Theorem 1.6.2.

Lemma II.3.3. Suppose the function f(t,x) is a member of the class i*(p),

where

r,^ N + 2m        ., ..     .
° = P<Ñ^2nf       ifN>2m>

0 ^ p < oo if N ^ 2m.

Then §Gf(u,x)v = (Bu,v}m2for any u,veW2m)(G), where B is a compact,

continuuous, not necessarily linear, mapping of Hr2m:)(G) into itself. Further,

the form <ßu,y>m>2 is a weakly continuous function of the elements u,v.

Proof. As/(i,x) is continuous on R1 x G for any u,veW2m)(G), f{u,x)v is a

measurable function on G. To show f(u,x)v is integrable over the bounded domain

G, it is necessary to show that it is bounded in absolute value by an integrable

function. Indeed by the polynomial growth condition on f(t,x), the function

\f(u, x)v I is dominated by the function a | v | + kx | u |p | v | a.e. in G, and, as G is

a bounded domain,

(1) J   (a | v | + kx | u \" | v | ) Ú a \\ v \\Li(G) + kx \\ u" \\Lr.(G) \\ v |tr(G)

for suitable r and r'. To insure this latter expression is finite we must choose r

and p in accordance with the corollary of Sobolev's Imbedding Theorem. It

suffices to choose p < (N + 2m)/(N — 2m) if N> 2m or any positive finite number

if N^ 2m. In this case, (1) is finite by Holder's inequality, for then 1 < r

<2N/(N — 2m) if N > 2m and 1 < r < oo otherwise.

Now §Gf(u,x)v defines a linear functional on #"2(m)(G) in v, which we denote by

I(v). Using the polynomial growth condition on/(i,x) and Holder's inequality, we

write, by virtue of Sobolev's Imbedding Theorem \l(v)\ ^ g(|| u ||m2) | ti|m>2

where g(r) is a continuous monotone increasing function of the nonnegative

variable r. Thus I(v) defines a bounded linear functional on the Hubert space

W(nff(G) and by the Riesz representation theorem I(v) = <z,t)>m?2 for some fixed

z e Wim2(G). We now define an operator B as follows :

W=IBu = z, where I(v) =      f(u,x)v = <z,t;>m>2.

Thus B is a well-defined mapping of #"(2'(G) into itself.

We proceed now to show that B is a continuous, compact operator. Since

iV(mff(G) is a Hubert space, it suffices to show that B maps weakly convergent
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sequences in W("\G) into strongly convergent sequences in W(2XG). To this end,

let u„ -* u weakly in TT^G); hence u eW(f(G) and

I Bun - Bu |mi2 =      sup     <Pw„ - Bu, v)n<2
l|e|U,2-äl

(2)
sup ifiun,x)-fiu,x))v.

||D||m,2si Ja

We show this latter expression tends to 0 as n -» oo.

Case I iN > 2m). Using the corollary of Sobolev's Imbedding Theorem and

Holder's inequality with p = 2Nj(N + 2m) and q = 2A//(JV — 2m), we obtain

from (2)

(3) sup (f(un,x)-f(u,x))vziK\\f(un,x)-f(u,x)\\L2NnNt.
\\v\\m,2£l   JG

where K is a positive constant independent of v e W(2XG). By the hypothesis of the

lemma there is an e > 0 such that/(r, x) e !F(p) and (1 + e)p = (N + 2m)¡(N — 2m).

Set (1 + e)s = 2NI(N — 2m). Then by Sobolev's Imbedding Theorem the imbed-

ding i : W2 (G)->LS is compact and by Vainberg's theorem the mapping

/: Ls->L2JV/(JV + 2m) is continuous, where f(u) =f[u(x),x]. Thus the mapping

fi: W2,(G)->L2N/(N + 2m) is continuous and compact.As u„->u weakly in W(2X(G)

the expression on the right-hand side of (3) tends to 0, as n -» oo, as required.

Case II (N z% 2m). We follow the same procedure as in Case I. Using the

corollary of Sobolev's Imbedding Theorem and Holder's inequality with any p,

1 < p < oo, and 1/g = 1 — 1/p, we obtain from (2)

(4) sup [f(u„,x)-f(u,x)]vz%Ky\\f(u„,x)-f(u,x)\\
||»||m.2-3 1    JG

where K is a constant independent of t; e #"2m)(G). By the hypothesis of the lemma,

f(t,x) is in some class #Yp), 0 < p < oo. Choose p so that pp > 1. Thus as in

Case I the mapping fi: W2(G)-»Lpp(G)->Lp(G) is continuous and compact.

Hence the expression on the right-hand side of (4) tends to 0, as n -> oo, as required.

To complete the lemma we show <[Bu,v}m 2 is a weakly continuous function

of the elements u,veiT2m)(G). Let w„-»u, v„-+v weakly in iT2m)(G). Then by

Schwarz's inequality

| <ß"„, f„>m,2 - <Bl>, P>«,2 |  »    | <Bltn - BU, Vny,„y2 -<[BU,V- Om,2 |

^   I vn ¡mi21| Bu„ - Bu ||m_2 + | {Bu, v - y„>m?21.

As v„ -> v weakly in 7F2m)(G), and B maps weakly convergent sequences into

strongly convergent sequences, this latter expression tends to 0 as n -» oo, as

required.

Proof of Theorem II.3.1. Let u(x) be any generalized solution of the boundary
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value problem (II.l.l); then a(u,v)-X jGf(u,x)v = 0 for any veW2m)(G).

Using Lemmas II.3.2 and II.3.3 and the hypothesis of the theorem we conclude

<%u - XBu, v}m¡2 = 0 for all v e 1T2m\G).

As #"(2m)(G) is a Hubert space, %u - XBu = 0. Conversely if 31« - XBu = 0,

(f&u — XBu, v)m2 = 0 for all v e #"2m)(G). Hence using the linearity of the inner

product and the lemmas of this subsection a(u,v) — X jGf(u,x)v = 0, as required.

Also <ß(0),i;>mj2=   fc/(0,x)i; = 0; therefore B(0) = 0.

III. Energy levels in the Hubert space Wl2m)(G). In this section we define

and investigate certain sets of functions in the Hubert space W2m)(G). We refer

to these sets as "energy levels." Their properties will be of basic importance in

the remainder of this work.

ULI. Properties of the function F(t,x). Let f(t,x) be a real-valued con-

tinuous function defined on R1 x G, of class !F(p). For purposes of reference

we repeat: 1./(0,x)=e0. 2. í/(í,x)>0 (i#0) for all xeG. 3. f(-t,x)= -f(t,x).

4. f(t,x) is a nondecreasing function of t for fixed x. 5. For some fixed xx eG,

and some constant fc, f(t,x)^.kf(t,xx)>0 for t > 0. 6. (Polynomial growth

condition.) |/(t,x)| ^ a + ky\t\p for all (t,x)eR1 x G, where a,ky,p axe non-

negative constants.

Definition III.l.l. F(t,x) = §¿f(s,x)ds.

In the next lemma, we state the properties of the function F(t, x), regarding t as

variable and x in G fixed.

Lemma III.l.l. For fixed xeG, F(t,x) is a nonnegative convex function of

class C1. For t ^ 0 F(t,x) is a monotone strictly increasing function of t, with

F(0,x) = 0,  F(oo,x)= oo.

Proof. As f(t,x) is an odd continuous function of t, F(t,x) is nonnegative

and of class C1, due to the integral representation, F(r,x) = j¿f(s,x) ds. The

integral representation also shows F(0,x) = 0 and F(oo,x)=oo. In addition

as f(t,x) is nondecreasing in /, F(t,x) is a strictly monotone increasing function

in t. To prove F(t, x) is convex in t, it suffices to prove

FirLTL'X)-  j{F(ti,x) + F(t2,x)} for r^eR1.

To this end we first assume 0 ^ ty g f2; then F(t2,x) = r£>+,2>/2 + f'¿i+f2)/2and

F(ty,x)= $o,1+t2)l2 - J7™2- As f(t,x) is nondecreasing, ¡¿\+tlV2f(s,x)ds

£ Jt([1+'2)/2/(s,x)ds.ThusF(í1,x)+F(í2,x)^2j(0,1+,2)/2/(s,x)ds = 2F((í1 + í2)/2,x).

For arbitrary ty, t2, we note F(t, x) = F(\ t\,x). Thus F((ty + i2)/2, x)

= F(\ty + t2\¡2, x) ^ F((\tx\ + \t2\)/2, x) ^ UF(\ty\,x) + F(\t2\,x))
^ir{F(ty,x) + F(t2,x)}.
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Lemma III.1.2. The function Fit, x) has the following properties:

(1) F(t1,x)-F(í2,x) = (í2-í1) jo70i+s02-íi),x) ds, (2) F(í,x) = í }0fits,x)ds,

(3) there are positive constants c, d such that for all te R1 and x in G fixed,

ctfit,x) z% F(í,x) g dtfit,x).

Proof. By the definition of F(f,x), F(r2,x) - Fity,x) = ¡*t\fis',x) ds'. We

obtain (1) by making the substitution s' = (i2 — tf)s + ty in the last integral.

We obtain (2) by setting ty = 0 and i2 = t in (1), recalling F(0,x) = 0. The fact

that Fit,x)z% dtfit,x) is an immediate consequence of the fact that/(f,x) is a

continuous odd and nondecreasing function in t for fixed x. The fact that

ctfit,x) ^F(i,x) is an immediate consequence of the polynomial growth con-

dition on/(i,x).

III.2. Elementary properties of energy levels. We proceed now to describe

the energy levels dMR associated with the function F(i,x) and the boundary

value problem (II.l.l). Throughout the remainder of this section we shall assume

that /(i,x) e &(p) with 0 ^ p < (N + 2m)l(N - 2m) if JV > 2m, or 0 ^ p < oo

otherwise. Let R be any fixed real number 0 < R < oo.

Definition III.2.1. MR is the set of all functions w(x) such that(l) u(x) e"¡r2m)(G)

and (2)  jeF(uix),x)éR.

Definition III.2.2. dMR is the set of all functions w(x) such that (1) u(x) e W2m\G)

and (2)  fGFiuix),x) = R.

Example. Suppose f(t,x) = It; then F(t,x) = t2. Thus MR = {u \ u e W2m\G),

||«||¿(G)gR}, and ÔMR = {u\ueir2m\G), \\u\\l2(G) - JR}. Clearly, in this

example, MR is a well-defined closed convex set in if2mXG). As the imbedding

Hr2mXG) -> L2(G) is compact, dMR is weakly closed.

We proceed now to extend the properties of the above example to the general

sets MR and 8MR.

Lemma III.2.1 (Geometry of energy levels). Let R be a fixed positive num-

ber. Then the following properties hold:

(1) MR contains nonzero elements of W2m\G).

(2) MR is a closed, convex set in W^XG).

(3) ôMR is symmetric about the origin.

(4) On dMR, \\u\\w™XG) ^ c(R) > 0/or some constant c(R), independent of u.

(5) In general, MR is an unbounded set in 7F(2m)(G).

Proof. (1) Given an element ueW2m)(G) we must show that jGF(u,x) has

a well-defined numerical value. As F(t,x) is continuous in t and x the function

F(u(x),x) is measurable. To show F(w(x),x) is integrable over G, we show that

it can be dominated by an integrable function over G. By Lemma III. 1.2 (3) and

the polynomial growth condition on f(t,x): F(í,x)^fc1|í| + fc2|í|p+1. Hence

using Sobolev's Imbedding Theorem and the fact f(t,x)e !F(p),
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/,
(Ky\u\+K2\u |p+ *) - Ky\\u \\Ll + K2\\u fp + lL

G

=S    ̂ 3 || " IU.2  <  °°.

Thus MR contains nonzero elements of if2m\G).

(2) To show MR is a convex set in if2m\G), we consider any two elements

Uy,u2edMR. Then due to the convexity of F(t,x) in t, for any t, 0 ^ t ^ 1,

iGF(tUy+(l-t)u2,x)^t ¡GF(uy,x) + (l-t) }GF(u2,x)^R.

The demonstration of the fact that MR is a closed set in W2m)(G) is a prelude

to the more subtle result of Lemma III.3.3. We shall show that ¡GF(u, x) is a con-

tinuous functional on W2m\G). Let {«„} be a strongly convergent sequence in

W2m\G) converging to u. Then using Lemma III.1.2 and Fubini's theorem we

can write :

(F(un,x)-F(u,x))  =       (uH-u)\   /[« + s(u„-u)] ds
Jg J g Jo

=        ds\    (un- u)f[u + s(u„ - u)].
Jo      Jo

Now for fixed s, 0 ¡g s :g 1, by Lemma II.3.3,

(1) j    (un-u)f[u + s(u„ -«)]=<"„ -u,B[u + s(u„ - u)]>m,2.

As B is a compact operator and the elements {« + s(u„ — «)} are uniformly bounded

in W(2m)(G), the set of elements {B(u + s(un — u))} is again uniformly bounded in

W2m\G), by M, say. Thus by Schwarz's inequality

<u„ - u, B [u + s(u„ - w)]>,„,2 = M\\ua-u \\ma.

As un -* u strongly in W2m)(G) we conclude that

L(u„ — u)f[u + s(un — u)~¡ -» 0 as n -> oo.

Further by the polynomial growth condition on / and Sobolev's Imbedding

Theorem }G(un — u)f[u + s(un — w)] is dominated by a polynomial in s with

uniformly bounded coefficients. Thus by the Lebesgue Dominated Convergence

Theorem,   ¡GF(un,x)-* ¡GF(u,x).

Thus uneMR implies ueMR, i.e. MR is closed.

(3) As F(t,x) = F( — t,x), )GF(u,x) = ¡GF( — u,x). Thus MR is symmetric

about the origin.

(4) The fact that the elements u of dMR have || u ||m 2 Sï cR > 0 is a consequence

of the inequality associated with Sobolev's Imbedding Theorem. Indeed, let u be

an arbitrary element of BMR. Then by the argument used in part (1) of this lemma

R =  Jo-fX"»*) =í K31 « |m,2, for r > 0. Thus || u |m>2 ̂ cR > 0.
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(5) To show MR is, in general, unbounded in W2m)(G), we consider the special

case:m = l,/(r,x) = 2i,F(r,x) = i2. Thus the set My = {u\ueW21\G), jGu2^l}.

Let G = ( — £, 1 + e) for some e > 0. To obtain our result we need only produce

a set of functions in iT^XG) with values in [0,1], but with rapidly increasing

oscillation. For example,

r 2x, 0  Z%  X  < 1
2)

ity(x) = 1 2 - 2x, è á x g 1,

L 0, otherwise,

_,(2x), 0 z% x < i,

_x(2x-l), i g * g 1,

• 0, otherwise.

Unix)   =

Here || «„ ¡¿(o g¡ 1» but || u„ ||12 ^ 2". (By using polar coordinates, we can extend

this example to any bounded domain G in RN.)

Lemma HI.2.2 (Homogeneity property of dMR). Let ueôMr be given,

suppose Ry > R > R2 > 0; then there are uniquely defined numbers

by > 1 > b2 > 0 such that (1) bfu e dMRt and (2) b2u e dMRi.

Proof. We fix ueôMR, and denote J(b) = \GF(bu,x) for b ^ 0. We obtain

our conclusion by showing J>(b) is a continuous, monotone strictly increasing

function of b with J(0) = 0 and ./(co) = oo. J(b) is a continuous function of b

as ¡GF(u,x) is a continuous functional on •#^2m)(G). To show J(b) is strictly

monotone increasing, suppose by > b > 0. Then by Lemma III.1.2 and Fubini's

theorem

Aby)-y(b)   =   j   {Fibyu,x)-Fibu,x)}

í   dsí
Jo      Jg

iby-b)uf[{b  + Siby-b)}u,X]>0,

as tf it, x)>0       (t#0).

As   F(0,x)s0,   Ji0) = 0.   Now   let   n>l;   then   Jin) =  ¡GFinu,x).    Using

Lemma  III.1.2   and  Fubini's  theorem, J(n) = n ^ds  jGuf(nsu,x) 2: n./(l).

Hence, as n -» co, J(ri) -* oo.

III.3. Subtler properties of energy levels.

Lemma III.3.1 (Lí-boundedness lemma). Let R be a fixed positive number.

Then, on dMR, | u ||li(G) ^ g(R), where g(R) is a monotone increasing function

of R, independent of u.

Proof. Using property (5) of f(t,x), we note F(t,Xy) is a convex function of t
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and F(t,x) ^ KF(t,Xy), for some constant K independent of t. Thus by Jensen's

integral inequality for convex functions (cf. Krasnoselskn and Rutitskn [20])

f if o !»(*)!   x   \ <   $GF{\u{x)\,Xy)
\  meas G  '   1 j ~~       meas G

< SaF(u(x),Xy)

meas G

^ K Je F(u(x),x)

meas G

< -— (as u e ôMR).
~  meas G

As F(i,X!) is a strictly increasing monotone fonction of t, F(t,Xy) has a monotone

strictly increasing inverse fonction, which we denote by g(t). Hence

JjU(x)|^measGf(-mííc),

i.e. I u |l,(c) = SiR)> when g(R) denotes the above constant.

Lemma III.3.2.   jGF(u,v) defines a weakly continuous functional on iC~2m)(G).

Proof. Let u„^>u weakly in W2m)(G). Thus the set {u„} is uniformly bounded

in W2m)(G), and by the argument of Lemma III.2.1 (2) it is sufficient to prove

J"G(u„ — u)f[u + s(u„ — u)]->0 for fixed s, O^s^l. By Lemma II.3.3 this

latter expression can be written <[B[u + s(u„ — u)],u„ — «>m>2. As <Ru,t)>m2 is a

weakly continuous function of u and v, <[B[u + s(un — u)~\, u„ — «>m.2

-> <B«,0>m>2 = 0, as required.

Lemma   III.3.3. Let R be a fixed positive number. Then dMR is weakly closed.

Proof. Let {«„} be a weakly convergent sequence of elements of dMR. Denote

the weak limit of {«„} by u. By Lemma III.3.2, JGF(u„,x)-» jGF(u,x). As

un e BMR,   |G F(u„, x) = R. Thus    J"G F(u, x) = R and u e dMR.

Lemma III.3.4 (Variational lemma). Let [un] be any sequence of elements

selected from dMR, for fixed R, with uniformly bounded i^2m)(G) norms. Let

% be an arbitrary fixed element of W2m)(G). Then given any e > 0 there is a

number hc > 0, depending on s, such that for each h,\h\<hc, there is a sequence

of real numbers {an} with the properties:

(1) {un + h(anun + a)} e dMR.

(2) \an + <BMn,7î>m2/<Bun,i/n>m2| ^ Re, where R is a positive constant

independent of e and n.

Proof. (1) To show {u„ + h(a„u„ + n)} e 3MR it is sufficient to prove

$gF(u„ + h(anun + n),x) = R. As {«„} are elements of 8MR, we show
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(1) j [F(un + hionun + n), x) - Fiun, x)]\= 0.

Using Lemma III.1.2 and Fubini's theorem, we obtain from (1)

+ "»)/[«» + shio„un + n)] = 0.ds     ionu„
JO JG

Denote the expression on the left by @(o„). We shall show that for | n | < he,

with he sufficiently small and independent of n, there is a real number rj„ such that

y(on) = 0 and hence the first conclusion of the lemma will follow.

First, by Lemma II.3.3,

to-  f
Jo

&(o) -        (oun + Tty,B(u„ + sh(oun + 7t))>mi2 ds.
Jo

As the operator B is continuous, (S(o) is a continuous real-valued function of o.

Next rewriting <¡S(o),

<&(o) = <u„,B(u„))m¡2 + (n,Bun)m¡2

+       <>"„ + ft, B(un + sh(oun + it)) - B(u„)}m¡2 ds.

The last term of the right-hand side will be denoted by H(o). We show now that

H(o) can be made arbitrarily small for sufficiently small n, if o is restricted to the

interval [ — M,M], where M is a number to be determined independent of n. In

this case, the set of elements {u„ + sh(oun + it)} is uniformly bounded in W2mXG)

and, by Sobolev's Imbedding Theorem is a precompact set in LpiG) for

1 z% p < 2NHN - 2m) if N >2m; l^p<oo otherwise. We consider the case

N >2m (the case A7 ̂  2m is completely analogous). By the polynomial growth

condition on/(r,x) and Vainberg's Theorem 1.6.1, the mapping /(u) =/[w(x),x]

from Lp->L2iV/(N + 2m) is continuous (1 z% p < 2AT/(AT — 2m)). Thus by restricting

/ to the closure of the precompact set {u„ + shiou„ + n„)} in Lp, we can say /

is uniformly continuous.

By Holder's inequality,

|Hto|

(2) f1
^ ¡tTM». + 7t|t2N/(w-2m) J    ||/("n + sn(o-a„+7t),x)-/(un,x)||L2N/(JV+:!ra)ds.

Using Sobolev's Imbedding Theorem, the set {oun + n} is uniformly bounded

in L2JV/(JV_2m!. Hence by (2) and the uniform continuity of/ given £ > 0, we can

determine a number he > 0 such that whenever H shioun + n) \\lp< he, \ H(<r)| < £.

Now as the Lp norms of the set {rju„ + n} are uniformly bounded by M2, say,

and O^s^l, if we set M2|n|<££, |//(o-)|<e for any oe[-M,M]. Set

he = M2he. Now
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(3) 9{a) = a<un,Bun}m,2 + <7r,BuB>m,2 + H(a).

Suppose e > 0 is given and j h | is chosen so small that | H(a) | < e. Let

(4) Oy = /„   R„ x-(- <n,Bu„}ma + £);
\U„,OUn?m¡2

then from (3) &(a'„) = £ + H(a'n). Hence, if a'ne[- M,M\ \ H(a'„) \<£ and

&(a'„) > 0. Let

(5) < =  ,     R„ N-(-<7i,BuB>mj2-6);

then, from (3), 0«) = - £ + H(o"n). If tr„"e [ - M,M~], \ H(a"n)\ < 6 and hence

^(O < 0- As ^(<r) is a continuous real-valued function of a we conclude that

under the given conditions for some a„ between a'„ and a"„, @(an) = 0.

To complete the first part of the lemma we show that a number M can be

chosen, independent of n, such that the set of real numbers {a'n, a",} lies in

[ — M, M]. First we note that as {w„} e dMR,

(6) <un,Buny = f   uj(un,x) ^ K f F(u„,x) = KR.
Jg Jg

Next as B is a compact mapping the set {Bu„} is uniformly bounded in W%n)(G)

by M3, say. It suffices to consider {a",}. Using Schwarz's inequality and (5)

Kl  ^  <un,Buny-m12(\\n\\ma\\Bun\\nu2+E)

è (KR)-1(M3|7r||m,2 + £)

^ M   (independent of n).

(2) The second part of the lemma gives an estimate for the numbers a„, inde-

pendent of h. In the first part of the lemma we have shown that an lies between

a'„ and o-„'. Recalling the values of a'n and a"„ from (4) and (5) we obtain

a   + (n,Buaym¡2

"      <MK,Bunym<2

2£

(un,Bunymt2

where J? is a positive constant independent of n and e.

IV. Existence theory-variational method. The object of this section is to prove

the following theorem.

Theorem IV. 1 (Existence theorem). Let G be any bounded domain in RN.

Then the boundary value problem (II.1.1) has a generalized eigenfunction

u(x), iff(t,x) is in the class êP(p), where
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N + 2m       ..    „
0^p< ñ—^-,      N>2m,

N — 2m

0 z% p < oo, N ^ 2m.

The generalized eigenfunction u(x) is normalized by the requirement that

uix)edMR for fixed positive R and characterized as a solution of the variational

problem inf <31u;u>m)2 for veëMR.

The proof of this result will be carried out in a sequence of seven lemmas.

Throughout the discussion we shall assume R is a fixed positive number and

dMR is constructed as in §111.

IV.1. Proof of the existence theorem.

Lemma IV.1.1. For uedMR, (5ÍM,u>m2 ^kR> — oo where kR is a constant

independent of u.

Proof. By Lemma II.3.2 (Garding's inequality) for all functions u e W2m)(G)

(i) <^,uym¡2^ky\\u\\2m¡2 - k2\\u\\20i2.

If fc2 = 0, the lemma is, of course, immediate. Otherwise, by Lemma 1.4.3 for any

£ > 0 and u e W2m\G)

(2) ||a|2i2^2£|u||2j2 + 2K(£)|M||20,1.

Eliminating || u |22 from (1) and (2) we obtain

<9Ia,u>m>2 ̂ iky - 2£fc2) I u ||2,2 - 2K0KiE) \\ u \\A .

Choosing fc1=2£1fc2, <3It»,u>m,2 ̂  — 2K0K(£y) || u |0il. On the other hand,

by Lemma III.3.1, the L^boundedness lemma, for functions of dMR, ||t»||o,i =g(R).

Thus <?iw,u>m,2 ^ - 2K0K(ey)g2(R) = fc, > - oo.

Lemma IV. 1.2. Any minimizing sequence for the variational problem

infuedMR<[%u,uym2 has uniformly bounded   Wm2(G) norms.

Proof. By Lemma IV.1.1, <9It»,u>m2 ̂  kR, for u e dMR, i.e. the set of numbers

(%u,u)mt2 is bounded below for u e dMR. Thus inf SMR<3Iw,u>m 2 is a well-defined

number which we denote by l(R). Let {un} be a minimizing sequence for this

variational problem chosen from the set dMR, i.e. lim„^œ <5Iw„,u„>m 2 = l(R).

Hence for sufficiently large n,

(1) [Z(P)+l]^<?IW„,u„>m,2.

Using Lemma II.3.2 (Garding's inequality),

(2) <?Iwn,"n>m,2 ^ fcl I K f *>2 - k2 || W„ ¡o.2 .

If k2 = 0, (1) and (2) clearly imply the lemma; otherwise,



166 M. S. BERGER [October

(3) K2\\un\\l2 + [l(R) + ll^ky\\un\\2m,2.

Using Lemma 1.4.3, and the L^boundedness lemma, with e = K2/(l + Ky),

as in the previous lemma, we obtain, for sufficiently large n, that | un \w™ig) = S2(R),

where g2(R) is a constant independent of n.

Lemma IV. 1.3. Let {un} be a minimizing sequence for the variational problem

infMjJ<9Iu,u>m)2. Then {u„} has a subsequence, which we again label {«„},

with the following properties:

(1) un->u weakly in W2m\G).

(2) u„-fu strongly in L2(G).

(3) u„ -» u a.e. in G.

(4) <ßM„,w„>m,2-* <B«,M>m>2 > 0.

(5) u edMR and hence u=£0.

Proof. (1) By Lemma IV.1.2 for sufficiently large n, || u„ |m>2 £i g2(R) and as

lF2m)(G) is a Hubert space, {w„} has a weakly convergent subsequence, which

we again label {u„}, such that w„->w weakly in W^m\G) where u is a uniquely

determined element of W2m) (G).

(2) This result is an immediate consequence of the corollary to Sobolev's

Imbedding Theorem, and (1).

(3) As u„ -» w strongly in L2(G), {«„} can be refined to a subsequence, which

we again label {«„}, such that u„-+u a.e. in G.

(4) This result is an immediate consequence of (1) and the fact that (Bu,vym2

is a weakly continuous function of u, veW2m)(G).

(5) As u„ e 3MR, and u„ -* w weakly, by Lemma III.3.3, w e ¿3MR. By Lemma

III.2.1 (4), u # 0 in lT2m)(G). Thus <Bu,Uym¡2 > 0.

Lemma IV.1.4.Ler {w„} be the sequence referred to in Lemma IV.1.3. Letn be an

arbitrary element of W2m)(G). Then lim,,..«, <3Iu„, b„un + 7t>m2 = 0, where

-b„= (Bu„,nym¡2KBun,unyma.

Proof. For some fixed e > 0, by the Variational Lemma III.3.4 for each u„

of the refined minimizing sequence of Lemma IV.1.3, we obtain a new sequence

{«„ + h(anu„ + n)} e8MR, for each h, |/i|<hE. Also |ffn-b„|<^£ where

R is independent of n and e.

AsinfaMR<2Ii/,u>mi2^/(R),

<2I(u„ + h(anun + 7i)), un + h(anun + n)yma ^ l(R).

Hence, as % is self-adjoint,

«9Iw„,«„>m,2 - l(R)) + 2h <%un,anun + 7r>m,2

(1) +h2{%(anun + n),anun + nyma^0.
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We now consider the left-hand side of this inequality. As {u„} is a minimizing

sequence, the first term tends to 0, and the third term can be dominated by h2M,

where M is a positive constant independent of n and h. Thus we can write from (1)

(2) 2hy%un,onun + nym_2 +h2M y\>0.

Now as n -> oo, we consider

<?Iu„,(t„m„ + K)m¡2 = <[^äu„,bnu„ + n)m¡2 + (o„ - bn) <.%u„,un}ma.

As n -» oo, <3Iw„, b„un + it}m 2 -* s, where s is constant independent of h; also

for each h, j h | < he, we have | (o-„ - b„) <««„, u„>m,21 z% £(/(P) + l)e.

Suppose s^O. Choose £ so small that <91w„,onu„ + 7t>m2 = s + rn where

|r„|<|s|/2. Thus from (2)

(3) fJ^ + M^O.

Hence as h varies over ( — hc, he), the inequality (3) will be violated. Therefore

we conclude s = 0.

Lemma IV.1.5. Let u be the weak limit of the sequence {u„} of TVA A. Then u is

an eigenfunction of the equation 3Iu — XBu = 0 where X = Z(P)/<PM,w)m2.

Proof. Let it be an arbitrary element of W£m\Cr). Thus, by Lemma IV. 1.4,

<?Iun,jT> + fcn<3Iu„,ii„> = 0. Letting n->co and noting that n„-»H weakly we

obtain <5lu,7t>mj2 - (/(P)/<Pu,w>m2) <[Bu,iz}ma = 0, i.e.

(1) <3Iu - XBu, 7t>m,2 = 0, where —^-.

As the first term of the inner product in (1) is independent of it, (1) holds for all

n e ->r2m)(G). As ")T(2m)(G) is a Hubert space, %u - XBu = 0 and as w#0 in

W2m\G), u is an eigenfunction for the operator equation 3Iu — XBu = 0. Also,

by Lemma I V.l.3, u e ôMR.

Lemma IV. 1.6. Let {u„} be the refined minimizing sequence referred to in

Lemma IV. 1.4. Then u„-*u strongly in -W(2\G).

Proof. The results of Lemmas I V.l.3-5 show the following four limits hold:

(1) lim «2Iw„, M>m,2 - X <Bun, w>m>2) = 0.
n-*oo

(2) lim(Ottu,u>m,2-A<Pw,M>m>2) = 0.
ft-* GO

(3) Hm «««„, w„>m>2 - X<[Bu„, w„>m>2) = 0.
ft-* 00

(4) lim «51«, u„> - X<[Bu, un}ma) = 0.
■ -»00
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From (l)-(2), we obtain

(5) lim<2I(Mn-M),u>m,2=0.
n~*oo

From (3)-(4), we obtain

(6) lim <«(«„ - u),u„yma = 0.

From (5)-(6), we obtain

(7) lixn(K(un-u),un-uyma=0.
n-* oo

From Lemma II.3.2 (Garding's inequality)

<%(un - u),u„ - M>m>2 + k2\\un-u |o,2 ^ fci I u„ - u \\2„a .

By Lemma IV.1.3, u„ -* u strongly in L2 ; thus by (7) | u„ — u |m2 -* 0, i.e., un -* u

strongly in if2m)(G).

Lemma IV.1.7. Let u be the eigenfunction of the operator equation

yiu — XBu = 0 obtained in Lemma IV.1.5. Then u is a solution of the variational

problem infSMj{ <3Itf,y>mj2; u is also a generalized eigenfunction of the boundary

value problem (II.1.1) as stated in Theorem IV.1.

Proof. Let {un} be the minimizing sequence for the variational problem

inf8M«(%v,vym2 referred to in Lemma IV.1.6. Hence u„->u strongly.

<2Iu„,u„>m 2-> <5Iu,u>m>2 = l(R). Thus u is a solution of the variational

problem infSMR<2(u,M>m 2. The fact that u is a generalized eigenfunction for

(II.l.l) follows from Theorem II.3.1 and Lemma IV.1.5.

Corollary to Theorem IV. 1. Suppose f(u,x)=g(x)u2kJrl, for some integer k,

is in the class ^(p) of Theorem IV. 1. Then the associated eigenvalue, X, of the

eigenfunction characterized by Theorem IV.l is the first eigenvalue on dMR

(i.e., for any other eigenvalue X', whose associated eigenfunction u'edMR,

X^X').

Proof. Suppose X and X' axe two eigenvalues with associated eigenfunctions u

and u' e dMR for the operator equation 31m — XBu = 0; then

X(u,Buym<2    =   inf <%u,uy = l(R),
S Mr

X\u',Bu'ym¡2 =  <3Iu',u'>^/(R).

Thus X'(u',Bu'yma ^l<w,ßu>m2. As  u,u'edMR,   <w',ßu'>m2 = <u,ßu>m2.

Thus X' ̂  X.

V. Regularity theory. In this section we study the smoothness restrictions

that must be placed on the boundary value problem (II.l.l) to guarantee that the
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generalized eigenfunction obtained in §IV is, in fact, a classical solution.  In-

deed, given the boundary value problem II.l.l :

Au — Xfiu,x) = 0,

u\dG = Du\dG=- = Dm~1u\OG = 0,

we shall assume the regularity conditions:

1(a) G is of class 4m.

1(b) For the coefficients of A, aaß(x) e C2m(G).

1(c) f(t,x) satisfies a local Lipschitz condition in t for teR', and a local Holder

condition of exponent y, 0 < y < 1, for xeG.

We shall divide the regularity theory into three parts :

(1) Regularity in the interior of the bounded domain G. It is shown that

under the regularity conditions above, any generalized solution u(x) of (II.l.l)

is in C2m(G).

(2) Regularity at the boundary of the bounded domain G. It is shown that

u(x)eCm-\G).

(3) Assumption of boundary values. It is shown that u\CG = Du\SG= ■■■

= D"'~1u \5G = 0, in the pointwise sense.

Throughout this section we assume f(t, x) e ¡F(p) with

N + 2m       Kr
°^p<W=^l'   N>2m>

Ogp < oo, N S2m.

We summarize these results as follows:

Theorem V.l. Let u(x) be any generalized solution of the boundary value problem

(II.l.l) wheref(t,x) is in the class !F(p)for

N + 2m       „    „
"ïKlTtt-    N>2m>

0 <; p < oo, N zi 2m.

Suppose the regularity conditions 1(a), 1(b) and 1(c) hold. Then u(x) is, indeed,

a classical solution of (II. 1.1).

V.l. Transition from iT2m\G) to W2miG). The proof of Theorem V.l will

be based on the Lp regularity theory for linear nonhomogeneous elliptic equations

Au = /, developed in recent years by Browder [5], [6], Koshelev [19], Agmon [1],

and Agmon-Douglis-Nirenberg [2]. In particular the following result is of prime

importance for the nonlinear theory :

Theorem V.l.l. Let G be a bounded domain of class C2m in RN. Suppose

the elliptic operator A satisfies the regularity condition 1(b) and has the properties
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described in 11.1(d). Suppose u(x) is a generalized solution, in Lp(G) (1 < p < oo),

of the following boundary value problem:

Au   = f(x) in G,

D"u = 0 on ÔG,       0 g | a | g m - 1.

///(x)eLp(G)(l<p<co), then u(x)eW2m(G) with |M||2m,p^c{|/|0>p+|ti|0,p},

where c is a positive constant independent of u.

For the proof of this result we refer to the paper of Agmon [1, Theorem 8.2].

Applying Theorem V.l.l to the present situation, we obtain:

Lemma V.1.2. Let u(x) be any generalized solution of the boundary value problem

(II.l.l). Suppose the regularity conditions 1(a), 1(b) are satisfied. Then

u(x) e W2m(G) with

f    2N
——r—(1 + e) for some e > 0 if N > 2m,

p = J N + 2m J

L 2 if N ^ 2m.

Proof. As u(x) is a generalized solution of the boundary value problem (II.l.l),

u(x) e iT2m\G). Set f(x) =f(u(x), x).

Case I (N ^ 2m). By Sobolev's Imbedding Theorem and the polynomial

growth condition on f(t,x),f[x}eL2(G); hence setting p = 2, by Theorem

V.l.l, ueW¡m(G).

Case II (a) (N > 2m). f(t,x) e &(p), 0 ^ p ^ N/(N - 2m). Here, again, by

the polynomial growth condition on f(t,x) and Sobolev's Imbedding Theorem

/[x] eL2(G) and, by Theorem V.l.l with p = 2, u e W¡m(G).

Case II (b) (N > 2m). f(t,x) e &(p), N/(N - 2m) < p < 2N/(N - 2m). Here,

set (1 + £)p = (N + 2m)l(N — 2m), when £ is a fixed number, 0 < £ < 2m/N < 1.

Thus, by Sobolev's Imbedding Theorem and the polynomial growth con-

dition on/(i, x), f(x) e L2N.,x+mN+2my Hence, by Theorem V.l.l, ueW2m(G),

p = 2JV • (1 + e)I(N + 2m).

V.2. Interior regularity. The following two results of Browder [6, Theorems

2.11, 2.12] are basic for our procedure.

Theorem V.2.1. Let A be a linear differential operator of order 2m defined on G

with top order coefficients in C0(G) and all of its coefficients essentially bounded

on each compact subset of G. Suppose 1 < p < px < oo, and u e W2m(G') and

AueLpi(G'); then u e W2™(G')for any subdomain G' with compact closure in G.

Theorem V.2.2. Let A be a linear elliptic differential operator of order 2m

defined on G with coefficients in C0,y(G') for any subdomain G' with compact

closure in G. Let u e W2m(G') (1 < p < oo) and Au e C°-y(G') (0 < y < 1). Then u

lies in C2m'\G').
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Applying these results to our context, we obtain:

Lemma V.2.3. Let uix) be any generalized solution of the boundary value problem

(II.l.l). Suppose the regularity conditions 1(b), 1(c) are satisfied. Then

u(x) e C2m(G).

Proof. First we shall prove w(x)e W2m(G') for any subdomain G' of G, with

compact closure in G. In case JV i£ 2m, this result is quickly obtained. For, by

Lemma V.1.2, u(x)e W2m(G); thus f(x) =f(u(x),x) lies in Lp(G) for any p < oo

by Sobolev's Imbedding Theorem. Hence, by Theorem V.2.1, u(x)e W2m(G') for

any G' and p (1 < p < oo).

In case N > 2m, we carry out a so-called bootstrap procedure. By Lemma

V.1.2, u(x) e W2m(G) for some p = 2JV- (1 + e)/(N + 2m). By Sobolev's Imbedding

Theorem f[x] =f(u(x),x)eLPi(G) where 1/p, = 1/p — 2mjN. Thus by Theorem

V.2.1, u(x)e W2p"^(G')as p, > p. In general, by carrying out this procedure s times

we obtain a sequence of numbers {ps} tending monotonely to oo with

u(x)eWPs" (G'). If at any stage N <2mps, by Sobolev's Imbedding Theorem

/(x)eLp(G') for any p, 1 < p < oo, and, by Theorem V.2.1, ueW2m(G') for

any p, 1 < p < oo.

Next we show u(x)eC°'y(G') for some y, 0<y < 1. This result follows im-

mediately from the third part of the Sobolev Imbedding Theorem as

WfmiG')->C°'TiG'),

for sufficiently large p, is a continuous imbedding.

Thus f[x] =/(u(x),x) satisfies a Holder condition in G' of exponent

7i 0 < 7i < l,by virtue of the regularity condition 1(c) of/(i,x). Thus, by Theorem

V.2.2, u e C2m,Vl(G') and as G' is an arbitrary subdomain of G, u e C2miG).

V.3. Regularity at the boundary. The following result, modified from

Browder [5, Theorem 14], is basic for our procedure.

Theorem V.3.1. Let G be a bounded domain of class C4m, and suppose A is a

real formally self-adjoint elliptic operator of order 2m, satisfying regularity

condition 1(b). Then if u e W*m)(G) n W2m(G) and AueLPliG) with

1< p á Pi < oo, u e Wpmy\G) mr¡[\G).

Applying this result to our context we obtain

Lemma V.3.2. Let uix) be any generalized solution of the boundary value problem

(II.l.l). Suppose the regularity conditions lia), (b), (c) are satisfied. Then

u(x)6Cm_1(ö).

Proof. First we prove t/(x) e W2m(G) for any 1 z% p < oo. If we use Theorem

V.3.1 in place of Theorem V.2.1, we can follow the method used in Lemma V.2.3

in a step-by-step manner. Thus by Sobolev's Imbedding Theorem (§11) there is
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a  continuous  imbedding   IF2m(G)-> Cm-1(G),  for  sufficiently  large  p.  Thus

u(x)eCm-1(G).

V.4. Assumption of boundary values.

Lemma V.4.1. Suppose u(x)eW21)(G)C\C(G) and G is of class C; then

u(x) = 0 on ÔG in the pointwise sense.

For the proof of this lemma, we refer to the paper of Nirenberg [29].

An immediate consequence of Lemma V.4.1 is the result mentioned in Lemma

11.2.1.

Lemma V.4.2. Suppose u(x) is any generalized solution of the boundary

value problem (II.l.l). Suppose u(x)eC2m(G)nCm~1(G) and G is of class Cm;

then u(x) is a classical solution of (II.l.l).

Finally we have the following result.

Lemma V.4.3. Let u(x) be a generalized solution of the boundary value

problem (II.l.l). Suppose the regularity conditions 1(a), (b), (c) are satisfied.

Then u |aG = Du |SG = ••• = Dm~1u |aG = 0 (in the pointwise sense).

Proof. By Lemma V.3.2, u(x)eCm~1(G); hence the result follows immediately

from Lemma V.4.2.

VI. Spectral theory. In this section, the nonlinear aspect of the eigenvalue

problem (II.l.l) is considered. The major nonlinear effect studied is the dependence

of the eigenvalue, characterized in Theorem IV. 1, on the normalization constant R.

For convenience, we shall assume throughout this section that the Dirichlet

form a(u,v) for (II.l.l) can be associated with a positive definite operator 31

mapping W2m)(G) -» W2m)(G). The polyharmonic operator ( - l)mAm is a case

in point. As X = <3Iu,w>mi2/<Bu,M>m2, the positive definiteness of 31 insures

that all possible eigenvalues of (II.l.l) are positive. The material in this section is

a direct generalization of Levinson [23].

VI. 1. Examples. The following examples indicate directions for more general

results.

Example VI. 1.1 (The linear case). Here f(u,x) = g(x)u, where g(x) is a

continuous and strictly positive function defined on G. By the existence theorem

of §IV and its corollary, a first eigenvalue Xy exists on 8MR for fixed R, 0 < R < oo.

Further

As R ranges over (0, co), Xy = Xy(R) remains constant.

Example VI. 1.2 (The case of power nonlinearities). Here /(«, x)=g(x)u2k+1,

where g(x) is a continuous strictly positive function in G, and fc is an integer

with
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N + 2m A7     „
2k+l<———,       N>2m,

N — 2m

2fc + 1 < oo, N ^ 2m.

By the existence theorem of §IV and its corollary, a first eigenvalue Xy exists for

(11.1.1) with Xy = (%uy,uy)mal¡Ggix)u2k + 2 when (2k + 2)R = ¡ Gg(x)u2k+2.

Setting Uy=cvy, c> 0, in (II.l.l) we obtain Avy — X2k f(vy,x) = 0. Thus for

each constant c> 0, Vy is an eigenfunction for (II.l.l) with eigenvalue Xc2k. As c

varies over (0, co), XyC2k varies over (0, oo).

Example VI. 1.3 (The case of exponential-growth nonlinearities). Fol-

lowing Bratu [4] we consider the two point boundary value problem :

u" + Xe" = 0,

(1) u(a) = «(ft) = 0

when a and b are fixed finite numbers. Bratu proved the following results: if X 5¡0,

(1) has no real solution. There is a fixed positive number Xy, such that for each X,

0 < X < Xy, (1) has precisely two positive solutions. If X = Xy, (1) has precisely

one positive solution. For each X > Xy, (1) again has no real solution. Thus the

"spectrum" of the equation (1) consists of the open interval (0,Xf). Further as

X->0, || u¡ ¡|c[aA|-»0 when i = 1,2 and m1(m2 are the solutions referred to by Bratu.

We shall fit this example into our theory in §VII.2 by considering v(x)

= Uy(x) — u2(x) and the equation v" + Xg(x)[ev — 1] = 0, v(a) = v(b) = 0, where

g(x) is a strictly positive continuous function in [a,b] (cf. Gel'fand [39]).

Example VI. 1.4 (The case of oscillatory nonlinearities). We consider the

two point boundary value problem:

u" + Xu sinlogu2 = 0,       sin log0 = 0,

(1) u(a) = u(b) = 0.

By the results of Golomb [15], a real eigenvalue X0 and associated real eigen-

function u0 are known to exist. Hence for every integer N, the functions

{eNnu0(x)} are again eigenfunctions for (1) with associated eigenvalue XN = X0,

and the functions {e<iy+1/2),Iu0(x)} are also eigenfunctions for (1) with associated

eigenvalue XN = — X0. We have omitted such nonlinearities from our discussion.

VI.2. Instances with eigenvalues bounded above 0. We begin our study by

demonstrating that in at least two cases all possible eigenvalues of (II.l.l) are

bounded above 0, i.e. greater than a certain positive constant fc0.

First suppose f(t,x) is weakly nonlinear, i.e. satisfies a global Lipschitz con-

dition in teR'. Then

= <%M,»)m,2 > fc || M |¡^.2  >  fc_

¡Guf(u,x)     z   c\\u\\l¡2=  c

Next, we have :
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Lemma VI.2.1. Let R be a fixed positive constant. Then on êMR, ail possible

eigenvalues of (II.l.l) are bounded above 0. If 31 is not necessarily positive

definite, then all eigenvalues are greater than a negative constant, i.e. bounded

above — oo.

Proof. Let us first assume 31 is positive definite; then <3I«,w>m>2 = kx | u |*>2

for ky > 0. On dMR, for fixed R, by Lemma III.2.1, | u |m2 is bounded above 0;

thus, on 8MR, <3Iu,u>m2 5: a > 0. On the other hand, by Lemma III.l.l,

¡Guf(u,x) ^K$GF(u,x) k KR if ue 8MR. Hence

=  <3tu,u)m2     _«_

¡Guf(u,x)   = KR

If 31 is not necessarily positive definite, by Lemma IV.1.1, <3Iu, «>m,2 ̂  — g(R)

on dMR. Thus X ̂  - g(R)IKR > - oo.

VI.3. Auxiliary estimates. Before proceeding further with this discussion,

it will be necessary to prove the following two estimates.

Lemma VI.3.1. Let R be a fixed positive number. Then the following estimate

holds:

l(R) - inf <3Iu,u>m,2 ̂ k(G)g(ky(G)R)
ôMr

where k(G) and kx(G) are positive constants depending only on the domain G

and g(R) = F'1(R,xx) (R > 0).

Proof. To estimate <3lu,u>m.2 we note that as 31 is a bounded operator,

<3lM,u>mi2^fc|M|21)2. Hence

(1) /(R)^fc|u|2,2

for any u e dMR. We now proceed to construct a function Ue¡(x) e dMR and to

compute its W2(G) norm.

Let S be the radius of the largest open sphere £f completely contained in the

interior of G. Define

r<S,
) = \ l  s/

0, r^S,

where r is measured in polar coordinates from the center of the sphere if, and 0 is

a positive number to be determined. Clearly || f7„ ||2 2 ^ KG02, when KG is a

positive constant depending only on the geometry of the bounded domain G.

We now show that for some number 9X, u$le8MR. Now §GF(ue,x)>

$r<s/2F(ue,x)'2: k j"r<s/2 F(ue,xx) > fcF(30/4, xx) V where V is the volume of

the sphere of radius 5/2 in RN. As F(t,xx) is a monotone strictly increasing function
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of t from 0 to oo, we can find a number 90 so that R = fcF(300/4,x1)F(2). Thus

JGF(U(,0,x) > R and by the homogeneity lemma there is a number 6\ < 60 such

that jGF(ufll,x) = P, i.e. ue¡edMR. Also || uBi ||2i2 ^ OfKiG) z% 0^K(G). Now

0O = 2gikGR) by (2) as F(i,Xj) is an invertible function for positive f. From (1),

liR)SkGgikGR).

Lemma VI.3.2. Let R be a fixed positive number, and uRix) be a classical

eigenfunction of (II.l.l) as characterized in Theorem TVA; then as R->0,

¡«*¡C(o)-*0.

Proof. This result will be obtained by a bootstrap procedure based on Sobolev's

Imbedding Theorem and the inequality associated with Theorem V.l.l. First,

as 31 is positive definite,

0 <fc|| Ba[ia ¿KR) = <KuR, uR}m¡2.

Thus by Lemma VI.3.1 as P->0, /(F.)->0 and || uR |m,2->-0. Thus by Sobolev's

Imbedding Theorem  || u ||0p -»■ 0 for

, ^        N + 2m       ..    „
^KjTtt'   iV>2m'

1 ^ p < oo, N z% 2m.

Case I iN ^ 2m). By Theorem V.l.l,

(1) I "K ||2m,p á fc( \\fiuR,x) ||o,p + I Wr |o,p)

for every p, 1 < p < oo. We now choose p so that 1/p — 2m/N < 0, and by

Sobolev's Imbedding Theorem (part ii):

(2) || Mr ||c(c) = ^l || uJt prn.p.

Thus using the polynomial growth condition on/(/,x) together with (1) and (2),

we obtain the fact that as R -* 0, || uR ||C(G) -> 0.

Case II (TV > 2m). Again from Theorem V.l.l

1 uR ¡2miP ^ fc( \\fiuR) flo.p + I uR |0>p).

By Lemma V.1.2/(MJ,(x),x)eL2Af.(1+e)/(jV+2m), thus by the polynomial growth con-

dition on fit,x), ¡/(uR,x)||Lp^Xg(||i/||2N/(W_2m)) when p = 2JV-(H-e)/(JV + 2m)

and g(r) is a monotone increasing function of the real number r. Thus by Sobolev's

Imbedding Theorem || u 12m p -* 0 as P-»0. By repeating this procedure as in

Lemma V.3.3 we eventually obtain || uR|2m.PN.->0, where 1/pjy- —2m/N<0.

Hence, by using Sobolev's Imbedding Theorem part (ii), we obtain || «r ||c(g>

èk\\uR||2m,PN.. Hence as R-+ 0, \\ uR ||C(G)-»0.

VIA. Study of the set {A(R)|0 < R < oo}. For a large class of nonlinear

operators B, the eigenvalue X of (II.l.l) as characterized in Theorem IV.1.1,
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varies over the interval (0, oo) as the normalization constant R varies over (0, oo).

In order to demonstrate this result, the following terminology will be convenient.

Definition VI.4.1. Let/(i,x) be a continuous real-valued function defined on

R' x G ; then

f(t,x) is supralinear at t = b (b = 0 or oo) if

lim  —-— = oo for all xeG.

f(t,x) is sublinear at t = b (b = 0 or co) if

lim^^ = 0 for all xeG.
,-.*      t

Lemma VI.4.1. Suppose f(t,x) is sublinear at r = co and a generalized

eigenfunction, as characterized in Theorem IV.1 exists, for the boundary value

problem (II.l.l). Then as R-* oo, A(R)-> oo.

Proof. As/(l,x) is sublinear at t = oo,

lim%^ = 0.
t2

t-»00 '

We show that as R -» oo, | uR ||t2 -» oo. Select a number A such that t < A implies

F(t,x)<t2. Therefore

R = í   F{u,x) =  f        F(u,x) + f        F(u,x)
Jg J \u\>a J \u\aA

^  f        u2 + F(A) meas(G)
J \u\>A

Ú  \\u\\2LAG) + K(A).

Thus as R -* oo, | u |t2(G) -> oo.

As/(i,x) is sublinear at t = co, there is a number B such that t > B and given

8X > 0,f(t,x) < 8xt. Hence

u/(«,x)= uf(u,x)+ uf(u,x)
Jg J \u\>b J \u\-&b

g <5 f m2 + i «/(«, x) g ¿! || m |i2(G) + Bf(B) meas G.
J|u|>B J|u|gB

Since 31 is assumed positive definite there is a positive constant fc such that

<3lu,w>m,2 ^ fc || « |2,2 > fc| u 13,2 • Thus

^(K)  =      <yiUR,UR>m,2   > k\\UR |o,2

Jo uRf(uR, x) 8X I uR |2>2 + B/(B) meas G '
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As R -» oo, I u ||o,2 -* °o, and as 8X can be made arbitrarily small, X(R) -* oo.

Lemma VI.4.2. Suppose f(t,x) is sublinear at 1 = 0, and a classical eigen-

function, as characterized in Theorem TVA, exists for the boundary value

problem (II.l.l); then as R -* 0, X(R) -» oo.

Proof. By Lemma VI.3.2 as R -» 0, maxG | uR(x) | -»■ 0. Hence using the fact that

/(i,x) is sublinear at t = 0 given 8X > 0, for sufficiently small R,f(uR,x) < 8xuR.

Therefore,

<3luÄ, uRyma       k\\uR\\o¡2 kx(R) = ;   K' K/m'z ^ > —.

J*G "*/(«*>*) «M"* II 0,2 Ôl

As 8X can be made arbitrarily small, X(R ) -> oo as R -> 0.

Lemma VI.4.3. Suppose f(t,x) is supralinear at t = oo, and a generalized

eigenfunction, as characterized in Theorem IV.l exists for (II.l.l). Then as

R -► oo, X(R) -» 0.

Proof. As/(t,x) is supralinear at t = oo,

,.     F(t,x)
hm      2     = oo.

Thus given 8X > 0 for sufficiently large 90, F(30o/4,xx) > 0o/<5i. By LemmaVI.3.1,

R=Sg F(U<""X) ~S <s 2F{U°°'X) - F(X'X1) fe(G)-

Thus R > fc(G)02/(5, where R is sufficiently large. Also  JGu/(u,x)= fc JGF(u,x)

= kR>kx(G)92olSx.    Using    Lemma    VI.3.1,    /(R) =  9¿k(G).   Thus    A(R)

= /(R)/ /0M/(M,*)gfc2(G)á1.

As 8X can be made arbitrarily small as R -> oo, X(R) -* 0.

Lemma VI.4.4. Suppose f(t,x) is supralinear at t = 0, and a classical eigen-

function, as characterized in Theorem IV.l exists, for (II.l.l). Then as R->0,

A(R)->0.

Proof. As f(t,x) is supralinear at t = 0

,.     F(t,x)
hm = oo.
<->o    '

Thus given 8X > 0, we can choose a 0O so small that F(0o/2,x1) ^ k(G)90l8x.

Hence proceeding as in Lemma VI.4.3, we can conclude as R -> 0, X(R) -* 0.

One consequence of the above lemmas is the following theorem.

Theorem VI.4.5. Suppose f(t,x) is supralinear at one end of the interval

(0, oo) and sublinear an the other. Suppose a classical eigenfunction, as charac-
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terized in Theorem TVA, exists for (II.l.l). Then the set of positive numbers

{X(R) 10 < R < 00} contains subsequences tending both to 0 and + 00.

VI.5. Further study of the set {X(R) 10 < R < co}. We bring this section

to a close by considering circumstances under which the set {X(R) 10 < R < 00}

fills an interval of the positive axis (cf. VI. 1). It is sufficient to prove X = X(R)

is a continuous function of R.

Lemma VI.5.1. l(R) = infdMRC<Hu,uym¡2 is a continuous monotone increasing

function of R for 0 < R < 00.

Proof. First we show that l(R) is monotone increasing. Let R > Ry and u e 3MR.

Then by the homogeneity property of 8MR, there is a number b < 1, such that

buedMRl. Thus <3l(èu),buym 2 ^ l(Ry). If u is actually a solution of the varia-

tional problem on dMR we have  <3I(fou), bu}ma = b2l(R) ̂  l(Rf). As  b < I,

l(R)>l(Ry).

Next we show l(R) ^ l(R + 0). Let R>Ry and t^edM^; thus there is a

number fc-> 1 such that i>2<3It/1,u1>m2 è KR)- By Lemma III.2.2, P-*-/^

implies £>-> 1. In particular if Uy is a solution of the variational problem on dMRi,

b2liRy) ̂  KR). Thus Z(P) ̂  /(P + 0).

Finally Z(P — 0) ^ /(P). Let P„ be an increasing sequence of positive numbers

tending to R, with associated minimum function un. Thus by the homogeneity

property of ÔMR, there is a sequence of positive numbers {bn}, b„ ^ 1, such that

bnu„edMR . Thus b2/(P„) ^ /(P). In order to show Z(P - 0) ^/(P) it is suf-

ficient to show b„ -* 1. To this end, we consider

0=lim    f   [F(fc„u„,x)-F(u„,x)].
»-»oo     J G

By Fubini's theorem and Lemma III. 1.2

0 = lim í   dtí   ibn - T)uJ[uR[l + til - b„)],x].
n-»œJ 0       J G

As í/(í, x) > 0, t ^ 0, this latter equation is possible only if b„ -» 1.

Lemma VI.5.2. Suppose a(P) = (uR,BuR)m2 is a well-defined function of the

positive number R, where uRedMR is a solution of the variational problem

infaj»iR<(?I"»»»>m,2. Then u(R) is a continuous function of R.

Proof. Let P»„-*R and consider oc(R„) = (un,Bunym2 where u„ is an associated

minimum function of R„. It is sufficient to show {R„} has a subsequence {#„<}

such that ot(Rn.) -> a(P).

First we note, for sufficiently large n, 0 < ¡jGu„f(u„,x) < K J"G F(u„,x) < KR

< K(R + 1). Thus the set of positive numbers <[u„,Bun)>m2 is uniformly bounded

and has a convergent subsequence. As the form (u,Bv}m¡2 is a weakly continuous
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function of the elements u,v it is sufficient to show {u„} has a subsequence u„. such

that u„, -» uR weakly in W2m\G).

Next by the homogeneity property of 8MR, there is a sequence of real numbers

{b„} such that bnune8MR. We show {bnu„} is a minimizing sequence for the

variational problem infaAÍR <$ïu>">m,2 »

lim <3I(bBMB),b„i/n>m,2= limb2/(R„).
n-*oo n-»oo

By the argument of Lemma VI.5.1, b„ -> 1 and /(R„) -> /(R) ; hence

limn-,00 <3l(b„u„), b„w„>m,2 = /(R) and the sequence {b„u„} has the required

property.

Now by the procedure of §IV the minimizing sequence can be refined so that

there is a subsequence {&„-«„<} tending weakly to uR. As bn, -* 1, u„. -* uR weakly

in W2m)(G), as required.

Remark. a(R) is a well-defined function of R if either (a) the variational problem

infaMR<3Iw,u>m 2 has a unique solution, apart from sign, as one expects for

ordinary differential equations, or (b)

[  uf(u,x) = K¡   F(u,x) for all ue1V2m\G)
Jg Jg

for some constant K.

We summarize the results of this subsection as follows.

Theorem VI.5.3. Suppose the variational problem infaAÍR<3Iu,u>m 2 has

a unique solution for each 0 < R < oo (apart from sign); then X(R) is a contin-

uous function of R.

Proof. X(R) = <3l«,M>m,2/<J5M,u>m>2 = l(R)l<x(R) and, for 0 < R < oo is the

quotient of two continuous functions by Lemmas VI.5.1-2. Thus X(R) is a con-

tinuous function, as a(R) # 0 for 0 < R < oo.

VII. Second order equations and the case 2m > N. In this last section, the

existence Theorem IV.l will be sharpened in two ways. First, we investigate the

positivity properties of the eigenfunctions obtained. Second, we mention some

cases in which Theorem IV.l holds for nonlinearities determined by a function

f(t,x) which does not satisfy a polynomial growth condition.

Throughout §VII.l we consider the boundary value problem (II.l.l) in the

special case of second order operators A :

Au-Xf(u,x) = 0,

(V,U) -U-*

when Au = HM,msyD "(aaß(x)Dfu).

As A is formally self-adjoint, a0a = aeo = 0 for a,ßi=0. Also, in this case the
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associated operator 91: #"21)(G)->^21)(G) is positive definite, as A is uniform-

ly elliptic in G.

VII.l. Positivity properties of eigenfunctions. The following result gives a

partial extension of the Courant-Nodal Line Theorem to a nonlinear context

(cf. Courant-Hilbert [9, Vol. I, p. 451]).

Theorem VII.l.1 Let the hypotheses of Theorem TVA be satisfied. Then the

boundary value problem (VII.l) has a generalized eigenfunction uix) 2: 0 in G.

If, in addition, uix) is a classical eigenfunction for (VII.l), then uix) > 0 in G.

Proof. First we note that as F(i, x) is an even function of t, jG F(«,x)

= JGF(|u|,x). Also |w(x)| = sgnu ■ u. Hence if ueiT^XG), ö,|t.(x)|

= sgn u ■ Djuix) a.e. in G, and | u | e 1V(2lxiG). Hence if u e dMR, \u\e 8MR.

As A is formally self-adjoint, aa0 = a0ß = 0 if a, ß # 0; thus

<aU|,|«|>W-       2      f   axßix)D*\u\Dß\u\
M.lßlSiJa

=       I      f   axßix)D*uDßu=<yiu,u)y2.
|»|,|/5|S1 JG

Thus to prove the first part we need only follow the procedure of §IV with the

additional requirement of choosing the minimizing sequence {u„} from the non-

negative functions u(x) 2: 0 in G. As <9I |u|,|«|>1>2 = <9Iw,u>12 the selection

of a minimizing sequence of nonnegative functions from dMR does not affect the

variational problem infaMR<3lu,u>1 2. By the refinement procedure of Lemma

IV.1.3 the minimizing sequence w„(x)-» u(x) a.e. in G. Thus, after possible

correction on a set of measure 0, we may assume u(x) 2: 0 in G.

We now consider the second part of the theorem. If u(x) ^ 0 in G, f(u,x) Si 0

in G and as 91 is positive definite X S: 0. Thus if u is a classical solution of (VII.l),

— Au—— Xf(u,x) ^ 0. Thus by Hopfs Maximum Theorem, see [9], u(x) > 0

in G, as min dG u = 0.

Remark. If w(x) is a generalized eigenfunction of VII.l, u(x) cannot equal 0

on a set of measure greater than 0 in G (cf. Gilbarg [14]).

Corollary to Theorem VII. 1.1. Theorem VII. 1.1 holds without the following

two assumptions onf(t, x):

(1) /(-í,x)=-/(í,x),

(2) í/0,x)>0       (í#0).

Proof. Define

/(f,x), t^0,(fit,x), ílü,

l-fi-t,x),       t<0.
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Thus/*(t,x) satisfies all the requirements of the existence Theorem IV.l. Thus by

Theorem VII. 1.1 there is a function u(x) = 0 such that

Au — Xf*(u,x) = 0,

u|aG= 0

(in the classical or generalized sense). By the definition of /* we have

Au — Xf(u,x) = 0, u |BG = 0, as required.

VII.2. Sharpening of the polynomial growth condition. Now we turn to the

second object of this section, the sharpening of the existence Theorem IV.l for

nonlinearities determined by a function f(t,x) not satisfying a polynomial growth

condition.

The best result in this direction is obtained for second order ordinary differential

equations and requires no growth restriction on/(i,x).

Theorem VII.2.1 (Golomb). Let f(t,x) be a continuous real-valued function

defined on R' x [a,b~\, where a,b are finite numbers, such that f(0,x)=0 and,

for t # 0, f(t,x) 9e 0. Then the ordinary differential equation

(p(x)u')' + Xf(u,x) = 0,

u(a) = u(b) = 0,

has a real classical eigenfunction u(x) and real eigenvalue when p(x) is a con-

tinuous strictly positive function on [a,b].

The proof of this result is contained in the paper of Golomb [15]. The following

theorem extends Golomb's result to cases in which 2m > N and, in particular, to

all even order ordinary differential equations.

Theorem VII.2.2. In case 2m > N, the existence Theorem IV.l and the re-

gularity Theorem V.l hold without any growth restriction on the function f(t,x).

Proof. This result is immediate if we repeat §§II, III, V, using the fact that

when 2m > N, by Sobolev's Imbedding Theorem W^(G) czC° "(G) (with a

compact imbedding). This fact replaces the polynomial growth restriction on

f(t,x). For example, in Lemma II.3.3 we must prove

(1) sup (f(un,u)-f(u,x))v->0
MSi Jg

where u„-*u weakly in W2(G). Hence u„-*u strongly in C(G); thus u„ is uni-

formly bounded by M, say, |/(u„,x)| -+ |/(u,x)| and |/(u„,x)| ^ |/(M,x)| ;

hence as n -> oo, (1) holds. Again in Lemma III.2.1, to prove MR is uniformly

bounded away from 0, we suppose the contrary; then there is a weakly convergent

sequence un e MR with | u „ |m2 -» 0. But then
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0 < R =  f   F(u„, x) = K i   u„f(u„, u) = K max | u„(x) |  \    f(un, x)
J G J G G J G

^ KK' I u„ |m>2       f(u„,x) (by Sobolev Imbedding Theorem)

= KK' \\un L, /(M',x) Í where M' = max | u„(x) | ).

As this latter expression tends to zero as n -» co, we obtain the required contra-

diction. The variational lemma carries over immediately when we note the elemen-

tary fact that a continuous function defined on a closed (bounded set in RN) is

uniformly continuous. The regularity theorem V.l carries over by using theorem

V.2.2 immediately instead of beginning with §V.l.

For A = — A, the Laplace operator in R2, Levinson [23], proves the following:

Theorem VII.2.3. Let G be a bounded domain in R2 with boundary G consisting

of a finite number of continuous curves and arcs. Suppose f(t) is a continuous

real-valued function defined on [0, oo) and vanishing only at t = 0. Suppose, in

addition, that f(t) satisfies a local Lipschitz condition, is nondecreasing and

satisfies the following growth condition :

**!.
f(t)logf(t)^K'jof(s)ds

for í > 0 and some constant K' = 1. Then the boundary value problem

Au + Xf(u) = 0,

«|«e = 0

has a real classical eigenfunction u(x), strictly positive in the interior ofG.

This result represents a first step in establishing exponential type growth con-

ditions on f(t,x) in the case 2m=N (e.g., f(t) = e"" - 1). The details of this

aspect of the problem will be carried out in subsequent work.
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