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1. Introduction. In 1962 Thron considered certain questions concerning the

lattice structure of the family # of closed sets of a topological space. In this article

we continue these investigations.

Before describing the results of this paper it will be helpful to review certain

definitions and give a few new ones. Whenever we talk about a topological space

(X, *£) we shall mean by <& the family of closed sets on X. Clearly, it defines the

topological structures as well as the family of open sets, and for our purposes

it is more convenient. Let (Ty, 2: x) and (r2, ^2) be two lattices; then a function /

from Tx onto T2 will be called an isomorphism iff / is 1-1 and / as well as its

inverse are order preserving. An isomorphism from T onto itself will be called an

automorphism on T. It is well known that/ is an isomorphism iff it and its inverse

preserve l.u.b. and g.l.b., that is /( V[«.])= V[/(«.)] and /(AM) = A[M)]

and similarly for/-1. A subset A of a lattice (r, ïï) is called a base of T iff every

element a e T, other than the least element if it exists in T, can be written as

a = \J[di:d¡eA,ieIa].

It is convenient for our purposes to assume that if T has a least element then this

element does not belong to any base of T. Observe that we are not asserting that,

for every subcollection ficA, \/[d: deÙ] exists in T. An element a of a lattice

(T, ^) will be called irreducible (strongly irreducible) iff a cannot be expressed

as the l.u.b. of a finite (arbitrary) number of elements of T, which are strictly

less than a.

A lattice is called a set lattice iff its elements are sets and the order relation

is given by set inclusion. We note that, whenever V[^-¡] and A [CJ exist then

V[cj = |J[cJand AMsflM-

A set lattice in which for finite index sets /, V [Q : i e /] = (J [C¡ : i e /]

and A [C¡: i e 7] = 0 [C¡ : i e f] is called a proper set lattice. A set representation

of a lattice (r, ^) is an ordered pair iff!, 2),/), where (f€, 3) is a set lattice and/
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is an isomorphism from (T, S:) onto (#,2). A set representation is proper iff

ifê, 2) is a proper set lattice. A set representation is called a topological repre-

sentation iff <€ is the family of closed sets of a topological space. A (topological)

representation space of a lattice (T,¿z) is an ordered pair (Xf£), where (ffß, 2),/)

is a (topological) representation of (r, 2ï), and X= \^J[C: CeW]. A lattice

(T, S;) will be called a "»f-lattice iff it is complete, distributive, and has a base

consisting of irreducible elements. Thron [2] proved that a lattice has a topological

representation iff it is a 'tf-lattice. Other characterization had previously been

given by other authors. For references to these as well as to other results related

to our subject the reader is referred to [2].

Thron's theorem insures that the representation families we are about to define

are nonempty. A family & of representation spaces of a ^-lattice (T, 2:) will be

called a representation family of (r,^) iff it satisfies the following requirements:

(i)    Every (Xi,(€)eS; is a T0 topological space.

(ii) If iXi,tf) and (Jäf»,*Jf.) are two distinct elements of IF, then the two spaces

are not homeomorphic.

(iii) Every T0 topological representation space of (T, ^) is homeomorphic to

some member of ÍF.

We are now in a position to describe the results of this paper. In §2 we show that

every ^-lattice has a nonempty representation family, thus, incidentally providing

a second proof for the sufficiency of the result of Thron, mentioned above. We

then turn to the question how many distinct 70-topological representations can

a given "^-lattice have. Clearly, the restriction to T0-spaces is necessary in order

for this question to be meaningful. This question is answered in §4 in terms of the

number of "occasional closures" in the given lattice. In §3 we give lattice invariant

characterizations for an element of a ^-lattice to be a "necessary closure" or an

"occasional closure". These concepts are central to our whole investigation.

§5, finally, is devoted to a study of partial orders on a representation family.

Typical results are that there always exists a greatest representation space in the

family, and that if one representation space is greater than a second, then the

second is homeomorphic to a dense subspace of the first.

Even though, at present, we are mainly interested in ^-lattices, we have,

whenever possible, proved auxiliary theorems for more general lattices, thus

throwing light on the problem of representing less restricted lattices.

It may be helpful to call attention to certain notational conventions that we

shall use in this article. Abstract lattices and their subsets will be denoted by

capital greek letters, while their elements will be written as lower case letters

from the first part of the alphabet. For set lattices and their subsets we shall

use script letters (such letters will also be used for families of other entities), while

elements of set lattices will be denoted by capital letters. For the points of these

sets we use letters in the latter part of the lower case alphabet. We distinguish

between 2: and > and similarly between 2 and => ; the second and fourth symbol
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are understood to exclude equality. By A ~ B we mean the set consisting of those

elements of A which are not elements of B. The symbol thus is defined even if

B £ A. If there is no ambiguity as to what the ordering in a certain lattice (T, ^)

is, we frequently refer to the lattice simply as T. A point function h from a set X

to a set Y induces a function H from the power set of X to the power set of Y,

as follows H(A) = [h(x) : xeA~\. Since it is not likely to lead to any confusion

we denote H(A) by h(A) so that the latter symbol is to be understood as

h(A) = [h(x) : x e A].

2. The existence of a representation family. In this section we shall construct

topological representation spaces for a ^-lattice by using as the underlying spaces

bases of irreducible elements of the lattice. In this way we obtain a representation

family for every ^-lattice.

If (r, ^ ) is a lattice and A is a base for T, we have for every ceT

c = V [d : de A,d ^ c].

It follows that the sets

[d : d e A, d ^ Cj] and [d, d e A, d £1 c2]

are equal iff cx = c2. For future use we define

Fc=[d:deA,d^c].

Theorem 2.1. Let (T, ^) be a lattice and A be a subset ofT. Then A is a base

ofT iff'(([Fc : ce T], 2),/), where f(c)= Fc, is a set representation of (T, —).

In this case arbitrary g.l.b. in the set lattice are set intersections.

Proof. If A is a base then / is a 1-1 correspondence. It is easily seen that /

preserves order in both directions.

Now assume that (([Fc : ceT], 2 ),/) is a set representation of T. The family

[Fc] has a base consisting of the sets Fd, de A, inasmuch as for every ceT

Fc = \J[Fd:d^c]=\/[Fd:d^cl

The function / is an isomorphism and hence A is a base of T.

To show that g.l.b. are preserved as intersections let c = A [ci] tben Fc

= A [TCi] S p| [Fc.]. Moreover if d* e p| [Fc.] then d* ^ c¡ for every i, so that

d* S f] [cj = c, that is d* e Fc. It follows that Fc = f) [FCJ.

Let (r, 2: ) be a lattice and A a base of F. By the representation of(T, ^ ) over

A we shall mean the set representation defined in Theorem 2.1.

Lemma 2.1. Let (T, ^) be a distributive lattice. Let

c* = Vlck'-Ck < c*» k = 1»•"»»]•

Ifb* is an irreducible element ofT and b* < c* then b* ^ ck,for some k.
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Proof. Assume b* ^ ck, for every k. Since (T, ^ ) is distributive we have

b* = b* A ( V M) = V U>* A ck]. All the terms b* A ck are less than b*, since

otherwise b* z% ck. It follows that b* has a representation as the l.u.b. of a finite

number of elements strictly less than b*. This contradicts our assumption that

b* is irreducible.

Theorem 2.2. Let (T, ^) be a lattice and let A be a base ofT. Then the rep-

resentation of (r, ^) over A is proper iff (T, ^) is distributive and A consists

only of irreducible elements of T.

Proof. If the representation over A is proper then it is distributive and

hence T is distributive. Now assume that there exists a d* e A such that

d*= \/[ck : ck< d*, k = l,»»»,n]. Then Fd.= (J[FCJ. This however is impossible

since d* e Fd„ but d* $ FCk, for any k. Hence every element of A must be

irreducible.

If ris distributive and A consists only of irreducible elements, let c*= Cy V c2,

Cy< c*,c2 < c*. Then c* $ A and de Fc» implies d< c*. It follows from Lemma 2.1

that d <Cy or d<c2. Hsnce Fc, £ FCl UFC2. On the other hand we have for all

set lattices Fc«=FCl VFC2 2FClUFC2. This completes the proof of the theorem

since we already know from Theorem 2.1 that f\ [FC(] = Q [FCi] for arbitrary

index sets /, provided the g.l.b. under consideration are in the lattice.

Theorem 2.3. Let (T, 3:) be a "if-lattice and Abe a base of irreducible elements

of T. Let ((^,2),/) be the representation of (T, £) over A. Then (A,^) is a T0

topological space in which the sets Fd,deA are precisely the point closures.

Proof. It follows from the preceding two theorems and the fact that T is a

complete lattice that finite l.u.b. and arbitrary g.l.b. in 'if are finite set unions and

arbitrary set intersections, respectively. Moreover, since T is complete, it has a

least element / and a greatest element g, and we have

F,= [d-.dz^l, deA] = 0, F9= [d: d z%g, de A] = A.

That F, = 0 follows from our convention that / £ A. Hence <€ is a family of

closed sets on the set A, and (A, <tf) is a topological space. Let d e A ; then

[dj= f|[C: deC, CeV] = f][Fc:d S c] = F„.

Finally, since dy ¥= d2 implies Fdl ^ Fd? it follows that (A,^) is a T0-space.

To obtain a representation family for a "tf-lattice (T, 2:) we observe first that

if we let p(r) be the family of all bases, consisting only of irreducible elements,

of T, then the relation R, defined by A,RA2 iff there exists an automorphism / on

T such that f(Ay) = A2, is an equivalence relation on p(T). By g(T) we shall

denote a subfamily of p(T) which contains exactly one element from every one

of the equivalence classes into which R decomposes p(T). The existence of g(T)



1965] REPRESENTATIONS OF AN ABSTRACT LATTICE 61

follows from the axiom of choice in its original form. The next step in the construc-

tion is based on the following lemma.

Lemma 2.2. Let (X,^) and (Y,2¿¡) be two T0 topological spaces. Then (X,^)

is homeomorphic to (Y,3)) iff there exists an isomorphism f from <& onto S¿,

which maps the family of point closures in <€ onto the family of point

closures in 3i.

Proof. Let the homeomorphism from (Xfë) to (Y,2) be given by h. Since

h is 1-1 it induces an isomorphism from the power set of X to the power set of Y.

This isomorphism preserves closed sets in both directions since h is bicontinuous.

Let h(x)= y then h([xj) is closed and contains y so that h([xf) => [v]. Similarly,

[x] czh'WjJ), it follows that h(Jx¡) = ¡TJ-
Now let / be the isomorphism from 'to onto @) which maps point closures

onto point closures. Then h defined by [/i(x)] =/([x]) is a 1-1 onto mapping

from X to Y, since both spaces are assumed to be T0-spaces. For every closed set

Ceh(C) =f(C). To see this let X e C then [x]cC and hence/([x]) = [/i(x)] ¡= f(C).

This establishes h{x)ef{C). If yef{C) then [y\ Ç/(C) so that/-1([y])

= [h~1(y)'j Ç-: C. Hence h~l(y)eC and y eh(C). An analogous argument can be

given for the formula h~l(D) = f~1(D),De8$. Itfollows that h is bicontinuous.

Theorem 2.4. Let (T, ^) be a ^-lattice. Let &(T) = [(A,if) : A e g(T), if the

representation ofT over A]; theníF is a representation family ofT.

Proof. By Theorem 2.3 every space (A, if) is a T0-space if Aep(r). Hence

condition (i) is satisfied. No two members of ^(T) can be homeomorphic. This

follows from Lemma 2.2. Finally, let (X,^x) be any T0 representation space of

(r,^). Let the isomorphism from r4'x to T be given by/. Then Ax = [f([x~]): x e X~\

is a base of irreducible elements of T. To see this note that for every Ce^>xC

= yj[[x]:xeC] so that the point closures form a base of ^x. Further if

[x] = U[Ct: k = 1, —,n, Ck c [x]] then x must be in at least one Ck which is

impossible since every Ck cz [x]. Hence all point closures are irreducible elements

of Wy. "Being irreducible" and "forming a base" are preserved under isomor-

phisms and hence Ax is a base of irreducible elements in T. It follows from the

definition of g(T) that there exists a A in g{T) such that AjRA. Employing Lemma

2.2 once more we can then conclude that (Xy^f) is homeomorphic to (A,^7).

3. Classification of lattice elements corresponding to point closures. We shall

show that the concept of point closure can be carried over from the lattice of

closed sets of a topological space to more general set lattices. We are thus led

to make the following definition.

Definition 3.1. Let if€, g) be a proper set lattice then every element of the

form A [C: Cecé,xeC\, where x is a fixed element in X = \J[C: Ce if] will be
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called a point closure in *f?. Note that since the lattice may not be complete there

will not, in general, be a point closure for every xeX. Next, let (T, 2î ) be a dis-

tributive lattice and ceF. Then c is called a permissible closure in T iff there

exists a proper set representation (<fë, 2),/) of T such that/(c) is a point closure

in c€. If c is such that its image in every proper set representation of T is a point

closure then we shall call c a necessary closure in T. A permissible closure which

is not a necessary closure is called an occasional closure.

The reader may wonder why we have restricted ourselves in this definition to

proper set representations and distributive lattices, respectively. The reason for

this is that only distributive lattices can have proper set representations (and they

do by a theorem due to M. H. Stone). Moreover essential use is made of the

properness of the set representation in Theorem 3.1.

It may also be worthwhile to point out at this stage that not all proper rep-

resentations, even for distributive lattices, need be "representations over A" as

defined in the previous section.

Theorem 3.1. Let (T, 2:) be a distributive lattice and let ceT. Then c is a

permissible closure in F iff c is irreducible in T.

Proof. Assume that c is a permissible closure and that it can be written as

c= V [ck: k = 1, •■•,«]. Let ((^,2),/) be the proper representation in which

f(c) is a point closure. Then f(c) = U[/(ct)]. Let x be a point such that (fc) is

its point closure. Then xef(ck) for some k and it follows that f(c) ^f(ck), since

/(c) is the point closure of x and thus contains all elements off? which contain x.

It follows that c zi ck and that c is irreducible.

If c* is irreducible let (X,^) be a proper representation space of (T, 2:). If

C* =/(c*) is a point closure off? we have nothing more to prove. If not we form

the space (X',^') as follows: X' = X U[X], <f?' consists of the sets C, where

C = C if C $ C*, C = C U [X] if C 2 C*. The mapping C<-» C is easily seen

to be 1-1 and order preserving in both directions, hence (X',■»?') is a represen-

tation space of (T, 2:).

To prove that *f?' is proper we use the irreducibility of C* as follows. If

C U D $ C* then neither C nor D can, so that in that case

(CuD)' = CuD = C'Uf)'.

If C U D 2 C* then (C U D)' =(CUD)U [X]. Now C* = (C n C*)U (D OC*).

If both C n C* c C* and D n C* c C* then C* would be reducible. It follows

that either C or D contains C*. If C 2 C* we have

(C U £>)' = (C U £>) U [X] = (C U [X]) U D = C U £>',

and if D 2 C* we have similarly (C U D)' = C'U £»'. That (C n £>') = C C\D'

can be deduced directly from the definition of the correspondence C<->C

■
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Finally C*' = A [C: C'ef, [X] e C] so that C*' is a point closure in «".

Lemma 3.1. Let c* be an element of a lattice (T, 2:) and define <J>C.

= [c: c e r, c < c*]. Then \/[c: ce <Pct] exists.

Proof. The element c* is an upper bound of the set Q>c,. Hence it is either

its l.u.b. or there must exist another element, say e, in T which is an upper bound

of <DC. and which is such that e ^ c*. Set b = e A c*. Then it is easily seen that b

is the desired l.u.b. of -Dc..

Lemma 3.2. Let (T, 2:) be a lattice and A be a base of F. Let be A. Then

A ~ [b] is a base for F iff b = \J [c: ceT,c <b], that is iff b is not strongly

irreducible.

Proof. Suppose b = \/[c:cer, c<b]. Since A is a base we have for every ceT,

c= V [d: deFj. If there exists a c* in T such that c* =£■ \J [d: deFc.~ [b]]

then c* > b and the set Fc, ~[b] has an upper bound e 2; c*. The element

a = e A c* then is an upper bound of the set and a < c*. Now b is the l.u.b. of

the elements de A, d < b and hence b 2: a. It follows that a 2t Y [d: deFc„] = c*

which is a contradiction.

If b / V [c : c e T, c < b] then A ~ [b] is not a base for T since ¿> cannot be

expressed as the l.u.b. of elements of A ~ [b].

Theorem 3.2. Let (F, 2t) be a distributive lattice; then c* is a necessary

closure in F iff c* is strongly irreducible in F.

Proof. Assume c* is not strongly irreducible and let (X,1f) be a proper rep-

resentation space of T. Such spaces exist. If C*, the image of c* in (€, is not a point

closure in "if we have nothing further to prove. So assume that the set F consisting

of all those xeX, for which C* is the point closure x in eê, is not empty. Define

X' = X~P and «" = [CC\X'\ Ce&]. We shall show that (X',%1) is a proper

representation space of F. Clearly, ((€l, 2) is a proper set lattice since (ff>, 2)

is proper. Next we show that the mapping g: C-+C is 1-1 and that it and its

inverse are order preserving. It is easily seen that g itself is order preserving.

To prove the other two properties of g it suffices to show that Cy $ C2 implies

Cy'^C¡. For if Cy ¥= C2 then either Cy $ C2 or C2 $ Cy so that C\ * C2. If

C'x çC2 then Cy S C2 since C2 $ Ct implies C2 $ C[ contradicting our assump-

tion.

Now assume that Cy£C2; then there exist yeC2, y$Cy. If at least one of

these y£P then C'y $ C2 and we are through. Otherwise all y are in P. In that

case C2 £ cx UP. Moreover there exists an xePn C2, so that since C* is the

point closure of x, C* £ C2. Also C,nP = 0. If this were not the case, then

F ç: c* e C,, so that C2éC, UP=C„ contrary to our assumption. Introduce

D = Cxr,C*; then DcC* because D = C* implies Ct 2 C* which contradicts

CxC\P = 0. Let CcC*; then C n F = 0. Also C c C* ç C2 ç Cj U F and
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it follows that C s Cy. Hence D is an upper bound for the set of all C for which

C c C*. Thus we have C* = V[C:Cc C*J £ Z), which contradicts D c C*.

This completes the proof that (A",^") is a proper representation space of T. In #'

the set C*' is not a point closure, since every point of which C* was a point closure

has been removed from X'.

If c* is strongly irreducible then by Lemma 3.1 c* > b = \J [c: ceT, c < c*].

Then in any proper representation space (X,^) of T there exists an x such that

xeC*,x$B. Now assume xeCeW; then xeCC\C*. If CnC*cC* then

C n C* ^ B. This is impossible since x e C O C*, x$D, hence C O C* = C*

so that C => C*. But then C* is the point closure of x in <€.

Easy consequences of the results of this section are the following corollaries.

Corollary 3.1. Let (T, ~3z) be a distributive lattice; then an element c*eT

is an occasional closure in T iff c* is irreducible but not strongly irreducible

in T. An element c* eT is a necessary closure in T iffc* belongs to every base of T.

Corollary 3.2. If a lattice (T, S:) has no base of necessary closures then every

base of permissible closures of T contains infinitely many occasional closures.

4. Cardinality of representation families. Trivially, the cardinality m(T) of

any representation family of a ^-lattice (r, ^) is the cardinality of the family

we constructed in §2. Thus m(T) is equal to the number of distinct equivalence

classes induced on p(r), the family of all bases consisting of irreducible elements,

by R. It thus is clear that, other things being equal, m{T) becomes smaller the more

automorphisms T possesses, this is well illustrated in the proof of Theorem 4.2.

This dependence however is hard to pin down explicitly.

More rewarding is an investigation of the dependence of m(T) on n(T), the

number of occasional closures in T, and this we shall carry out here.

In the sequel we shall mean by k(n) the number of cardinal numbers less than

or equal to the cardinal number n. If n is finite then k(n) = n + 1. For n = K0 we

have k(n) = K0. For n > K0 the value of k(n) depends on whether the continuum

hypothesis or some substitute for it is assumed. In any case /c(2K<>) i> K0, equality

holds if the continuum hypothesis is assumed. We also recall that 2" denotes the

cardinality of the power set of a set of cardinality n.

Theorem 4.1. Let n(T) be the number of occasional closures in a ^-lattice

(T, ^) and let m(T) be the cardinality of a representation family of(T, ^). Then

(1) xnin[k(n), N0] ^ m(T) ^ 2",

(2) if T has a base of necessary closures, k(n)^m(T) ;£ 2".

Proof. (1) The cardinal number of distinct sets of occasional closures is 2".

This number is an upper bound for the number of distinct bases of permissible

closures since, by Corollary 3.1, every base contains all of the necessary closures.

Therefore 2" is an upper bound for m(T).
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Let Q be the family of occasional closures and \¡/ the family of necessary closures

in T. All automorphisms preserve ÍJ as well as ib since the property of being an

irreducible but not strongly irreducible element is preserved under all lattice

isomorphisms. Let At and A2 be two bases of irreducible elements in T. If AyR A2

then the automorphism which maps At onto A2 also maps Q ~ Ai onto £2 ~ A2.

It follows that these two sets have the same cardinal number. Thus if two bases

are such that the cardinality of Q ~ A! is not equal to the cardinality of £2 ~ A2

then At not R A2. Since T is a "^-lattice Q U \¡i is a base of permissible closures

and hence the sets \b = (Q ~[a1; •••, akJ), where ak e Q, k z% n, if n is finite, k some

natural number if n is infinite, are all mutually inequivalent bases of T. This follows

from Lemma 3.2. Thus m(T) ^ min (k(n), K0).

(2) If ib is a base of T then every set i¡/ U n, n c Q, is a base of irreducible elements

of T. Thus if nx is cardinally inequivalent to n2 then the bases \¡i«jnx and \¡/KJn2

are R-inequivalent and hence m(T) S; k(n) in this case.

Corollary 4.1. There exist, respectively, one, finitely many, or infinitely

many members of a representation family of a ^-lattice {T, ^ ), as there exist,

respectively, zero, finitely many, or infinitely many occasional closures in T.

Corollary 4.2. Every representation family of a ^-lattice (r, ^ ) has exactly

one element iff every irreducible element ofT is strongly irreducible.

We next show that the bounds k(n) and 2" for m(T), obtained in Theorem 4.1

can actually be taken on for properly chosen lattices T.

Theorem 4.2. For every cardinal number n there exist ^-lattices (Txn\ — )

and (T2\ ïï), having n occasional closures, such that

m(Txn)) = k(n) and m(T2n)) = 2".

Proof. Let Sin) be a set of cardinality n and let N be the set of all natural num-

bers. Let X[n) = S(n) u (N x S(n)). Let T[n) consist of all subsets of X(xn) of the

forms:

(a) AktS = [(m,s):mi% k,se S ("',s fixed],

(b) A,>s = [(m,s):meN, s e S{n] s fixed],

(c) finite unions of sets of types (a) and (b),

(d) 0 and XlxR).

It is easily seen that T[n) is a family of closed sets on X[n) and hence is a ^-lattice.

The necessary closures in T[n) axe the sets Aks. The sets AttS are occasional closures

and so is Xxn\ if n is infinite. Hence in each case there are n occasional closures.

The lattice T[n) has n ! automorphism, that is to every permutation of S(n) there

corresponds exactly one automorphisms of T[n\ Thus two bases are R-inequivalent

iff they are cardinally inequivalent. Since, in addition, the necessary closures

form a base for T[n) we have m(Tyn>) = k(n).
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To construct rj"' let (T ^ ^>) be a well ordered set of cardinality n, such sets

exist by the well ordering principle which is equivalent to the axiom of choice. Let

X<n) _ jW x jy y^e introduce the lexicographic order on X2, that is

(Ay, ky) > (A2, k2) iff Ay>A2orifAL= A2 then kx > k2.

Now let r^- X2 U [X2] and define [X2] > (A,k) for every (A,k)e X2. We thus

have an ordering for T2n) which is linear and complete. With respect to this ordering

T2n> can be shown to be a ^-lattice. The necessary closures are the elements (A,k),

fc#l. The occasional closures are the pairs 04,1), A^l, the least element in T(n).

The pair (/, 1) is the least element in T2n) and thus not a point closure. [X2] is also

a permissible closure if n is infinite. Thus there are always n permissible closures

in F2n). Clearly the only automorphism of F2n) is the identity mapping. Thus any

two distinct bases of F2n) are K-inequivalent. Since the necessary closures form

a base of F2n) there are exactly 2" distinct bases of irreducible elements in r(2")

and hence m(F2n)) = 2".

Aull and Thron [1] recently introduced a new separation axiom, called the

Tß-axiom, which is strictly stronger than T0 and strictly weaker than T,. A space

satisfies the 7B-axiom iff for every xeX the set [x]', the derived set of [x], is

closed. Using this axiom, Thron [2] proved the theorem that, in our terminology,

the subfamily of TD-spaces in a representation family of a 1^-lattice contains at

most one element. This result is easily obtained from our discussion once the

following theorem has been established.

Theorem 4.3. A space (X,^) is a TD-space iff it is a T0-space and all point

closures in the space are necessary closures.

Proof. Suppose (X, Ig) is a T0-space. For any x there cannot exist a y # x

having the same closure as x. For if ve[x], y # x then ye[x]' = [x] ~[x].

The set [x]' is closed and [x]' # [x], hence [y] # [xjand the space is a T0-space.

Since for every C c [x] we have x<£C it follows that C ç [x]'. Thus since [x]'

itself is closed [x]' = \f[C:Ce<&,Cc [xj] and hence [x] is strongly irreducible,

or what amounts to the same [x] is a necessary closure in '€.

If (X,%!) is a T0-space and if the only point closures are necessary closures

then for every [x] the set D =\j[C:Ce(€,C ezz[x\] a [x]. Now for every

y ¥= x and y e [x], [y] <= [x] since the space is a T0-space. Hence every

y 6 [x] ~ [x] is in D and D = [x]'.

It is then clear that the only TD-spaces in a representation family are the ones

for which the base of point closures corresponds to a base of necessary closures

in T. Of these however there is at most one. The question now arises as to whether

Thron 's theorem could be improved, in the sense that, for some conditions on

a topological space strictly weaker than TD, the subset of a representation family

meeting that condition has cardinality at most one. This can be done artificially
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for example by defining a new requirement which is either TD ox, if the ^-lattice of

the space has no TD-respresentation, is T0 plus the condition that all permissible

closures be point closures in the space. There does not appear to be a "natural"

generalization of the theorem.

A related question is whether a ^-lattice having a topological representation

satisfying some well-known topological requirement, has only one member in its

representation family. A sufficient condition for this is given below (compare also

Thron [2, Theorem 2.3]).

Theorem 4.4. Let (T, ^ ) be a ^-lattice which has a T2-representation space

(X,(ß).Thenm(T) = l.

Proof. An equivalent condition for a space to be a T2-space is that given x # y

there exist Cx and C2 in ^ such that xeCx, x$C2, yeC2, y$Cx, and

Cy u C2 = X. Suppose there exists an occasional closure c* in T. Then C*

cannot be a point closure in if since in a T2-space every point closure is an atom

and so is a necessary closure. Therefore there exist at least two distinct points

x,y in C*. There then exist sets Cy and C2 having the properties enumerated in

the beginning of this proof. We then have C* = (Cy n C*) U (C2 n C*). However

yiCyC\C* and x$C2rl C* so that Cx O C* e C* and C2C\C* c C*, which

contradicts the assumption that C* is an occasional closure, that is an irreducible

element, in if. Note that the theorem does not hold if T2 is weakened to Tx.

We conclude this section with a result which relates the automorphisms of 'S

to the autohomeomorphisms of (X,^).

Theorem 4.5. Let (X,^) be a T0-space. Then exactly those automorphisms of

ft can be extended to autohomeomorphisms on (X,^) which leave the family

of point closures of$ invariant.

Proof. The term "extended" is used in the sense that the automorphism is

induced by the homeomorphism. This result then follows easily from Lemma 2.2.

5. Partial orders on representation families. Here we introduce various order

relations on a representation family, which allow us to discuss among other things

whether a representation class has maximal and minimal elements. As a repre-

sentation family has a certain structural resemblance to the (sufficiently restricted)

family of extensions of a given topological space, so does the order introduced

here have a relation to the order commonly used on extensions (or at least com-

pactifications) of a given space. This is brought out in Theorem 5.1. Noteworthy

also is the fact (see Theorem 5.2) that a greater space is an extension of the lesser

space.

In the sequel it will be convenient to denote the set of point closures of a to-

pological space (X,<$) by ^>(if).
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We shall say that (X,^) 2t (X'/€') for two members of a representation family

J^of a ^-lattice (F, 2: ) iff there exists an isomorphism / from '€' onto ^ such

that f(£¿¡{f€'y) <zz £¿i(fé¡). Since this is only a quasi-ordering we also introduce two

other orderings on & which turn out to be partial orders. We define

(X,<g)^*(X',(6') iff iX,Tj^iX'X) and (A",«") £ (*,<<?). Lastly, we define

2:** as follows: LY,<i?) Z**(X',r^') iff for every isomorphism / from 'if' onto ■*?

f(2if€'f) <zz Si(fg). It is then clear that the following inclusion relation holds:

"2;"=)"2i*"z3"2:**". Here we mean by "£*" the class of all ordered pairs in

J5" X J5" for which the first element is 2: the second, and analogously for the other

symbols.

To analyze the relation 2:** further let us denote by A(f€) the inverse image

of 3¡(f€) under the isomorphism from F to if. Then (X,^)^** (X',%') iff under

every automorphism of F the set A(*ë") gets mapped into A(f€). Since the identity

mapping is an automorphism this means ACf?') c A(f€). It is not difficult to verify

that 2;, 2:*, and 2;** are reflexive and transitive and that 2:* and 2;** are

also antisymmetric. The relation 2: is not in general antisymmetric as the fol-

lowing example shows.

Example 5.1. Let (T, 2; ) be the lattice consisting of — oo, +oo, all integers,

and all rational numbers of the form n + (2m — l)/2"", n an integer and m a positive

integer, and let the ordering be the natural ordering. This is a 'íf-lattice. All non-

integral rational numbers are necessary closures and all integers and +co are

occasional closures. Therefore any set that contains the set of all necessary closures

cp, and any arbitrary subset of the set of occasional closures is a base of permissible

closures for T. All automorphisms of F are of the form/,., where fki + oo) = + oo,

fk(x) = x + k otherwise. Here k can be an arbitrary integer. Now consider the two

bases

A   = \p u [0 and all negative integers not equal to — (1 + 3n), n 2; 0],

A* = \p u [0 and all negative integers not equal to — (2 + 3n), n 2: 0];

then /-i(A) c A* and /_2(A*) c A. Let "f? and ^* be the representations over A

and A*, respectively, of T (see §2). Then we have (A,^) 2; (A*,^*) and

(A*, "if*) 2î (A,"if) and Anot.RA* since no automorphism of F can map A onto A*,

hence(A,^)#(A*,^*).

It might be of interest to try to characterize those ^-lattices T for which 2: is a

partial order.

We next note that the three order relations introduced here are such that if

F and ^ are two representation families of a ^-lattice (T, 2; ) and if h is the

mapping from J5" onto & which associates with every space in ¡F the space in 0

which is homeomorphic to it, then h is an order isomorphism with respect to all

the orders considered here.

Recall that the pair (j,iY,Qf)) is an extension of a space iX,ïF) iff / provides

a homeomorphism from LY, ¡F) onto a subspace (S, Us) of ( 7, W), and if in addition

S is dense in (Y,%). Given two extensions of a space (X,¿F) one defines (f,(Y,%))
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2: (g,(Z,f )) iff there exists a continuous function h from (Y,$¿) onto (Z, "V) such

that h=gof~xon f(X). For the ordering 2: of representation families we have

the following result.

Theorem 5.1. The relation (X,<^)^.(X',(<o') holds between two members of

a representation family iff there exists a closed continuous mapping h

from (X,^) onto (X',^') which has the additional property that for every

Ce^h(C) = f(C), where f is an isomorphism from C onto C.

Proof. If (X,^) ^ (X',^') there exists an isomorphism / from ^ to if' such

that /-1(j2(if'))cS>(if). For every x such that [x]e/-1(^(i?')) define h(x)

so that /([x]) = [[/i(x)]-]. For the remaining x the set /([x]) = C is not a point

closure. In this case we let h(x) be some element in C. The function h so defined

is a mapping from X onto X'. Moreover, h(C) =f(C) and

/!-1(C) = [x:/(M) cz C']= ULM: M ^/_1(C')] =/_1 (C),

so that ft is continuous. The function h is closed since h(C) = f(C).

Assume h and / are given so that for every Ce<£, h(C) =f(C). Let y be an

arbitrary element in X' and set C* = fc-1([y]) then C*e^ since /i is continuous.

Now suppose C* is not a point closure in c€; then C* = (J [[x] : [x] c C*] and

153 =UWM):M c c*] =IJC/(M):M - c*].

It follows that y e/([x]) c [y], but then [y] cz [y] which is a contradiction.

Hence C* = [x]. Note that in this argument we used the existence of the function

h to conclude that [y] = M [/([*])]• Using only / the best we could have conclu-

ded would have been [y] = V [/([*])]• Now let C be an arbitrary set in

fé"; then ft-1(C) is closed and hence

C' = h(h-1(C'))=f(h~1(C')).

Applying /-1 to both sides of this equation we obtain / -1(C) = h~l(C). Thus,

finally, h~»([y]) = [x] = /-1([y]). Hence/-1(^(if))c; .©(if) and (X,^)^(X'f€').

We thus see that ordering on representation families is quite closely related

to ordering on extensions. However the ordering on representation families is

stronger since in this case h is not only continuous but also closed. It is this ad-

ditional property which enables us to prove the following result for representation

families (there is no corresponding result for extensions).

Theorem 5.2. Let {X,<€) and (X',^') be in the same representation family

and let (X,<£)'^.(X','^'). Then there exists a homeomorphism from (X',^')

onto a dense subspace of(X,c€).

Proof.   Let  /   be  an   isomorphism   from   *€  to   #'   which is such that
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/' x(3Hf£')) cz 2Kfg) and let D be the set of all x e X such that f(\x\) = [y]. The

function h of the preceding theorem restricted to D is 1-1. Hence, since it is

a closed and continuous mapping it is a homeomorphism. Now let Ceíf be such

that C 2 ZXThen C 2 V [/ "' (M>: y e x 'Y& follows that /(C) 2 V [[Tf: y e X'].
The sets [y] form a base off?', hence V [[y]J = X' and f(C) = X'. Thus, finally,

C =f~\X') = Z and it follows that/) = X.

The conclusion of the theorem remains valid if 2: is replaced by 2: * or 2; **

in the assumption. This is so because 2:* implies 2: and 2:** implies 2:.

As far as the existence of greatest and least elements is concerned represen-

tation families again exhibit a better behavior than families of extensions.

We have :

Theorem 5.3. Let SF be any representation family of a ^-lattice (T, 2; ). That

member (X*f€*) of 3F, for which the image of the set of all point closures is the set

of all permissible closures of F, is the greatest member of'¡F with respect to

2;, 2:* and 2:**.

Proof. The result is an immediate consequence of the definitions of the various

order relations.

Theorem 5.4. (1) If a ^-lattice (F, 2: ) has a base of necessary closures,

then every representation family ¡FofF has a least member under 2t, 2î*, and

->**. This is the space in !F which has the property that the image of3>(ftf) is the

set of all necessary closures ofF. (2) A ^-lattice has a base of necessary closures

if a   representation family has a least element under 2r**.

Proof. Part (1) follows from the fact that the set of necessary closures gets

mapped onto itself by all automorphisms of F. To prove part (2) assume that the

lattice T has a least representation space (X*/€*) under 2:**, in a representation

family. Assume further that the set 2(fë*) contain an occasional closure C. Then C

can be omitted from the base &(*€*) and the remaining point closures form a base

2$' of <€*, by Lemma 3.2. But then the identity mapping on <€* fails to take 3>

into 3>' contradicting the assumption that (X*,^*) is least under 2:**. Therefore

the point closures of 'f?* must all be necessary closures and If* and F thus have

bases consisting only of necessary closures.

That part (2) of Theorem 5.3 is not valid for 2: * or 2; is seen by the following

example.

Example 5.2. The interval [0,1] is a "^-lattice under its natural order, and

the nonzero rationals are a base. But any base of [0,1] must be a dense subset

of [0,1] in its usual topology. Now by a result of Cantor every dense subset of

[0,1] has a countable subset which is in 1-1 correspondence with the rationals

under some automorphism of [0,1]. Let (X,(€) be a representation space of [0,1]

in which the point closures correspond exactly to the rationals. It follows from
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the above discussion that (X, W) is a least element with respect to ^ * and a minimal

element with respect to 3:. On the other hand the interval has no necessary closures

and a fortiori has no base of necessary closures.
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