ON THE REPRESENTATIONS OF AN
ABSTRACT LATTICE AS THE FAMILY OF
CLOSED SETS OF A TOPOLOGICAL SPACE

BY
DAVID DRAKE AND W. J. THRON

1. Introduction. In 1962 Thron considered certain questions concerning the
lattice structure of the family € of closed sets of a topological space. In this article
we continue these investigations.

Before describing the results of this paper it will be helpful to review certain
definitions and give a few new ones. Whenever we talk about a topological space
(X, %) we shall mean by ¥ the family of closed sets on X. Clearly, it defines the
topological structures as well as the family of open sets, and for our purposes
it is more convenient. Let (I'y, =) and (I',, =,) be two lattices; then a function f
from I'; onto I', will be called an isomorphism iff f is 1-1 and f as well as its
inverse are order preserving. An isomorphism from I" onto itself will be called an
automorphism on I'. It is well known that f is an isomorphism iff it and its inverse
preserve Lu.b. and glb., that is f(\/[a;])=\/[f(a)] and f(A[a;]) = A[fa)]
and similarly for f *. A subset A of a lattice (I', =) is called a base of T iff every
element a e I', other than the least element if it exists in I', can be written as

a=\/[d;:d;eA, iel,].

It is convenient for our purposes to assume that if I' has a least element then this
element does not belong to any base of I'. Observe that we are not asserting that,
for every subcollection Q c A, \/[d: de Q] exists in I'. An element a of a lattice
(', =) will be called irreducible (strongly irreducible) iff a cannot be expressed
as the Lu.b. of a finite (arbitrary) number of elements of I', which are strictly
less than a.

A lattice is called a set lattice iff its elements are sets and the order relation
is given by set inclusion. We note that, whenever \/[C;] and A\ [C;] exist then

VIC] =2 U [C] and A[C] < n [C]

A set lattice in which for finite index sets I, \/[C;:iel]= (J[C;: ieI]
and A\ [C;:ieI]=()[C;: iel]iscalled a proper set lattice. A set representation
of a lattice (I', =) is an ordered pair ((%, 2),f), where (%, 2) is a set lattice and f
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is an isomorphism from (I', =) onto (%,2). A set representation is proper iff
(%, 2) is a proper set lattice. A set representation is called a topological repre-
sentation iff € is the family of closed sets of a topological space. A (topological)
representation space of a lattice (I',>) is an ordered pair (X,%), where (%, 2),f)
is a (topological) representation of (I', =), and X= U[C :Ce¥]. A lattice
(T',=) will be called a #-lattice iff it is complete, distributive, and has a base
consisting of irreducible elements. Thron [2] proved that a lattice has a topological
representation iff it is a %-lattice. Other characterization had previously been
given by other authors. For references to these as well as to other results related
to our subject the reader is referred to [2].

Thron’s theorem insures that the representation families we are about to define
are nonempty. A family # of representation spaces of a ¥-lattice (I', =) will be
called a representation family of (I', Z) iff it satisfies the following requirements:

(i) Every (X;,%;) e is a T, topological space.

(i) If (X,%) and (X;, ;) are two distinct elements of %, then the two spaces
are not homeomorphic.

(iii) Every T, topological representation space of (I, =) is homeomorphic to
some member of £

We are now in a position to describe the results of this paper. In §2 we show that
every %-lattice has a nonempty representation family, thus, incidentally providing
a second proof for the sufficiency of the result of Thron, mentioned above. We
then turn to the question how many distinct T,-topological representations can
a given %-lattice have. Clearly, the restriction to T,-spaces is necessary in order
for this question to be meaningful. This question is answered in §4 in terms of the
number of ““occasional closures’’ in the given lattice. In §3 we give lattice invariant
characterizations for an element of a %-lattice to be a ‘‘necessary closure’’ or an
‘““occasional closure’’. These concepts are central to our whole investigation.
§5, finally, is devoted to a study of partial orders on a representation family.
Typical results are that there always exists a greatest representation space in the
family, and that if one representation space is greater than a second, then the
second is homeomorphic to a dense subspace of the first.

Even though, at present, we are mainly interested in %-lattices, we have,
whenever possible, proved auxiliary theorems for more general lattices, thus
throwing light on the problem of representing less restricted lattices.

It may be helpful to call attention to certain notational conventions that we
shall use in this article. Abstract lattices and their subsets will be denoted by
capital greek letters, while their elements will be written as lower case letters
from the first part of the alphabet. For set lattices and their subsets we shall
use script letters (such letters will also be used for families of other entities), while
elements of set lattices will be denoted by capital letters. For the points of these
sets we use letters in the latter part of the lower case alphabet. We distinguish
between = and > and similarly between = and o ; the second and fourth symbol
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are understood to exclude equality. By 4 ~ B we mean the set consisting of those
elements of A which are not elements of B. The symbol thus is defined even if
B & A. If there is no ambiguity as to what the ordering in a certain lattice (I, =)
is, we frequently refer to the lattice simply as I'. A point function h from a set X
to a set Y induces a function H from the power set of X to the power set of Y,
as follows H(A) = [h(x): x € A]. Since it is not likely to lead to any confusion
we denote H(A) by h(A) so that the latter symbol is to be understood as

h(A) = [h(x): xe A).

2. The existence of a representation family. In this section we shall construct
topological representation spaces for a #-lattice by using as the underlying spaces
bases of irreducible elements of the lattice. In this way we obtain a representation
family for every %-lattice.

If (T, = ) is a lattice and A is a base for I', we have forevery ce I

c=\[d:deA,d=c].
It follows that the sets
[d:deA,d =c,] and [d,deA,d < c,]
are equal iff ¢, = ¢,. For future use we define
F.=[d:deA,d=c].

THEOREM 2.1. Let (I, =) be a lattice and A be a subset of I'. Then A is a base
of T iff ([F.: ceT], 2).f), where f(c)=F,, is a set representation of (I, ).
In this case arbitrary g.l.b. in the set lattice are set intersections.

Proof. If A is a base then f is a 1-1 correspondence. It is easily seen that f

preserves order in both directions.
Now assume that ([F.:ceI'], 2),f) is a set representation of I'. The family
[F.] has a base consisting of the sets F;, d € A, inasmuch as for every ce I"

F.=J[F,:d<c]= \[F;:d<c].

The function f is an isomorphism and hence A is a base of I'.

To show that gl.b. are preserved as intersections let ¢ = A [¢;] then F,
= A[F.]<[F.]. Moreover if d*e(\[F,] then d* < ¢ for every i, so that
d* < [c] = ¢, that is d* € F,. It follows that F, = ([F,].

Let (T, =) be a lattice and A a base of I'. By the representation of (I', = ) over
A we shall mean the set representation defined in Theorem 2.1.

LemMMA 2.1. Let (T, 2) be a distributive lattice. Let
c*=\/[g:g<c* k=1,--,n]

If b* is an irreducible element of I' and b* < c* then b* < ¢, for some k.
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Proof. Assume b* < ¢, for every k. Since (I', =) is distributive we have
b* =b* A (\/[a]) = V [b* A ¢ ]. All the terms b* A ¢, are less than b*, since
otherwise b* < c,. It follows that b* has a representation as the lL.u.b. of a finite
number of elements strictly less than b*. This contradicts our assumption that
b* is irreducible.

THEOREM 2.2. Let (I', 2) be a lattice and let A be a base of T'. Then the rep-
resentation of (I', =) over A is proper iff (I, 2) is distributive and A consists
only of irreducible elements of I.

Proof. If the representation over A is proper then it is distributive and
hence T' is distributive. Now assume that there exists a d*e A such that
d*=\/[c;: ¢ < d*, k = 1,-,n]. Then F,.= | J[F.,]. This however is impossible
since d*e Fy., but d*¢ F_,, for any k. Hence every element of A must be
irreducible.

If T is distributive and A consists only of irreducible elements, let ¢c*=c¢; V ¢,,
¢, <c* cy<c* Thenc*¢Aand d e F,. impliesd < c*. It follows from Lemma 2.1
that d <c¢; or d<c,. Hance F.. & F, UF,,. On the other hand we have for all
set lattices F..=F, VF.,2F, UF,,. This completes the proof of the theorem
since we already know from Theorem 2.1 that /\[Fc..]=ﬂ[ch] for arbitrary
index sets I, provided the g.l.b. under consideration are in the lattice.

THEOREM 2.3. Let (I, =) be a ¢-lattice and A be a base of irreducible elements
of T. Let (¥,2),f) be the representation of (I', ) over A. Then (A, %) isa T,
topological space in which the sets F;,d € A are precisely the point closures.

Proof. It follows from the preceding two theorems and the fact that I" is a
complete lattice that finite l.u.b. and arbitrary g.l.b. in € are finite set unions and
arbitrary set intersections, respectively. Moreover, since I' is complete, it has a
least element [ and a greatest element g, and we have

Fi=[d:d<l,deA]l=@, F,=[d:d <g,deA] = A.

That F,= @ follows from our convention that /¢ A. Hence % is a family of
closed sets on the set A, and (A, %) is a topological space. Let d € A; then

[d]=(\[C:deC,Ce¥]=([F.:d < c]=F,.

Finally, since d; # d, implies F,;, # F,, it follows that (A, %) is a T,-space.

To obtain a representation family for a ¥-lattice (I', =) we observe first that
if we let p(I') be the family of all bases, consisting only of irreducible elements,
of T, then the relation R, defined by A, RA, iff there exists an automorphism f on
I such that f(A,) = A,, is an equivalence relation on p(I'). By g(I') we shall
denote a subfamily of p(I") which contains exactly one element from every one
of the equivalence classes into which R decomposes p(I'). The existence of g(I')
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follows from the axiom of choice in its original form. The next step in the construc-
tion is based on the following lemma.

LEMMA 2.2. Let (X, %) and (Y, 2) be two T, topological spaces. Then (X,%)
is homeomorphic to (Y,2) iff there exists an isomorphism f from € onto 2,
which maps the family of point closures in € onto the family of point
closures in 2.

Proof. Let the homeomorphism from (X,%) to (Y,2) be given by h. Since
h is 1-1 it induces an isomorphism from the power set of X to the power set of Y.
This isomorphism preserves closed sets in both directions since h is bicontinuous.
Let h(x)= y then h([x]) is closed and contains y so that h([x]) o [y] Similarly,
[x] =h~*([y]), it follows that h([x]) = [y].

Now let f be the isomorphism from % onto £ which maps point closures
onto point closures. Then h defined by [h(x)] = f([x]) is a 1-1 onto mapping
from X to Y, since both spaces are assumed to be Ty-spaces. For every closed set
Ceh(C)=f(C). To see this let X € C then [x] = C and hence f ([x]) [h(x)] < f(O).
This establishes h(x)e f(C) If yef(C) then [y]<f(C) so that f X ([y]
=[h-1(y)] = C. Hence h~'(y) e C and y € h(C). An analogous argument can be
given for the formula h™'(D) = f~'(D),De 2. It follows that h is bicontinuous.

THEOREM 2.4. Let (I, 2) be a %-lattice. Let F(I') = [(A,%): Ae g('), € the
representation of I over A]; then & is a representation family of T

Proof. By Theorem 2.3 every space (A,%) is a T,-space if Aep(I’). Hence
condition (i) is satisfied. No two members of %#(I') can be homeomorphic. This
follows from Lemma 2.2. Finally, let (X,%¥,) be any T, representation space of
(I',2). Let the isomorphism from %, to I" be given by f. Then A,=[f(m):xeX]
is a base of irreducible elements of I'. To see this note that for every Ce%,C
= U[[x] xeC] so that the point closures form a base of %;. Further if
[x]=ULC:: k .n, C < [x]] then x must be in at least one C, which is
impossible since every Ck < [x]. Hence all point closures are irreducible elements
of €,. ““Being irreducible’’ and ‘‘forming a base’’ are preserved under isomor-
phisms and hence A, is a base of irreducible elements in I'. It follows from the
definition of g(T") that there exists a A in g(I') such that A, RA. Employing Lemma
2.2 once more we can then conclude that (X,,%,) is homeomorphic to (A, %).

3. Classification of lattice elements corresponding to point closures. We shall
show that the concept of point closure can be carried over from the lattice of
closed sets of a topological space to more general set lattices. We are thus led
to make the following definition.

DeriniTION 3.1. Let (%, ) be a proper set lattice then every element of the
form A\ [C: Ce®%,xeC], where x is a fixed element in X = U[C: Ce %] will be
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called a point closure in €. Note that since the lattice may not be complete there
will not, in general, be a point closure for every x € X. Next, let (I, =) be a dis-
tributive lattice and ceI'. Then c is called a permissible closure in I iff there
exists a proper set representation ((¢, 2), f) of I such that f(¢) is a point closure
in €. If c is such that its image in every proper set representation of I is a point
closure then we shall call ¢ a necessary closure in I'. A permissible closure which
is not a necessary closure is called an occasional closure.

The reader may wonder why we have restricted ourselves in this definition to
proper set representations and distributive lattices, respectively. The reason for
this is that only distributive lattices can have proper set representations (and they
do by a theorem due to M. H. Stone). Moreover essential use is made of the
properness of the set representation in Theorem 3.1.

It may also be worthwhile to point out at this stage that not all proper rep-
resentations, even for distributive lattices, need be ‘‘representations over A’ as
defined in the previous section.

THEOREM 3.1. Let (I', =) be a distributive lattice and let ce . Then ¢ is a
permissible closure in T iff ¢ is irreducible in T.

Proof. Assume that ¢ is a permissible closure and that it can be written as
c=\/[e:k=1,--,n]. Let ((¥,2),f) be the proper representation in which
f(c) is a point closure. Then f(c) = U[ f(cp)]- Let x be a point such that (fc) is
its point closure. Then x € f(c,) for some k and it follows that f(c) = f(c), since
f(c) is the point closure of x and thus contains all elements of ¥ which contain x.
It follows that ¢ < ¢, and that c is irreducible.

If c* is irreducible let (X,%) be a proper representation space of (I', ). If
C* = f(c*) is a point closure of € we have nothing more to prove. If not we form
the space (X',%¢’) as follows: X' =X U[X], €’ consists of the sets C’, where
C'=Cif CC* C'=CuU[X]if C= C* The mapping C« C’ is easily seen
to be 1-1 and order preserving in both directions, hence (X’,%’) is a represen-
tation space of (I', ).

To prove that €’ is proper we use the irreducibility of C* as follows. If
C U D 3 C* then neither C nor D can, so that in that case

(CuDy=Cub=C'UD'.

IfCUD=2C*then(CUD) =(CUD)U[X]. Now C*= (Cn C¥HU(DNC*).
If both CN C* < C*¥ and DN C* < C* then C* would be reducible. It follows
that either C or D contains C*. If C = C* we have

(CUD)Y =(CUD)U[X]=(CU[X])uD=C'UD’,

and if D © C* we have similarly (CU D) =C'uUD’. That (C'"D’) = C'N D’
can be deduced directly from the definition of the correspondence C «— C’.
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Finally C*' = A\ [C': C'e¥’,[X] e C'] so that C*' is a point closure in €.

LeEMMA 3.1. Let c* be an element of a lattice (I, =) and define @,
=[c:cel, ¢ <c*]. Then \/[c: ce D] exists.

Proof. The element c* is an upper bound of the set ®... Hence it is either
its Lu.b. or there must exist another element, say e, in I" which is an upper bound
of @, and which is such that e & c*. Set b = e A ¢*. Then it is easily seen that b
is the desired l.u.b. of ®_..

LemMA 3.2. Let (I', =) be a lattice and A be a base of I'. Let be A. Then
A ~[b] is a base for T iff b= \/[c:cel,c <b], that is iff b is not strongly
irreducible.

Proof. Suppose b =\/[c:cel’, c<b]. Since A is a base we have for every ceT,
c¢=\/[d:deF_]. If there exists a ¢* in I such that c*# \/[d:deF ..~ [b]]
then c¢* > b and the set F..~[b] has an upper bound e = c*. The element
a = e A\ c* then is an upper bound of the set and a < ¢*. Now b is the lLu.b. of
the elements d €A, d < b and hence b = a. It follows that a = \/[d: de F..] = ¢*
which is a contradiction.

If b# \/[c:ceT,c <b] then A~[b] is not a base for I' since b cannot be
expressed as the L.u.b. of elements of A~ [b].

THEOREM 3.2. Let (I, =) be a distributive lattice; then c* is a necessary
closure in T iff c* is strongly irreducible in T'.

Proof. Assume c* is not strongly irreducible and let (X,%) be a proper rep-
resentation space of I'. Such spaces exist. If C*, the image of ¢* in %, is not a point
closure in € we have nothing further to prove. So assume that the set P consisting
of all those x € X, for which C* is the point closure x in %, is not empty. Define
X' =X~Pand ¢ =[CN X': Ce¥]. We shall show that (X',¢’) is a proper
representation space of I'. Clearly, (4’, 2) is a proper set lattice since (%, 2)
is proper. Next we show that the mapping g: C— C’ is 1-1 and that it and its
inverse are order preserving. It is easily seen that g itself is order preserving.
To prove the other two properties of g it suffices to show that C, 3 C, implies
C/2$ C,. For if C, # C, then either C; 2 C, or C, 2 C, so that C| # Cy. If

1 €C; then C, = C, since C,  C, implies C; 3 C; contradicting our assump-
tion.

Now assume that C, 2 C, ; then there exist ye C,, y¢ C,. If at least one of
these y ¢ P then C| 2 C; and we are through. Otherwise all y are in P. In that
case C, < C,; U P. Moreover there exists an xe P~ C,, so that since C* is the
point closure of x, C* < C,. Also C; N P = (. If this were not the case, then
PcC*<c Cy,s0that C, = C, UP = C,, contrary to our assumption. Introduce
D = C,; N C*; then D = C* because D = C* implies C; 2 C* which contradicts
CiNP=g. Let CcC*; then CNP=. Also CcC*<C,= C;UP and



64 DAVID DRAKE AND W.J. THRON [October

it follows that C = C,. Hence D is an upper bound for the set of all C for which
C c C*. Thus we have C*=\/[C:C < C*] < D, which contradicts D = C*,
This completes the proof that (X',%") is a proper representation space of I'. In ¢’
the set C*’ is not a point closure, since every point of which C* was a point closure
has been removed from X'.

If c* is strongly irreducible then by Lemma 3.1 ¢* > b= \/[c:c€eT, ¢ < c*].
Then in any proper representation space (X,%) of I there exists an x such that
xeC*,x¢ B. Now assume xeCe%; then xeCNC* If CN C*¥ < C* then
CN C*< B. This is impossible since xe CNC*, x¢ D, hence CN C* = C*
so that C > C*. But then C* is the point closure of x in %.

Easy consequences of the results of this section are the following corollaries.

COROLLARY 3.1. Let (I', =) be a distributive lattice; then an element c*el’
is an occasional closure in T iff c¢* is irreducible but not strongly irreducible
inT'. An element c* €T is a necessary closure in T iff c* belongs to every base of T.

COROLLARY 3.2. Ifalattice (T', =) has no base of necessary closures then every
base of permissible closures of I' contains infinitely many occasional closures.

4. Cardinality of representation families. Trivially, the cardinality m(I") of
any representation family of a %-lattice (I', =) is the cardinality of the family
we constructed in §2. Thus m(I') is equal to the number of distinct equivalence
classes induced on p(I'), the family of all bases consisting of irreducible elements,
by R. It thus is clear that, other things being equal, m(I') becomes smaller the more
automorphisms I' possesses, this is well illustrated in the proof of Theorem 4.2.
This dependence however is hard to pin down explicitly.

More rewarding is an investigation of the dependence of m(I') on n(I), the
number of occasional closures in I', and this we shall carry out here.

In the sequel we shall mean by k(n) the number of cardinal numbers less than
or equal to the cardinal number n. If n is finite then k(n) = n + 1. For n = N, we
have k(n) = ¥X,. For n > ¥, the value of k(n) depends on whether the continuum
hypothesis or some substitute for it is assumed. In any case k(2%) = N,, equality
holds if the continuum hypothesis is assumed. We also recall that 2" denotes the
cardinality of the power set of a set of cardinality n.

THEOREM 4.1. Let n(I') be the number of occasional closures in a €-lattice
(', =) and let m(T') be the cardinality of a representation family of (I', ). Then

(1) min[k(n), Xo] < m(I) < 2",

(2) if T has a base of necessary closures, k(n)<m(I") £ 2".

Proof. (1) The cardinal number of distinct sets of occasional closures is 2".
This number is an upper bound for the number of distinct bases of permissible
closures since, by Corollary 3.1, every base contains all of the necessary closures.
Therefore 2" is an upper bound for m(T').
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Let Q be the family of occasional closures and i/ the family of necessary closures
in . All automorphisms preserve Q as well as { since the property of being an
irreducible but not strongly irreducible element is preserved under all lattice
isomorphisms. Let A; and A, be two bases of irreducible elements in I'. If A;RA,
then the automorphism which maps A, onto A, also maps Q ~ A; onto Q~A,.
It follows that these two sets have the same cardinal number. Thus if two bases
are such that the cardinality of Q ~ A, is not equal to the cardinality of Q~ A,
then A, not RA,. Since T is a ¥-lattice QU  is a base of permissible closures
and hence the sets Y = (Q ~[a,, -+, a,]), where a, € Q, k < n, if n is finite, k some
natural number if » is infinite, are all mutually inequivalent bases of I". This follows
from Lemma 3.2, Thus m(I') = min (k(n), N,).

(2) Ifyis a base of I' then every set y U n, @ = Q, is a base of irreducible elements
of I'. Thus if =, is cardinally inequivalent to n, then the bases y U n, and y U 7,
are R-inequivalent and hence m(I') = k(n) in this case.

COROLLARY 4.1. There exist, respectively, one, finitely many, or infinitely
many members of a representation family of a €-lattice (I', =), as there exist,
respectively, zero, finitely many, or infinitely many occasional closures in I'.

COROLLARY 4.2. Every representation family of a €-lattice (T, = ) has exactly
one element iff every irreducible element of I is strongly irreducible.

We next show that the bounds k(n) and 2" for m(I"), obtained in Theorem 4.1
can actually be taken on for properly chosen lattices I'.

THEOREM 4.2. For every cardinal number n there exist €-lattices (T 2 )
and (T, =), having n occasional closures, such that

m(') = k(n) and m(T'P) =2".

Proof. Let S™ be a set of cardinality n and let N be the set of all natural num-
bers. Let XM =S® U (N x S™). Let I'{" consist of all subsets of X{ of the
forms:

@) A, = [(mys):m=Zk,se S ™ s fixed],

(b) 4,, = [(m,s):meN, seS"™s fixed],

(c) finite unions of sets of types (a) and (b),

(d) & and XP.

It is easily seen that I'{" is a family of closed sets on X (" and hence is a €-lattice.
The necessary closures in I'{" are the sets A . The sets A, ; are occasional closures
and so is X{”, if n is infinite. Hence in each case there are n occasional closures.
The lattice I'{" has n! automorphism, that is to every permutation of S™ there
corresponds exactly one automorphisms of I'{". Thus two bases are R-inequivalent
iff they are cardinally inequivalent. Since, in addition, the necessary closures
form a base for I'{" we have m(I"{") = k(n).
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To construct I'{" let (T ™) )>) be a well ordered set of cardinality n, such sets
exist by the well ordering principle which is equivalent to the axiom of choice. Let
X = T™ x N. We introduce the lexicographic order on X, that is

(Ag, ky) > (Ag, ky) iff Ay > A, or if A, = A, then k> ks.

Now let I'{’= X, U [X,] and define [X,] > (4, k) for every (4,k) € X,. We thus
have an ordering for I'{” which is linear and complete. With respect to this ordering
Fg"’ can be shown to be a %-lattice. The necessary closures are the elements (4,k),
k#1. The occasional closures are the pairs (4, 1), A%/, the least elementin T,
The pair (I, 1) is the least element in I'{"” and thus not a point closure. [ X,] is also
a permissible closure if n is infinite. Thus there are always n permissible closures
in T'$". Clearly the only automorphism of I'{"is the identity mapping. Thus any
two distinct bases of I'y” are R-inequivalent. Since the necessary closures form
a base of I'{" there are exactly 2" distinct bases of irreducible elements in I'§”
and hence m(T"y") = 2",

Aull and Thron [1] recently introduced a new separation axiom, called the
Tp-axiom, which is strictly stronger than T, and strictly weaker than T, . A space
satisfies the Tp-axiom iff for every x € X the set [x]’, the derived set of [x], is
closed. Using this axiom, Thron [2] proved the theorem that, in our terminology,
the subfamily of T,-spaces in a representation family of a %-lattice contains at
most one element. This result is easily obtained from our discussion once the
following theorem has been established.

THEOREM 4.3. A space (X,%) is a Ty-space iff it is a Ty~space and all point
closures in the space are necessary closures.

Proof. Suppose (X,%) is a Tp-space. For any x there cannot exist a y # x
having the same closure as x. For if ye[x] y# x then ye[x]" =[x]~[x].
The set [x]’ is closed and [x]’ # [x], hence [v] # [x] and the space is a T,-space.
Since for every C = [x] we have x ¢ C it follows that C < [x]’. Thus since [x]’
itself is closed [x]' = \/[C:Ce%,C < [x]] and hence [x] is strongly irreducible,
or what amounts to the same [x] is a necessary closure in .

If (X,%)is a To-space and if the only point closures are necessary closures
then for every [x] the set D= \/[C:Ce%¥,C c[x]] =[x]. Now for every

y#x and ye[x], [y] = [x] since the space is a Toy-space. Hence every
ye[x]~[x]isin D and D = [x]".

It is then clear that the only Tp,-spaces in a representation family are the ones
for which the base of point closures corresponds to a base of necessary closures
in T, Of these however there is at most one. The question now arises as to whether
Thron’s theorem could be improved, in the sense that, for some conditions on
a topological space strictly weaker than Tj, the subset of a representation family
meeting that condition has cardinality at most one. This can be done artificially
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for example by defining a new requirement which is either Tp, or, if the #-lattice of
the space has no Tp-respresentation, is Ty, plus the condition that all permissible
closures be point closures in the space. There does not appear to be a ‘‘natural’
generalization of the theorem.

A related question is whether a %-lattice having a topological representation
satisfying some well-known topological requirement, has only one member in its
representation family. A sufficient condition for this is given below (compare also
Thron [2, Theorem 2.3]).

THEOREM 4.4. Let (I', =) be a %-lattice which has a T,-representation space
(X,€). Then m(I') = 1.

Proof. An equivalent condition for a space to be a T,-space is that given x # y
there exist C; and C, in % such that xeC,, x¢C,, yeC,, y¢C,, and
C, U C, = X. Suppose there exists an occasional closure ¢* in I'. Then C*
cannot be a point closure in % since in a T,-space every point closure is an atom
and so is a necessary closure. Therefore there exist at least two distinct points
X,y in C*. There then exist sets C, and C, having the properties enumerated in
the beginning of this proof. We then have C* = (C, N C*) U (C, N C*). However
y¢C,NC* and x¢ C, N C* so that C; N C* = C* and C, N C* = C*, which
contradicts the assumption that C* is an occasional closure, that is an irreducible
element, in €. Note that the theorem does not hold if T, is weakened to T;.

We conclude this section with a result which relates the automorphisms of ¢
to the autohomeomorphisms of (X, %).

THEOREM 4.5. Let (X, %) be a Ty-space. Then exactly those automorphisms of
% can be extended to autohomeomorphisms on (X,%) which leave the family
of point closures of € invariant.

Proof. The term ‘‘extended’’ is used in the sense that the automorphism is
induced by the homeomorphism. This result then follows easily from Lemma 2.2.

5. Partial orders on representation families. Here we introduce various order
relations on a representation family, which allow us to discuss among other things
whether a representation class has maximal and minimal elements. As a repre-
sentation family has a certain structural resemblance to the (sufficiently restricted)
family of extensions of a given topological space, so does the order introduced
here have a relation to the order commonly used on extensions (or at least com-
pactifications) of a given space. This is brought out in Theorem 5.1. Noteworthy
also is the fact (see Theorem 5.2) that a greater space is an extension of the lesser
space.

In the sequel it will be convenient to denote the set of point closures of a to-
pological space (X, %) by 2(%).
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We shall say that (X,%) = (X’,%’) for two members of a representation family
Fof a @-lattice (I', =) iff there exists an isomorphism f from €’ onto € such
that f(2(%’)) = 2(%). Since this is only a quasi-ordering we also introduce two
other orderings on &% which turn out to be partial orders. We define
X, %) =*(X",%") iff (X,%)=(X',€¢’) and (X',%’) 2 (X,¥). Lastly, we define
=** as follows: (X,%) =2**(X',€¢’) iff for every isomorphism f from €’ onto €
f(D(E")) « D(¥). 1t is then clear that the following inclusion relation holds:
2o ¥’ o2 %%, Here we mean by ‘="’ the class of all ordered pairs in
F x & for which the first element is = the second, and analogously for the other
symbols.

To analyze the relation =** further let us denote by A(%) the inverse image
of Z(%) under the isomorphism from I" to €. Then (X,%)=** (X’,%’) iff under
every automorphism of I" the set A(4’) gets mapped into A(%). Since the identity
mapping is an automorphism this means A(%’) < A(%). It is not difficult to verify
that =,>%*, and =** are reflexive and transitive and that =* and >=** are
also antisymmetric. The relation = is not in general antisymmetric as the fol-
lowing example shows.

ExaMmPpLE 5.1. Let (I', =) be the lattice consisting of — o0, + oo, all integers,
and all rational numbers of the form n + (2™ — 1)/27, n an integer and m a positive
integer, and let the ordering be the natural ordering. This is a #-lattice. All non-
integral rational numbers are necessary closures and all integers and + oo are
occasional closures. Therefore any set that contains the set of all necessary closures
¥, and any arbitrary subset of the set of occasional closures is a base of permissible
closures for I'. All automorphisms of I" are of the form f,, where f,( + )= + oo,
Ji(x) = x + k otherwise. Here k can be an arbitrary integer. Now consider the two
bases

A =y [0 and all negative integers not equal to — (1 + 3n),n = 0],

A* = U [0 and all negative integers not equal to — (2 + 3n), n = 0];
then f_;(A) = A* and f_,(A¥) c A. Let € and %* be the representations over A
and A*, respectively, of I' (see §2). Then we have (A,%¥) = (A*,€*) and
(A*,6*)=(A, %) and A not RA* since no automorphism of I' can map A onto A¥,
hence (A, %) # (A*,€*).

It might be of interest to try to characterize those #-lattices I" for which = is a
partial order.

We next note that the three order relations introduced here are such that if
Z and 9 are two representation families of a %-lattice (I, =) and if h is the
mapping from & onto ¢ which associates with every space in & the space in ¥
which is homeomorphic to it, then k is an order isomorphism with respect to all
the orders considered here.

Recall that the pair (f,(Y,%)) is an extension of a space (X,7) iff f provides
a homeomorphism from (X, ") onto a subspace (S, U) of (Y, %), and if in addition
S is dense in (Y, %). Given two extensions of a space (X,7) one defines (f, (Y, %))
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= (g,(Z, 7)) iff there exists a continuous function h from (Y, %) onto (Z,#”) such
that h =gof ~'on f(X). For the ordering = of representation families we have
the following result.

THEOREM 5.1. The relation (X,€) = (X',%€’) holds between two members of
a representation family iff there exists a closed continuous mapping h
from (X, %) onto (X',€’) which has the additional property that for every
Ce%h(C) = f(C), where f is an isomorphism from C onto C'.

Proof. If (X,%) = (X',€’) there exists an isomorphism f from € to €’ such
that f~(2(€’)) « 2(¥). For every x such that m ef Y D(€")) define h(x)
so that f([x]) = [[A(x)]™]. For the remaining x the set f([x]) = C’ is not a point
closure. In this case we let h(x) be some element in C’. The function h so defined
is a mapping from X onto X'. Moreover, h(C) = f(C) and

h1(C) = [x:f([x]) = 1= UIIx]:[x] = “HCH] =f""(C),

so that h is continuous. The function h is closed since h(C) = f(C).

Assume h and f are given so that for every Ce €, h(C) = f(C). Let y be an
arbitrary element in X’ and set C* = h"([—,ﬁ) then C* € € since h is continuous.
Now suppose C* is not a point closure in %; then C*= | J [[x]:[x] = C*] and

1 =U{@D:[x] = ¢*1 =LA xD: [x] = C*1.

It follows that yef([x]) = [y], but then [y] =[y] which is a contradiction.
Hence C* = [x]. Note that in this argument we used the existence of the function
h to conclude that ET:U [f([x]]. Using only f the best we could have conclu-
ded would have been m =V[f (m)]. Now let C’ be an arbitrary set in
%’; then h~!(C") is closed and hence

C' =hh™(C) =f(h1(C)).

Applying ! to both sides of this equation we obtain f ~*(C’) = h~(C’). Thus,
finally, h"*([y])=[x]= f~*([¥]. Hence f " {(D(€")) = 2(¥) and (X,6)=(X",€").

We thus see that ordering on representation families is quite closely related
to ordering on extensions. However the ordering on representation families is
stronger since in this case h is not only continuous but also closed. It is this ad-
ditional property which enables us to prove the following result for representation
families (there is no corresponding result for extensions).

THEOREM 5.2. Let (X, %) and (X',€’) be in the same representation family
and let (X,%)=(X',%’'). Then there exists a homeomorphism from (X',%€’)
onto a dense subspace of (X,%).

Proof. Let f be an isomorphism from % to %’ which is such that
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f N @(¥")) = 2(¥) and let D be the set of all x€ X such that f([x]) = [y]. The
function h of the preceding theorem restricted to D is 1-1. Hence, since it is
a closed and continuous mapping it is a homeomorphism. Now let C € € be such
that C2D. Then C2 \/[f~'([y]):ye X']. It follows that f(C) 2 \/[[y]:ye X'].
The sets m form a base of €”, hence \/ [Ev_]__] = X' and f(C) = X'. Thus, finally,
C=f"YX’)= X and it follows that D = X.

The conclusion of the theorem remains valid if > is replaced by =* or >**
in the assumption. This is so because = * implies = and =** implies =>.

As far as the existence of greatest and least elements is concerned represen-
tation families again exhibit a better behavior than families of extensions.
We have:

THEOREM 5.3. Let & be any representation family of a €-lattice (T, >). That
member (X*,6%) of &, for which the image of the set of all point closures is the set
of all permissible closures of T', is the greatest member of & with respect to
=, =*and =**.

= =

Proof. The result is an immediate consequence of the definitions of the various
order relations.

THEOREM 5.4. (1) If a €-lattice (I, =) has a base of necessary closures,
then every representation family & of I' has a least member under =, 2*, and
=>**_ This is the space in & which has the property that the image of 2(%) is the
set of all necessary closures of I'. (2) A €-lattice has a base of necessary closures
if a representation family has a least element under =**.

Proof. Part (1) follows from the fact that the set of necessary closures gets
mapped onto itself by all automorphisms of I'. To prove part (2) assume that the
lattice I" has a least representation space (X*, %) under =**, in a representation
family. Assume further that the set 2(%*) contain an occasional closure C. Then C
can be omitted from the base 2(%*) and the remaining point closures form a base
9’ of €*, by Lemma 3.2. But then the identity mapping on €* fails to take 2
into 2’ contradicting the assumption that (X*,&*) is least under =**, Therefore
the point closures of ¥* must all be necessary closures and €* and I thus have
bases consisting only of necessary closures.

That part (2) of Theorem 5.3 is not valid for = * or = is seen by the following
example.

ExampLE 5.2. The interval [0,1] is a @-lattice under its natural order, and
the nonzero rationals are a base. But any base of [0,1] must be a dense subset
of [0,1] in its usual topology. Now by a result of Cantor every dense subset of
[0,1] has a countable subset which is in 1-1 correspondence with the rationals
under some automorphism of [0,1]. Let (X, %) be a representation space of [0,1]
in which the point closures correspond exactly to the rationals. It follows from
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the above discussion that (X, %) is a least element with respect to =* and a minimal
element with respect to =. On the other hand the interval has no necessary closures
and a fortiori has no base of necessary closures.
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