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1. Let CH(V) be the class of functions with Holder-continuous first derivatives

in a region V of Euclidean n-space R". Let alkeC},(V), i,k=l, —,n, with

aik = aki, such that

(i) 4 £#<««(*)«»<* ££2
Á      i i

in Ffor some constant X > 0 and all reals C¡; here Einstein's summation convention

is adopted. Consider the self-adjoint uniformly elliptic partial differential equation

We shall present a method of finding solutions with given singularities and

given behavior near the boundary of V. Extremal properties of such solutions,

to be called principal solutions, will be established.

A more detailed description of the problem and its significance will be given in

No. 6 below, after the necessary concepts have been introduced.

Our approach is based on the linear operator method previously used for the

Laplacian [6], [7]. The generalization, while parallel, reveals delicate differences.

The existence of the L0-operator, one of our basic tools, for every regular sub-

region is trivial in the case of Riemann surfaces ; in the present general context

it is a deep result established by G. Fichera on pp. 195-202 of [4]. The convergence

of the principal functions of exhausting subregions offered difficulties not overcome

in the present paper, and extremal properties are given for regular subregions only.

For further extensions and applications of our method we refer to [8] and [9].

In a new direction (not containing earlier work) the problem was given an elegant

formulation in [1].

§1. Preliminaries.

2. We shall call a subregion Q. of V<= R" Holder-bordered if
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(a) dQ is compact in V,

(b) every xedQ has a neighborhood Nx and a homeomorphism h of Nx with

the unit ball Bel?" such that h(Nxr, dQ) is the intersection of B with a coordinate

plane P, h(Nx n Q) is one of the half-balls constituting B \ P, and /i_1 is in C¡\(B).

A Holder-bordered region shall be called Holder-regular, or simply regular, if

(c) Q is compact in V,

(d) each component of V — Q is noncompact in V.

3. At a point x of the boundary <3i2 of a Holder-bordered region we denote by

djdn the normal derivative in the Euclidean metric, directed toward the exterior

of Q unless specified otherwise. We set

(3) a= ÍI yL aikcosixk,n)\

and define the conormal derivative d ¡dv by

(4) a -^r = fli4cos(xjt,n) —.

We shall call J"an a(<3u / dv) dS the flux of u across the border of a Holder-bordered

Q, u being in C¿ in an open set containing dQ.

Solutions of (2) in C¿ will be referred to simply as "solutions". By a "solution

in a set E" will be meant the restriction to £ of a solution in an open set containing

£. For a regular Q and solutions u, v in Q the Green's formula reads [5]

where dS is the surface element of dQ. As a consequence, the mean value property,

the Harnack inequality, and the maximum principle are valid [3J.

The norm over Fis defined as M(u) = M(w,w), where

(6) Miu,v)=laik^£-dV.

The triangle inequality

(7) M1/2(u + v)z% M1/2iu) + M1/2iv)

is proved in the usual manner.

4. Let V0 be a compact set in Fc R". We consider a family {«} of solutions

in V with sgn u | V0 î* const.

Lemma.   There exists a positive constant q <l, independent of u, such that

(8) max  \u\ = q sup lui.
v0 v
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Proof. The lemma is trivial if supF| u | = 0 or co. In other cases we normalize

by supF| m | = 1. Suppose there did not exist any constant q < 1 with maxFo| u | ^ q.

Then there would exist a sequence {u„} with maxKo|w„| -+ 1. The points {z„} in V0

where the maxima are taken have a subsequence, again denoted by {z„}, tending

to z0 e V0, say. The coefficients aik being continuous in the compact set V0, the set

{«„} of uniformly bounded solutions is compact [2, p. 344]. A subsequence tends

to a solution «0 with | u0(z0) 1 = 1» sgn u01 V0 # const. This violates the maximum

principle.

§2. The problem.

5. Let Vy be the complement in V of the closure of a regular region, and let F

be the family of solutions / on oty = 8Vy.

Definition. Lis a normal operator if for feF the function Lfis a solution

in Vy with the following properties:

(9) Lf \ay = /,

(10) L(Cyfy  +  C2f2)    =     CyLfy  + C2Lf2,

(11) min/^ Lf ̂  max f,

(12) jyjids=o.

The existence of operators L will be established in §§4-5.

6. Let s be a solution in Vy. We shall construct a solution p in Kthat imitates

the behavior of s in Vy. More precisely, for a given s and L we require that

p\ vi — s + L[p — s)- This means that p | Vy deviates from s by a bounded solution,

and we shall give explicit bounds for the deviation. Moreover, p — s enjoys

boundary properties determined by the choice of L.

Vy need not be connected. For instance, given a region V* c R" and points

z¡eV*, i = l,—, m, we may choose Kas F*\U(zJ. Given disjoint neighborhoods

JV, of the Zj, Vy can be taken as the union of the punctured neighborhoods

Vu = N¡\z, and of a neighborhood  Vlß = V* of the ideal boundary ß of V*

vtithVyßn{\JVu}=0-
In Vyt, s may have a singularity at z„ and L may be the operator giving the solu-

tion of the Dirichlet problem in Nt. In Vlß, s can have an arbitrary growth when

approaching ß, and Lean be given separately in each component of Vlß. Thus we

are dealing with the problem of constructing solutions with given singularities

and prescribed boundary behavior.

The problem is given further interest by the fact that certain operators L give

significant extremum properties to the corresponding p. We shall call p the

principal solution for given s, L.
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7. Once s and L have been prescribed, the principal solution is unique up to

an additive constant. Indeed, for two such functions p', p" we have

max (p' — p") = max (p' — p")
r-r, »,

by the maximum principle, and

max (p' — p") = max (p' — p")

by (11). Consequently maxv(p' — p") is taken on a1; and p' — p" must reduce

to a constant.

Without loss of generality we assume that s | at =0, for otherwise we can

replace s by s — Ls.

The function p is constant if and only if s =0. Sufficiency is seen from p = Lp

and the maximum principle.  Necessity is obvious.

For the existence of p it is necessary that the flux of s vanish,

f      ds
(13) J^a — dS = 0.

This follows directly from \aia(dpldv) dS = 0 and (12). The essence of the

following main existence theorem is that (13) is also sufficient.

§3. Main existence theorem.

8. Let F be a region in R", and Vy the complement in F of a regular subregion

of F, with border ay. Let L be a normal operator (9)—(12) for Vy, and s with s | a.y =0

a solution in P, of the elliptic equation (2) whose coefficients satisfy the conditions

stated in No. 1. We shall write Lp for L(p\oiy).

Theorem. The vanishing of the flux (13) of s is necessary and sufficient for

the existence of a principal solution p on V of (2), characterized by

(14) p\Vy=s + Lp.

The function is unique up to an additive constant and it reduces to a constant

if and only if s =0.

Proof. Let F0 be a regular subregion of F with border a0 = dV0 <= Vy, a, cz F0.

Let L' be the operator that for functions on a0 gives solutions of the Dirichlet

problem in V0. It suffices to find p | a0, for then

(15) p|F0 = L'p,       p\Vy = s + Lp,

where again Lp stands or L(p| a0). We set K = LL' and seek p\ oc0 with
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(16)

on a0.

9. We shall show that

(17)

NORMAL OPERATORS

p = S + Kp

229

p = S K-s

converges uniformly on a0. Then K can be applied term by term, for

KT K"s- I Kns
o i

K I   K"s < I   KS

which tends to 0 as m -» oo . Consequently Kp = ¿Z'y K"s = p — s as desired.

Let meC1 in F0n^i satisfying (2) in  F0 O Ft with co|a0 = 0, oj\ax = 1.

For a solution a in F0 n Fx with Jao a(8a¡ 8v) dS = 0 we have by (5)

(18) aa^r-dS =     i
Jao dv L,

8(0   JC
era -r— aS.

dv

This holds, in particular, for a = s, L'(b, L\j/, K<b, where (b, \b axe restrictions to

a0, ax of solutions in open sets containing a0, ocx, respectively.

We claim that

(19) f  Knsa
8œ

~8v~
dS = 0

for n ^ 0. By assumption this is true for n = 0. Suppose it holds for n = i. Then

by (18) the integral vanishes over a0 as well:

/*) m

LK'sa 4^ dS = 0.
dv

Again a0 can be replaced by ax, and subsequently L' by LL' = K. The statement

follows.

From cos(/i,v) > 0 [5] and the maximum principle we have 8coj8v> 0. This

together with a >0 gives sgn K"s\ax # const. Lemma 4 applies:

\Ks\ \a0 ^ amax|s|,       |^"s| |ao = i"max|s|,
do cro

whence the uniform convergence of (17). On setting

(20) m = min s,       M = max s,
«o «o

one can also easily see (cf. [7]) that

(21) qnmSK"s\a0^qnM.
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10. We have actually proved more than Theorem 8 states :

Theorem.   The principal solution is given by the Neumann series p\a0 —

TJrj° K"s and satisfies the inequalities

(22) T^^o =
1-q *  "   U=  i-q'

(23) -.- = p-s\VyZ%
i-q -  r     "'^-l-fl-

Indeed, (21) gives these bounds for p | a0, and by the maximum principle they

hold for p | F0, hence for p | «t, p — s| «,., and p — s | Vy.

§4. Normal operators for regular regions.

11. In this section Vy stands for a regular region in R" with disconnected border

partitioned into disjoint sets ax and ß of components. Let/be the restriction to aty

of a solution in an open set containing at. Denote by £( Vy) the family of solutions

in Vy and set

(24) U = {u\ueEiVy),u\<Xy=f}.

In this class we single out the functions u0 and Uy determined by the conditions

(25) d£\ß = 0,

(26) Uy\ß = c(const.), a-p- dS = 0.

The existence of u0 has been demonstrated by G. Fichera [4, pp. 195-202]. The

flux of Uy can be taken across ß, where it is negative for c = min/, positive for

c = max /, and increases monotonically with c. This ensures the existence of thé

constant c with property (26).

The functions u0and w, are uniquely determined and are related to/by linear

operators :

(27) U0  = L0f, Uy   = Lyfi

It is readily seen that L0, L. are normal in the sense of No. 5.

12. For XeR set

(28) ux = il-X)u0 + luy = LJ,

where the operator Lx is again normal. We shall derive an extremal property of ux

in the class

du
(29) U0 = \u wet/,      a

Jai
dS = 0

dv
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This property will serve to establish the existence of normal operators for arbitrary

Holder-bordered regions Vy.

For u,veU0 set

(30)
/* rl (* ^

A(u,v) =       ua -=- dS,      B(u,v) =      ua-^—dS,
Ja, OV Jfi ÖV

where 8¡8v is taken toward the interior of Vy on ¡Xy, exterior to it on ß. Write

(31) A(u) = A(u,u),       B(u) = B(u, u),

and let M(u) = M(u,u) stand for the norm (6) over Vy.

Lemma. On a regular Vy c R", the function u0 minimizes M(u), and ut

minimizes A(u) + B(u),  in   U0.

We shall prove, more generally, that

(32) B(u) + (2X - l)A(u) = X2A(uy) - (1 - X)2A(u0) + M(u - ux).

Thus ux minimizes the functional on the left and the minimum is given by the

first two terms on the right. We also have an explicit expression for the deviation

from this minimum: M(u — ux).

Proof. Clearly A(u - uk) = B(u,u0) = B(ux,u) = 0 for ue U0. In the decom-

position

M(u - uk) = B(u) + B(ux) - B(u, ux) - B(ux, u)

we rewrite the last three terms:

B(ux) = X(l-X)B(u0,ux)

=    X(l   - X)(B(Uo,Uy)-B(Uy,U0))

= 1(1 - X) (A(uy) - A(u0)),

B(u,ux) = X(B(u,Uy) - B(uy,u))

= X(A(uy) - A(u)),

B(ux, u)= (1 - X) (B(u0, u) - B(u, u0))

= (1 - X) (A(u) - A(u0)).

Here the transfers from ß to Uy are justified by Green's formula. The lemma follows.

§5. Operators for noncompact regions.

13. Now let Vy be an arbitrary Holder-bordered region in R" with border

cty = 8Vy and let D. c Vy be a regular subregion with border 8Q. = ax u ßa, ßacz Vy.

Denote by uax the function ux of No. 12 constructed for Í2. The family {uax} of

uniformly bounded functions is normal (cf. No. 4): for every nested exhausting
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sequence of the fi's there is a subsequence {Q„} such that the corresponding

functions u„ = uñnX converge to a limiting solution ux in Vy. The convergence is

uniform on compact subsets of Vy, and hence on those of Vy, and ux belongs

to the class UQ defined by (24), (29) for the noncompact Vy.

We set

(33) Baiu,v) =        ua~^~ dS,
Jpa       ov

(34) Biu) =   lim   BQiu),
n-*v¡

where Bn'u) stands for Bn(u,u); we consider functions u with a finite Biu). For

BqJju) we write Bn(u) and set

(35) F„(u) = B„iu) + (21 - T)Aiu).

Lemma.   Every limiting function ux = limn^X)un minimizes the functional

(36) F(u) = Biu) + (2A - 1) Aiu)

in U0 and the value of the minimum is

(37) Fiuf) - lim  Fn(Wn).
B-»0O

Proof.   We have

Fiuf) =  lim  FJuf) =  lim   lim  FJun).
m-»co m-»oo   n-»oo

Moreover, Fmiu„) _ F„(u„) for m S n, and consequently

Fiuf) ^ lim inf Fn(u„).
B-»00

On the other hand

Fn(tO^£„(u)^F(u)

and

lim sup F„iu„) z% inf £(«) ^ £(wA).
n-»oo Vo

We conclude that

(38) min Fiu) = F(ma) = lim  £„(«„).
I/o n-»oo

14. The norm of u e U0 over Vy is

Miu) = Biu) - Aiu).

Theorem. On an arbitrary Holder-bordered Vy c R1' there are unique

functions w0 and ut that minimize in U0 the functionals Miu) and Aiu) + Biu),

respectively.
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We shall again derive the more general result

(39) B(u) + (2X - 1) A(u) = X2A(uy) - (1 - X)2A(u0) + M(u - ux).

Proof. For any limiting function ux = lim u„ and for ueU0 set h = u — ux.

Then for eeR,

(40) Fn(ux + eh) = Fn(ux) + e2Mn(h) + e/„,

where

/„ = Bn(ux, h) + Bn(h, ux) + (21 - 1) A(ux, h).

If M(h) < oo , the first three terms in (40) have limits as n -* oo and a fortiori /„

tends to a limit /:

F(ux + eh) = F(ux) + e2M(h) + si.

By the minimum property of ux, dF ¡dz = 0 for e = 0 and we infer that / = 0.

For e = 1 this gives

F(u) = F(ux) + M(u - ux),

which by (37) is the desired deviation formula (39).

That two minimizing functions are identical follows from

M(u' - u") = F(u') - F(u") = 0.

The uniqueness enables us to introduce the operators L0, Ly for the arbitrary

Holder-bordered Vy : ux = Lxf. Due to the uniform convergence of u„, the oper-

ators are normal.

§6. Extremal properties of principal solutions.

15. In this section Vcz R" is a regular region with border ß,(Aik) signifies the

adjoint matrix of (aik), and A is its determinant. Designate by

(41) d(x, y) = [Aik(y) (x( - y,) (xk - yk)y12

the "elliptic distance" between x.yek'and set

(d(x,y))2-"
(42) a(x,y) =

(n - 2)coJ A(y) '

where u>„ is the area of the unit n-sphere. (In the case n = 2, (42) is replaced by

the corresponding logarithmic singularity.)

Let Ca, Cbcz V be balls with disjoint closures, centered at a, b. The Green's

functions of (2) in Ca, Cb with singularities at a, b can be written (up to sign)

(43) s(x, a) == a(x, a) + h(x),

(44) s(x, b) =   - a(x, b) + k(x),
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where for some k> 0 and all i,j = 1, —,» the function h(x) has the properties

(45) h(x) = 0(rK + 2-"),    J^L = 0(rK + 1-"),    |^- = 0(rK"")
ox, 8x¡8xk

in terms of the Euclidean distance r = \x — a\, and k(x) satisfies analogous

conditions near b. By definition, s(x,a) \8Ca = s(x,b)\ 8Cb= 0. The flux of s(x,a)

across 8Ca is —1 and that of s(x,b) across 8Cb is 1.

16. For given X, peR let P„+A be the class of solutions in V — a—b with

singularities

(46) p | Ca = (X + p)s(x, a) + e(x),

(47) p\Cb =   -(X + p)s(x,b)+f(x),

where e and / are solutions of (2) in Ca and Cb respectively, f(b) = 0. The flux

of p across 8Ca is — (1 + p) and that across 8Cb is 1 + p. Let p¡ e Py be the prin-

cipal solution determined by L¡ (i = 0,1) and set

(48) p„A = pp0 + XpxePp+x,

(49) B(p)  = j pa-^-dS.

Denote by  h¡ the function  h  corresponding to p¡.

Theorem.    The functions p0 and px  minimize the functionals B(p)—e(a)

and B(p) + e(a), respectively, in Px.

More generally, pßX has in Ptl+X the minimum property

(50) B(p) + (1 - p)e(a) = X2hx(a) - p2h0(a) + M(p - ppX).

Proof. We again start with M(p - ppX) = B(p) + B(pflX) - B(p, ppX) - B(ppX, p).

In analogy with (30) let Aa,Ab stand for integrals taken over 8Ca anddC6. Then

B(pllX) is the sum of

pX[Aa(s + h0,s + hx) - Aa(s + hx,s + /i0)]

and a similar expression in terms of Ab. Since s 18Ca= 0, and by Green's formula

Aa(h0,hy) — Aa(hy,ho) = 0, the only nonvanishing terms are the mean values

Aa(ni,s)= -h¡(a) (e.g. Miranda [5, formulas (6.5), (7.5), and (9.3)]). By virtue of

the normalization k(b) = 0 the contribution of the ^¡,-terms vanishes and we obtain

B(pßX) = pX(hy(a) - h0(a)).

Similarly

B(P,P»x) = X[(p + X)hy(a)-e(ay],

B(Ptix,P) = P\e(a) - (p + X)h0(a)~\,
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and the theorem follows.

17. If p + X = 0 the competing class P0 consists of regular solutions u in V

with uib) = 0.

Corollary. The difference p0 —py minimizes in P0 the functional Miu)

— 2u(a). The value of the minimum is hy(a) — h0(a) and the deviation from the

minimum is M(u — p0 + p.).

Using the special case u = 0 one obtains an explicit expression for the norm of

Po-Pi-

(51) Mipo - Py) = Kid) - hyia).

18. For solutions with finite norm we obtain a bound for «(a):

Corollary.    The inequality

(52) (u(a))2iM(u)(h0(a)-hy(a))

holds for all regular solutions ueP0.

Proof.    Replace u by eu, c = const., to obtain

c2M(u) - 2cu(a) = hy(a) - h0(a) + M(cu — p0 + Py).

Since the last term is nonnegative the desired result follows on substituting

c = u(a)l M(u).
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