
THE MARTIN BOUNDARY FOR RANDOM WALK

BY

P. NEY(i),(2) AND F. SPITZER^)

1. Introduction. We shall give a concrete realization of the Martin boundary

for a very special class of Markov processes (random walks in the terminology

of [8]). Of course, we obtain the same boundary as that constructed by Doob [2]

and Hunt [6] for arbitrary transient Markov chains with discrete time and

countable state space. Their boundary is obtained by completing the state space

with respect to a metric which depends on the asymptotic behavior of the relativized

Green's function of the Markov process in question. Here, too, themain theorem

will concern the manner in which the relativized Green's function behaves as

a point of the state space "tends to the boundary"—however, we shall be able

to provide a geometric interpretation of the boundary and of the process of

convergence to this boundary. For one-dimensional random walk ourconstruction

was given by Doob, Snell, and Williamson [3]; there the boundary reduces to at

most two points (the end points of a convex set, i.e., an interval determined by

the transition function). The convex set replacing the interval in [3] when the

dimension is d > 1 has been carefully studied by Hennequin [5], and therefore,

we face only one major difficulty — that of generalizing the so-called renewal

theorem, which determines the asymptotic behavior of the Green's function,

from dimension d = 1 to d > 1.

The boundary construction consists of two parts, the first of which is quite

trivial, being independent of the random process. Let R denote the space of

lattice points x = (x\x2,---,xd) with integer-valued coordinates. The distance

of x from the origin is denoted by | x |. The mapping

maps R on a countable subset S of the ¿/-dimensional unit ball, and clearly R and S

are homeomorphic (in the discrete topology). Now we may complete S in the

Euclidean metric to S = S U dS, where dS is the unit sphere in d-space. If now

R is also completed, with respect to the metric
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then the completion R = R U dR is clearly homeomorphic to S, and dR is homeo-

morphic to dS.

The second construction, which will consist in exhibiting still a third homeo-

morphic image of the boundaries dR and dS, depends on the random walk in

question. The random walk is the Markov chain with state space R, uniquely

determined by a given transition function P satisfying the conditions

0^P(x,y) = P(0,y-x), x,yeR,

(U) Z  P(0,x)=  1.
xeR

The iterates of P are defined by

-fo(x> y)   = 1 if x — y,     0 otherwise,

Pn+l(x,y)  =   Z P„(x,t)P(t,y),     n^O.
1ER

We shall also assume that for each xeR

(1.2) P„(0,x)>0   for some n,

which may depend on x; further, that the mean vector ¡jl exists and does not vanish,

i.e.,

(1.3) Z \x\P{Q,x)< oo,       p=  ZxP(0,jc)^0.
xeR ieR

Finally, we define a real-valued function <¡> on d-dimensional Euclidean space by

<K") =   Z P(0,x)ex'ug,oo.
xeR

Let

D=  [u| <j>(u) Í  1],

3D =  [u | </>(«) =  1].

£) is clearly nonempty, because 3D contains the origin, but we shall assume more;

namely, that

(1.4) every point of dD has a neighborhood in which $ is finite.

Hennequin [5] has proved the following under assumptions (1.1) through (1.4)

(actually he assumes that P(0,x) = 0 except at finitely many points of R, which

implies (1.4), but (1.4) suffices for his proof):

Lemma 1.1. The set D is compact and convex, the gradient

gradtf>(u)= Sxe"'xP(0,x)
xeR

exists everywhere on D and does not vanish on its boundary 3D. Furthermore,

the mapping
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grad (f>(u)

|grad(K«)|

determines a homeomorphism between 3D and 8S.

To describe the main theorem let

CO

G(x,y)= Z Pn(x,y),       x,yeR,
n=0

which converges since our random walk is transient in view of condition (1.3).

Note also that G is strictly positive in view of (1.2), so that the relativized Green's

function G(x, y)/G(0, y) is well defined.

Theorem 1.2. Suppose that (1.1) through (1.4) are satisfied. For an arbitrary

xeR, define f:R-* real numbers by

"* - w$ » '•"•
/Of) = ¿™'*   for    nedR,

where a is the homeomorphism a: 8R^8D constructed in two steps by the

mappings dR<-*dS and 6S*-+dD described above. Then the function f is con-

tinuous on R.

Since continuity of / restricted to dR is obvious, the theorem is equivalent to

its more intuitive

Corollary 1.3. Let p be a point in dS, and u be the unique solution in dD of

grad#(u)
P =

grad (¡>(u) I

Let xn denote any sequence in R such that | x„ | -» oo and xj\ xn | -> p. Then for

any x in R

i.„ G(x,xn)

Remarks, (a) It is well known [3] that the exponentials exp(« ■ x), ueôD,

are the extreme points of the cone of non-negative regular functions, i.e., solutions

of the equation

2 P(x,j>)/O0 =/(*), xeR.

Furthermore, every non-negative P-regular function / has a unique (Poisson)

representation
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f(x) =  f   eu-xdp.(u),
JdD

where p. is a positive Radon measure on 3D. The potential theoretical proof of

this and related facts, which is contained in the general theory of Hunt [6], can be

rendered almost elementary by use of the above theorem. In particular, it follows

from the law of large numbers applied to the random walk xn that

lim  ^ = /(, lim  A--An
„-co    » n-oo     |*„| M

with probability one. Since

fi = grad 0(0),

we obtain from Corollary 1.3, with u = 0, that

iim^4=i

with probability one.

(b) In the case when the random walk has mean ¡j. = 0, i.e., when (1.3) does

not hold, it is well known (see for instance Hennequin [5]) that the set D reduces

to a single point (the origin), and that all non-negative regular functions are

constants. The natural compactification of R is then the one-point compacti-

fication, and one would expect that

(1.5) Hm-f^-1,       yeR.
1*1-«, G{0,y)

The weakest conditions under which (1.5) holds are not known. However, an

asymptotic estimate for G(0,x) (similar to estimates we shall need to prove

Theorem 1.2, but far easier) obtained in [8, P 26.1 and Problem 5, Chapter VI]

shows that (1.5) holds under the conditions (1.1), (1.2),

(1.6) n=  Z xP(0,x) = 0,
xeR

(1.7) Z |x|2P(0,x)<co,
xeR

and finally

(1.8) lim |x|d~2Pn(0,x) = 0       forn^l.
|x|-oo

The last condition is superfluous when the dimension d = 3 or 4.

2. Proof of Theorem 1.2. For each unit vector pedS let u denote the unique

solution in 3D of
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grad </>(»)

| grad (¡)(u) | '

We now introduce the transition function

P\x,y) = P(x,y)eu^-x\       x,yeR,

and observe that it again satisfies conditions (1.1) through (1.4) under which we

wish to prove the theorem. The mean vector of P" is

p" = I xP"(0,x) = gradan),
xeR

so that it is a positive multiple of p. The Green's function of P" is

CO

G"(x,y) =  I P»n(x,y) = G(x,yy^-x).
„ = o

Since our estimates of the asymptotic behavior of these Green's functions will

require delicate central limit theorems, we need to introduce the second moment

quadratic forms: for vectors 0 in ¿/-dimensional Euclidean space we shall write

ß"[0] = (0 • Q"9) = I |(x - p.") • 0|2P(O,x).
xeR

These quadratic forms are positive definite by conditions (1.2) and (1.4) (see

Lemma 2.4). Their inverses will be denoted £", and the corresponding deter-

minants \Q,u\ and |E"| = | g" |-1. Finally, for vectors 0 in ¿-dimensional

Euclidean space, <0> will denote the nearest lattice point in R.

The proof, in outline, will proceed as follows. First we require a local central

limit theorem.

Theorem 2.1. Suppose P(x,y) satisfies conditions (1.1) through (1.4) in §1,

and that in addition P„(0,0) > Ofor all sufficiently large n. Let

An(x,y,u) = (h^)7[(2^)d/2p;(0,x)-|eu|-1/2exp(-¿2"[-x-n/])" .

Then

lim A„(x, y, u) = 0
n — co

uniformly for xeR,  0 ^ y ^ 2d,  ueSD.

This result will be shown to imply

Theorem 2.2. Under conditions (1.1) through (1.4)

lim (27rí)(d-1)/2Gu(x,<í^>) = [\Q"\(pu ■ E V)]"1'2
?-*oo

for each xeR, uniformly for u e 3D.
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The uniformity in Theorem 2.1 is required to obtain uniformity in Theorem 2.2,

which in turn is needed to complete the proof of Theorem 1.2, or rather its

corollary, as follows: suppose that x„ e R, and

■Ht = p„-*pe8s,

and define u„ e 3D by

=    grad<K»„)

| grad 0001

Then

G(x,x„) = G"Xx,xn)exp[ - un • (x„ - x)].

Also

Gu»(x,x„) = G""(x,<tnfi->}),

where

t -    N
|grad0OO| '

As n -* co, we have i„ -* co, u„ -* u, and by simple continuity arguments

p""^p",   QU"^QU,   |Eui^|E"|,    | grad ¿OOH grad 0(u)|.

Therefore

,im  -p&7T = limexp[un-x] = e—,
n—co    "ku>*B/ n— co

which proves Corollary 1.3 and hence Theorem 1.2.

Proceeding to the proof of Theorem 2.1 we shall first consider only its special

case when the vector ue8D is the zero vector. The modifications necessary to

yield uniformity in u e 3D will be supplied subsequently. Thus we shall prove

Theorem 2.3. Let P be the transition function of a d-dimensional random

walk satisfying (1.1), (1.2) and the conditions that P„(0,0) > 0 for all sufficiently

large n, as well as the moment condition

m2k= Z |x|2*P(0,x)< oo.
xeR

Then the function A„(x,y,u) defined in the statement of Theorem 2.1 has the

property that

lim 4,(x,y,0) = 0
n-»oo
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uniformly for x e R and0^y^2k. (Note that P"=P,pu = p, EU = E, Q" = Q

when u = 0.)

Remark. For the case y = 0 and d = 1 this is the classical local central limit

theorem [4, p. 231]). For y = 2 and p. = 0 it appears in [8], and for y = 2 and

d = 1 it was proved by W. Smith [7]. Cox and Smith [1] used it to prove the

one-dimensional renewal theorem in much the same way that we shall use

Theorem 2.1 to obtain Theorem 2.2.

Proof. Since

min {¿„(x, 0,0); An(x,2k,0)} ^ ,4„(x,y,0) ^ max{A„(x,0,0); A„(x,2k,0)},

it suffices to prove the theorem for y = 0 and y = 2k. In terms of the characteristic

function

0(0) = e'"'e Z P(0,x)eix'e
xeR

we obtain from the Fourier inversion formula

(2TznYl2P„(0, x) = (2n)-"/2  f    i¡/(w¡ ,/n) exp [ - iw • (x - np)¡ V n] dw,
JjnC

where C is the cube {w| w = (wu ■••,wd), | w¡| ^ tc for i = !,■■■,d], ^nC its

magnification by ^n, and dw Lebesgue measure in Euclidean d space E. We

now take A<co,Q<ot<n and write

(27in)d/2P„(0,x) = I0(n) + I¿n,A) + I2(n,A) + I3(n,A,a) + 74(«,a),

where

J0(n) = (27r)-"/2 I exp Í - l-Q [w] ] exp[ - iw ■ (x - n/i)/>] dw,

1^«, A) - (2s)-«2 J     ^ [</>>/Vn) -exp[ - ^ß[w]] j exp[ - iw-(x - nMjtijdw,

I2(n, A) -  - (27c)-"2 f exp [ - í ß [w]l exp [ - ¿w • (x - np)¡>] dw,
J|wi>/i L     z J

/3(n, A, a) = (27t)~',/2 ^ (w/ V«) exp [ - iw • (x - nju)/ V«] dw
•M<|w|£ot,/ii

and

J4(B,a) = (2nyd/2   í \¡j\w¡ V«)exp [ - iw • (x - n/i)/V«] dw.

A direct calculation shows that

/o(n)=|e|"1/2exp[-ls[x-^]].
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This is the main term in the theorem, and it remains to show that the terms Iu I2,

J3, /4 go to zero uniformly in x as n -* co.

First we note that for | w | ^ A we have \¡i"{w¡ ̂Jri) -*■ exp [ — \ ß [w]] uniformly

in w by the classical central limit theorem, and hence

\lx(n,Ä)\ ^ (2nTi'1 f       | <T(w/V") - exp [ - \q\w\
J\w\¿A L Z

Secondly

dw -> 0    as n -> co.

| /2(n, 4) | ̂  (Inf«2 J^   4 exP [ -1 OC»]] dw>

which can be made arbitrarily small by taking A sufficiently large. Next, using

the fact that (1 - W))IQ\ß] ~* i as 101 -* 0 (see P 7.7 of [8]), we see that a can be

chosen sufficiently small so that

|f (w/V»)| Ú exp[- |ß[w]] for | w/Vn | ^ a.

Hence

|/3(n,^,a)|^(27t)-'í/2  f       exp[-j-ß[w]ldw,
J \w\>A L        ̂  J

which can again be made arbitrarily small by taking A sufficiently large.

Finally we note that it follows from P 7.8 of [8] that there is a <5 > 0 such that

|iK0)| <l-«5 when 0e{0:0eC,|0| ^ a}. Hence

| /4(n, a) | ^ nd/2(2n)-d/2 f | ipn (0) I d0 ^ (2nn)d/2(l - of.
J{e:eeC,\e\ia)

This proves the theorem for y = 0.

We turn to the case y = 2k. Many of the points in the argument will be very

similar to the case y = 0. As before we have

{t/r"(0)}exp [ - i0 ■ (x - np.)~j dO.

Now if / is any function on the torus C (i.e., of period 2k) with continuous 2feth

derivatives, then by Green's second identity applied k times

\x\2k ¡f(9)e-ix-e dO = (- If  f /(0)AÎ[e-«»-»]d0

= (-!)*£ *-'•*• "A*JX0)d0,
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where A9 = 2f= i(32\3Q2) is the Laplace operator, and Ag is its kth iterate. Applying

this idea to (2.1), and setting w = 6jn, we get

|x~"^|2t(27r»)d/2P„(0,x) = (- l)k(£)l2n ~kjc™Pl- iO ■ (x - ni*)] ASr>"(0)]d0

(2.2) = {_lfi27Zyä/2 f   exp[-fw(x-n^)/Vn] A*w|»/V«)]dw.
•VnC

At this point in the proof of the case y = 0 we used the fact that ^"(w/^/n)

-» exp [ - iß [w]] uniformly for | w ¡ ^ A. This time we need instead that

(2.3) lim AU»/ V«)] = At exp [ - -Q [w]l uniformly for ¡ w | g A
n—co L        ^ J

This can be shown by expanding the derivative on the left and then taking limits

exactly as in formulas (4) and (5) of the proof of P 7.10 in [8], where the details

appear for the case y = 2. The general case involves no new ideas. Note that the

assumption m2k < co is used at this point.

We now decompose (2.2) as follows. Write

*     ^'   (27rn)d/2P„(0,x) = J0(n) + Jx(n,A) + J2(n,A) + J3(n,A,a) + J4(n,a),
|2*

il

where

J0(n) = ( - l)k(2n)-d/2 £exp[- iwix - nn)ljn]& iexp [- ¿ß|>]]] dw,

J¿n,A) = i-í)ki2n)-d/2j^   ^ *>/,/»)- exp[-^ß[w]j]

• exp [ — iw ■ (x — np)¡ ^/n] dw,

J2(n,A) = ( - \r\2nyd'2^ ^A* [exp [ -¿Ql>]]]

• exp [ — ¡'w • (x — np)l ̂ Jn\ dw,

J3(n,A,u) = i - Í)ki2nyd/2  f A¿[»/,/«)]
J A<\w\<a-Jn

■ exp [ — iw • (x — n¿i)/ ,/n] dw,

J4(n,a) = ( - r/O)-"2 f At[^"(w/Vn)]

• exp [ — iw ■ (x — tíju)/ y/n\ dw.

Direct calculation shows that

J0in) = n -"\ x - np \ 2k\ Q \~1/2 exp Í - i-I [x - n/t]] ,
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and it remains to show that the remainder terms go to zero uniformly in x. We

proceed just as in the case y = 0. First replace each integrand in Ju J2, J3, J4

by its absolute value. This eliminates the dependence on x. Now (2.3) implies

that lim J¡in,A) = 0. Clearly J2in,A) offers no new difficulties and can be made

small by taking A large.

Using P 7.7 of [8] and the fact that tj/iw/^/n) and its first 2/c derivatives are

bounded in absolute value, we can show that there is an a > 0 such that for

|w/Vnl =a

(2.4)

Hence

| Afcw|»/>)] | Ú  constant-|f-2*(w/>)

;£  constant • exp -jöm]-

| J3(n, A,a)\   S (2nYdl2 M f        exp [ -\Q[w]l dw
J\w\>A I        ** J

for some M < co, which can again be made small by taking A large.

Finally we use the first inequality of (2.4) and the previously referred to fact

that | iK0) | < 1 - Ô for 101 ̂  a, 0 e C (where Ô > 0) to yield

|j4(n,a)|  ^ constant ■ nd,2i2nyd/2 f U(0)|""2,D d0

^ constant • i2nn)d/2(i - 5)n'2k.

This completes the proof of Theorem 2.3.

In order to deduce Theorem 2.1 from Theorem 2.3 it suffices to verify that the

error terms /j through /4 and J\ through J4, which were introduced in the proof

of Theorem 2.3, tend to zero uniformly in uedD when P is replaced by P", ß by

Q", \¡jíQ) by \¡i"(0), etc. This is easily verified with the aid of the following sequence

of eight lemmas (2.4 through 2.11). They are all valid under the hypothesis that

the random walk satisfies conditions (1.1) through (1.4) and in addition is strongly

aperiodic, i.e., P„(0,0)>0 for all sufficiently large n. Lemma 2.4 implies the

uniform convergence to zero of Iu Lemma 2.5 of I2, and so forth, until Lemma

2.11 takes care of the last error term J4.

Lemma 2.4. The quadratic forms

Q"[0]= I [(x-/O-0]2P(O,x)
xeR

are uniformly positive definite, i.e., there exist positive constants 0 < lj ^ X2 < co

such that

l,|0|2^ßu[0]^22|0|2, OeE, uedD.
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lim {»/V«)]" = expi-k"[w]
B— CO L ^

uniformly for w in any compact subset of E, and for u e 3D.

Lemma 2.6. One can find an e > 0 and a constant X > 0 sue« i/iaf

|f(w/>)N exp    -^|w|2   ,       uedD,

when | w/,/n| < £.

Lemma 2.7. // C is the cube defined in  the proof of Theorem 2.3  and N

a neighborhood ofO, then there exists some ö > 0 such that

|^"(0)| <l-c5   for OeC-N,

for all uedD.

Lemma 2.8. There exist positive constants X, a and b such that for  every

integer  k ^ 0

A"wexp   -^ß>]] ^a|w|ftexp   -~l|w|2

Lemma 2.9. For each integer k^O

lim A;|»/Vh)T = £ [exp [ - ¿ö|>]]]

uniformly for u e 3D.

Lemma 2.10. There exist positive constants e, ö, ande such that for | w/s/n\ ^e

and any integer k ;S n/2

|At[«A"(w/Vn)]"|ácexp[-¿|w|2], «6ÖD.

Lemma 2.11. Given any neighborhood N of the origin in the cube C, there

are positive constants Ö, and a such that

\AtírMs/n)T\úail~or2k

when w/yfn eN, k^ n/2, u e 3D.

The proofs of these lemmas are omitted, being rather straightforward modi-

fications of the preliminaries to the local central limit theorems in §7 of [8].
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The crucial fact, to be used repeatedly, is that condition (1.4) implies the existence

of the moments of all orders of P", as well as the uniform boundedness, in u e dD,

of the moments of a fixed order. Lemma 2.4, which is crucial for all the sub-

sequent lemmas with the exception of 2.7, is of course dependent on the aperiodicity

condition (1.2) which guarantees the positive definiteness of ß" for each fixed

u e dD. Only for Lemma 2.7 does one require, in addition, the strong aperiodicity

condition that P„(0,0) > 0 for all sufficiently large n.

Proceeding now to the proof of Theorem 2.2 we shall first impose the additional

assumption that the random walk is strongly aperiodic. Then, of course, not only

P„(0,0) but also P"(0,0) is positive for sufficiently large n, independent of the

point u e dD. After completion of the proof this hypothesis may be removed by a

simple continuity argument, given on p. 310 of [8] at the end of the similar but

far easier renewal type theorem, P 26.1.

We shall decompose

(2^)(d_1)/2 i nx,<tpu»
(2.5) n=0

= {| ß" 12UM]} "1/2 + Ht(t, u, k) + H2it, u, k)  + H3it, u, k),

where

t + kjt

ff^w.fc) - (27rt)W-l)/2 £ P„u(*,<i/t"»-{|ß"|SV]}-1/2,
n=max(0, (-*:,/')

t-kjt-i

H2it,u,k) = (2>rt)W~1)/2       I       PHx,(tpuy),
n = i

H3it,u,k) = i2ntyd-lV2 Î      Punix,(tp»y).
n=t + kjt + 1

Note that Pö(x, <í¿t">) = 0 when t is sufficiently large, and that we simplify the

notation by summing from a to ß when we mean the sum from the greatest integer

in a to the greatest integer in ß.

In terms of the function A„ix,y, u) defined in the statement of Theorem 2.1,

i2nt)(d-1)l2 Pjx, (tpuy) = i2ntf-1)/2 (2™) -"/2|ßu| "1/2

(2.6) • exp { -¿S"[<i/i"> - x - n/z"]}

+ (27i0(d-1)/2(27rn)-d/2    /t UN   ^    _ „ f^«^"> - x,y,«).
<iju"> -x-np!

To simplify the notation introduce the vector

z = z(x, t, u) = <f/i"> — tpu — x
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and observe that | z| is bounded uniformly in t and u, for each fixed x. Next we

decompose

í/i(í,u,/c) = Hn+Hl2 + Hl3 + Hi4 + Hi5,

where

Hu -      ' 2     (2^0(d-1)/2 I ß"| -1/2(27rn)-d/2 exp ( -1 Lu[z + (i - «K]l,

Hi2 =        £       [same summand as in i/n],
n=t-('/4 + i

t + kt1'2

Hi3 =      Z       [same summand as in /fn],

H14 = (2n)-1/2<("-1»/2 '+Z2     n-"24,«i„">-x,y,ii),
„=,_fc,l/2

H15 =  -{|ß"|28|>-]}-1/2.

Letting v = n — i, the error term f^ ¡ takes on the form

(2.7)

Setting

and

H11it,u,k)= i2K)-í/2t<d-1)l2\Q"\-112      I    (i + v)-d/2

*.'.")-(tÍ7)i-[-7-'']-tii«

r,(z> v, m) = (7^-H     exP  - J e'(z'v' w)l '

it is easily verified that we have

(2.8) lim rtiz, v, u) = 1
f —CO

uniformly for uedD and for v in — kt1/2 rg v ;£ — f1/4.

We now rewrite (2.7) in the form

(2.9) //11(i,U,/c) = (27t|ßu|r1/2     Í      r^r.expj-^ï-MJ.

and claim that there exists an error function R"(fe), such that
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(2.10) lim//11(i,M,/c) = h|ß"|l"[iuu]}"1/2+^W.
Í —CO ^

where

(2.11) lim R"(/c) = 0   uniformly for u e dD.

In view of (2.8) it suffices for the proof of (2.10) if we show that

hm(27r|ß"|)-1/2  "if    r1/2exp(-£sV])
/■y  ij\ t-co \ = -kt112 \ ^ I

=2-{|ß"|r[/1"]}-1/2 + R1"W

uniformly in we 3D, where P"(/c) satisfies (2.11). For fixed u we have

(2.13) lim      I     r1/2exp(-^lV])  =   f° exp f - ^p2r[/]j dp,
,->co     v = -kti'2 { ll ) J_4 \ Z )

since the left side approximates the Riemann integral on the right. Set

(2.14) ~RÏ(k) = j     expí-ip2ri>"]W

One can conclude from Lemmas 1.1 and 2.4 that

(2.15) r[p»-]^x\\pu\2^x2>o,

so that

\R»ik)\  ^j    exp{-^p221|/i"|2)dp^ J *exp{-^2A2}dp,

which implies that R"ik) satisfies condition (2.11).

The limit in (2.13) may now be written as

(2.16) (*/2)1/2{SV]r1/2+Ki(fcX

and combining equations (2.12), (2.13), (2.16) we see that (2.12) is proved, provided

we show that the convergence in (2.13) is uniform. For that purpose observe that

v_Hrl/2expi" (^2r-rißU]} - \\^[-\p2^uv^dp

^   T r>'2exPf-<v + 1>--«
v=-fc(l/2 ( 2t

and therefore it will suffice to show that

SV]}.

lim
(-co    v=-kt112

%nrm Iexp {- ^r1^™} - exp{- (2ir-rw} = 0
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uniformly for uedD. This is a simple consequence of the estimate (2.15), so that

the estimate (2.10) for i/n is now established.

In just the same way one proves that

(2.17) limi/130,M,/c) = ^{|ß,'|r[/i"]}-1/2 + P';(/c;.
Í —CO -¿

Next we note that for some constant C > 0

(2.18) |J712(i,u)| ^Ci"1/4--0   uniformly in u e dD as t -> co.

Finally

H14it,u,k)^i2Tc)~ll2t(d~1)l2it-k^tydl2 ■(2ky/t)-       max       AH((tpuy>-x,y,u).

{(-tv<â"St+*v<}

Hence it follows from Theorem 2.1 that

(2.19) lim H 14it, u, k) = 0 uniformly for u e dD.
Í—CO

The contributions from i/n and H13, which are independent of k, cancel the

term H15, so that combining (2.10), (2.17), (2.18), (2.19) we have

(2.20) limito, u, k) = 2Rl(k).
(—00

Now we decompose H2it,u, k) = H2l + H22, where

H21it,u,k,ô)= i i2ntid-"l2P"nix,(tp<"»
n = 1

t-kjt-l

H22it,u,k,5)—     Z      [same summand as in H21]

for some 0 < 5 < 1.

Setting y = l + d/2 in equation (2.6) gives

H2lit,u,k,ö) < (2tü)-1/2 |ßu| -1/2¿íexp { _2-I-r[<í/i">-x-[5í]^)

(2.21) +(27rr1/V-1)/2Í: n{2-d)l*\(tpuy-x-np"\-'2+d)l2

■AnUtpuy-x,\ + -,u\.

The first term on the right can be estimated by Lemma 2.4 in the form

2"[0] ^ AJ0|2. This yields an upper bound of the form cxiexp{ — c2t] for some

ct > 0, c2> 0. Furthermore, a simple calculation based on Theorem 2.1 shows

that the second term is bounded above by a constant times i~1/4. Hence
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(2.22) lim H21it,u,k,5) = 0  uniformly in k and u.
( — CO

In treating H22 we set 7 = 2. Letting v = n — / and applying equation (2.6),

one has

-kjt

H22it,u,k,ô)= i2n)-i/2t«-1)l2\Qu\-1>2       S      (í + v)-rf/2
v = -(i-äy

(2-23) H-2Wr[T-^}

r-fcVí

+ (27r)-1/2í(d-1)/2      I   n<l-d)l2\<tp',y-x-npu\-2Ati«puy-x,2,u).

n=Sl+l

From (2.15) it follows that the first term on the right in (2.23) is bounded above

by an expression of the form

-»Vi I v2\
(2.24) cx Z      i~1/2exp   -c2— ,       ct > 0, c2 > 0,

v=-(l-á)( t

and the second term is bounded by

t-kjt >lt
(2.25) c3      I     -L,       c3>0.

The constants c]; c2 and c3 are independent of k and ¿, and the two sums (2.24)

and (2.25) can be made arbitrarily small by choosing a large k. This may be seen

by studying the approximating Riemann integrals. We may therefore summarize

(2.22) through (2.25) by saying that

(2.26) lim sup | H2it, u, k) \ ^ R2(fe),
Ï—CO

where R2ik) is independent of « and tends to zero as k -* co. An analogous argu-

ment, applied to H3, shows that

(2.27) lim sup | H3it, u, k) | g R3(fc),    lim R3(k) = 0.
Í—CO fc—CO

By applying (2.20), (2.26) and (2.27) to the decomposition (2.5), we see that

Theorem 2.1 is proved in the strongly aperiodic case, and as mentioned at the

outset, this suffices to give the result under conditions (1.1), (1.2), (1.3) and (1.4).
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