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Introduction. Let A be a strictly power-associative algebra of characteristic

not two with radical N and such that the difference algebra A — N is separable.

Then we say that A has a Wedderburn decomposition if A has a subalgebra

S S A — N with A = S + N (vector space direct sum).

Since the characterization of the simple, and hence semisimple, commutative

strictly power-associative algebras is nearly complete (see [10]) it is desirable

to see if a Wedderburn decomposition can be given for them. In §2 the problem

is reduced to the case where A has a unity element and A — N is simple. In §3 we

show that if A — N is simple and does not have two as the maximum number of

pairwise orthogonal primitive idempotents, then A has a Wedderburn decom-

position (Corollary 3.3). The counterexample to a general decomposition theorem

(§5) shows that this is the best possible result of that type. Our other major result

(Theorem 4.1) is that stable algebras have Wedderburn decompositions.

It is known that associative [1, Theorem 23, p. 47], alternative [12], and

Jordan [2], [11] algebras have Wedderburn decompositions. In each of these

cases the proof is essentially effected in two stages, namely, N2 = 0 and N2 ^ 0.

In our results we do not have anything corresponding to the case N2 = 0 but

our basic tools (Lemma 3.2 and Theorem 4.1) are conceptually based on the

same idea as the usual induction proof employed in the case N2 / 0.

As a matter of terminology, by an algebra we will always mean a finite dimen-

sional vector space with a multiplication defined which satisfies both distributive

laws. An algebra A is called power-associative if x'x^ = xa+ß for all positive

integers a and ß and every x e A. A is called strictly power-associative if AK is

power-associative for every scalar extension K of the base field. In [7] Kokoris

shows that, for commutative algebras of characteristic not 2, 3, or 5, power-

associativity and strict power-associativity are equivalent concepts. The radical

of a strictly power-associative algebra is the unique maximal nil ideal of A and a

non-nil algebra with zero radical is called semisimple. A is called separable if AK

is semisimple for every scalar extension K of the base field.

The basic structure theory of commutative strictly power-associative algebras

of characteristic not 2, 3, or 5 was given by Albert in [4] and extended to charac-
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teristic not 2 by Kokoris in [7]. Any reference to [4] will thus be understood to

imply a reference to the corresponding results in [7]. In particular A — N is

semisimple and every semisimple commutative strictly power-associative algebra

of characteristic not two has a unity element and is a direct sum of simple ideals.

These results depend on the following well-known decomposition of A. For an

idempotent e e A, we have A = Ae(l) + Ae(\ ¡2) + Ae(0) where x e Ae(X) if and

only if ex = Xx for X = 0, 1/2,1. Moreover ^4e(l) and Ae(0) are orthogonal

subalgebras of A, Ae(\ \2)Ae(\ ¡2) £ Ae(i) + Ae(0), and for X = 0,1 we have

Ae(X)Ae(l 12) S Ae(l 12) + Ae(l - X).
Unless otherwise specified we will understand that the generic symbol A rep-

resents a commutative strictly power-associative algebra of characteristic not two

such that A — N is separable. We will always let N represent the radical of A and

we assume N # 0, A since otherwise A has a trivial Wedderburn decomposition.

I would like to thank Professor R. H. Oehmke, who proposed this problem as a

doctoral research project at Michigan State University. This paper was written

while I held a fellowship from the Institute of Science and Technology at Ann

Arbor, Michigan.

I am also indebted to D. J. Rodabaugh who observed that if AK has a

Wedderburn decomposition for some finite scalar extension K of F, then A has a

Wedderburn decomposition. For if B0 is a subalgebra of AK such that

BQ s AK — NK = (A — N)K then the remainder of the proof is just as in [1,

p. 48] since the associativity of A was not used there and the use of NN = 0

was not necessary if we use the fact that ££} = Hk = iaijk^k with aiJkeF.

This observation applies to most of my results but it should specially be noted

relative to those that have a restriction concerning nodal subalgebras.

1. Pairwise orthogonal idempotents. Based upon and related to the decompo-

sition of A by a single idempotent, Albert has given in [4, §5] a decomposition

of A relative to a set of pairwise orthogonal idempotents eue2, •■•,e, for which

ei + e2 + •" + et is a unity element of A. It is shown that we can write A in a

vector space direct sum A = YttijAt} for i,j — 1,2, ■■-, t where Au = Ae.(l), and

A¡j = Aj¡ = Ae.(\ ¡2) n Aej(l ¡2) when i # / Moreover, if g = e¡ + e¡ for i # /

then g is an idempotent with Az(\) = A¡¡ + Atj + A}j,Ag(\ ¡2) = Lj^jC^a + Ajk),

and ^(0) = y.kii*ijAkl. For i,j,k,l distinct we have

A2 c   A

AuAy S A¡j + Ajj,

■"ii^-jj = A¡jAkl = AnAkl = 0,

■A¡jAjk S. Aik,

A,¡ S  A¡¡ + Ajj.
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Since these relations are basic to much of our work we will generally use them

without specific reference.

Also related to pairwise orthogonal idempotents we have the following lemma.

(1.1) Lemma. Let [lij, \u2\ •••, [»,] be pairwise orthogonal idempotents in

A — M, M a nil ideal of A, and let u = ul + u2 + ■■■ + ut. Then there exists

an idempotent e and pairwise orthogonal idempotents e1,e2,---,e, such that

e = ex 4- e2 4- ••• + e„ [e] = [u], and [e¿] = [«,] for i = 1,2, •••, í. Moreover,

if A has I as a unity element and [1] = [«], then e = 1.

Proof. The proof of the first part of the lemma is by induction and the proof

of the case t = 1 is that of Lemma 1 of [2, p. 1].

Let w = «! + u2 for t 2: 2. Then u = w + u3 + ■■■ + u, for pairwise orthogonal

idempotents [w], [u3], •••>[wt]. By the induction hypothesis there exists an

idempotent e and pairwise orthogonal idempotents f,e3,---,e, such that

e =/+ e3 + ■■■ + e„ [e\ = [«], [/] = [w], and [e;] = [u;] for i = 3, •••, t.

If [/] M = M f°r xeA we can write x = xt + x1/2 + x0 with x^e^^/l) and

have[xi] + [x1/2] 4- [x0] = [x] = [/] [x]= [xt] + 1 /2[x1/2]. Hence [x]=[xj

if xeA such that [/][x] = [*]. Now [/][Ml] = ([«J + [m2])[«i] = [«i]

so there exists an element xt eAf(l) such that [x¡] = [ut]. Moreover xt is not

nilpotent since [«!] is not. Hence the associative algebra F[xt] ç ^(1) is not

nilpotent and so contains an idempotent el=g(xl) for geF\xi}. Thus

[«i] = [sOi)] = a[*i] for <x = g(l)eF and a[xt] = [ex] = [et]2 = a2[xj2

= a2[xt]. But ex £M so a[x¡] ^ 0. Thus a = 1 and [et] = [xj] = [mJ. Now

e2 =/— et is an idempotent in Af(l); e2ex = (/— e^ej = et — Cj = 0,

M - [/- ei] = [/] - [e,] = [w] - [mJ = [tta], and since et and e2eAf(l)

they are orthogonal to e¡ for i = 3,---,t. Thus e = / + e3 + ••• 4- e,

= ex + e2 + e3 + ••• + e, where the et are pairwise orthogonal idempotents with

[e] = [u] and [e¡] = [w¡] for ¿ = 1,2, ■••, í.

For 1 eA, 1 — (et 4- e2 + •■• + et) is either zero or an idempotent of A. But

[1] = CMi] 4- ■•• 4- [m,] = [ej 4- ■•• 4- [et] means that 1 - (ex 4- ••• 4- et) e M,

so it is nilpotent. Hence it is zero and 1 = et + e2 + ■■■ + e, as desired.

As a consequence of Lemma 1.1 we immediately have Corollary 1.2.

(1.2) Corollary. // M is a nil ideal of A, then A has t pairwise orthogonal

idempotents if and only if A — M has t pairwise orthogonal idempotents.

2. Reduction to A with unity and A — N simple. Let si be the class of all

commutative strictly power-associative algebras A that have a Wedderburn de-

composition and for which A — N is simple.

(2.1) Theorem. Let A be a commutative strictly power-associative algebra

of characteristic not two so that A — N = B1®---®Bt where B, is simple and

has a unity element [u¡\. Let e¡ be as in Lemma 1.1. Then A has a Wedderburn

decomposition if and only if Ae.(l) is in s/for i = 1,2, •■-,;.
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Proof. Let e = ex + e2 + •■■ + e, as in Lemma 1.1 and let Ax = ^4e,(l),

A12 = Aei(l ¡2), and A2 = Aei(0). Also let R¡ be the radical of A¡ and N¡ = NnA,

for i = 1,2.

(2.2) Remarks. When B is a subspace of A, then B — N is the subspace of

A — N consisting of all classes [b] for b e B. When R is a subalgebra of A, then

R — N is a subalgebra of A — N and is isomorphic to B — Nb where Nb = N C\ B.

We also remark that for a nil ideal M of A, A — M is semisimple if and only if M

is the radical of A.

Thus  we  have  At - Nt £ Ax - N S Rl5  ^12 - N = 0,  and

A2 - A/2 s v42 - JV £ R2 © ••• © Bf

So by (2.2) N, = R¡ for ¿ = 1,2. Also A12 £ N.

First assume ^4 = S + AT is a Wedderburn decomposition of^andlet^! = SC\AX.

One then easily sees that Ax = Sx + Nx which is a Wedderburn decomposition for

Ax=Aei(l). The same argument holds for Ae.(i) for i = 2,---,t.

The sufficiency of the condition is proved by induction on i. For t = 1,

A2 — N = 0 so A12 + /42 £ N and since Ax is in sJ it has a Wedderburn decom-

position, say Ax = Sx + Nx. Then A = Sx + N is a Wedderburn decomposition

for A

If í > 1, then A2 — N2 ^ R2 © •■• © B, where [wf] = [e¡] is the unity element

of B¡ for i = 2,---,t. Moreover (A2)e.(l) = Ae.(l) is in ,«/ so by the induction

hypothesis A2 has a Wedderburn decomposition, say A2 = S2 + N2. Then

>4 = (Sx © ^2) + JV is a Wedderburn decomposition of A.

3. A — N simple and of degree other than two.

(3.1) Theorem. Let A be a commutative strictly power-associative algebra

with a unity element and of characteristic not two such that A has three pairwise

orthogonal idempotents and A — N is simple. Then A has a Wedderburn

decomposition.

Proof. The proof is by induction on n, the dimension of A, so n 2ï 3 since A

has three pairwise orthogonal idempotents. The theorem is trivial if n = 3. We

now give a lemma to accomplish the induction step.

(3.2) Lemma. If A, of dimension n, is as in the theorem, if A has a proper

ideal M 7e A/, and if every algebra as in the theorem and of dimension less than n

has a Wedderburn decomposition, then A has a Wedderburn decomposition.

Proof.   For convenience we will write d(B) for the dimension of a subspace B.

Assume first that M is nil. Now A — N ^ (A - M) - (N - M) so N — M

is the radical of A — M. Also (A — M) — (A7 — M) is simple since A — N is simple

and A— M has a unity element since A has one. And by Corollary 1.2, A — M has

three pairwise orthogonal idempotents. But M is a proper ideal of A and we
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have d(A — M) <n so by hypothesis A — M has a subalgebra C0 such that

C0 £ (A - M) - (N - M) 3 A - N. Therefore A has a subalgebra Cx # 0, ,4

such that McC, (that is M £ Ct and M # C±) and CoS^- M. Thus we

have a proper subalgebra Cx of ^4 such that Cx — M s A — N. Similar to the

considerations for A — M above we see that M is the radical of Cu Cx — M is

simple, Cx has three pairwise orthogonal idempotents, and d(Cx) < n. So by

hypothesis Cx has a subalgebra C = CX— M. Thus C is a subalgebra of A such

that C S /I - A/. But C n A/ is a nil ideal of C so C n A/ = 0 since C s ^ - AT

which is simple. Therefore C + N is a subspace of 4 with d(C 4- N) = d(C) 4- d(A/)

= dL4 - Af) 4- d(N) = d(A). So A = C + N and this is a Wedderburn decom-

position for A.

If M is not nil, then M$ A/. Also A/ $ M since ̂ 4 — A/ is simple. IfMniV^O,

then it is a proper nil ideal of A different from N so by the last paragraph A has a

Wedderburn decomposition. If M C\N = 0, then M + N is an ideal of A and

(M 4- JV) — N is a nonzero ideal of A — N. But A — N is simple so /I = M + N

with M n N = 0. This is a Wedderburn decomposition of ^4 and completes the

proof of Lemma 3.2.

The remainder of the proof of the theorem simply amounts to repeated appli-

cations of the lemma to various ideals of A until we have reduced A to an algebra

for which we can give a Wedderburn decomposition. Because this process is long

and needs some preliminaries we have postponed it until §6.

Theorem 3.1 concerns the case where A has three pairwise orthogonal idem-

potents. If, on the other hand, the unity element 1 of A is a primitive idempotent

(i.e. 1 ^ et + e2 for orthogonal idempotents ex and e2) then as in [4, pp. 526-527]

A = 1 • F + M where M is nil. If the characteristic of A is zero, then it was shown

that M is a subalgebra of A and hence it is the radical so we have a Wedderburn

decomposition of A. More generally if A has no nodal subalgebras (i.e. a sub-

algebra B = e • F + R where e is the unity of B and R is nil but not a subalgebra

of B), then 1 • F 4- M is a Wedderburn decomposition of A.

Combining this observation with Theorems 2.1 and 3.1 we have an immediate

corollary.

(3.3) Corollary. Let A be a commutative strictly power-associative algebra

of characteristic not two and having no nodal subalgebras. Suppose further

that any B¡, having two pairwise orthogonal idempotents, has three where

A — N = Ri © •■• © R, with B, simple. Then A has a Wedderburn decompo-

sition.

4. Stable algebras. An algebra A is stable with respect to an idempotent e if

Ae(X)Ae(l ¡2) £ Ae(l ¡2) for X = 0,1 and it is stable if it is stable with respect to

each of its idempotents.

Since part of the proof of Theorem 4.2 can be generalized without any extra

work we give that part separately.
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Let P be a property of algebras such that if A has property P then each of its

s. balgebras has property P. Let M be the class of all commutative strictly power-

a ciative algebras of characteristic not two having property P with A — N

separable for A in M.

(4.1) Theorem. Every algebra in SP has a Wedderburn decomposition if

and only if every algebra in M that has at most two pairwise orthogonal

idempotents has a Wedderburn decomposition.

Proof. The necessity of the condition is obvious so we assume that every

algebra in M that has at most two pairwise orthogonal idempotents has a

Wedderburn decomposition. Thus we take n = d(A) ^ 3 and assume that every

algebra of M with dimension less than n has a Wedderburn decomposition.

Evidently we can assume A has three pairwise orthogonal idempotents. If A — N

is simple, then A has a Wedderburn decomposition by Theorem 3.1 (we can

assume A has a unity as shown in the proof of Theorem 4.2).

Thus we can assume the existence of a non-nil proper ideal D of A. So D has an

idempotent and hence a principle idempotent, say e (e is principle if ^4e(0) is nil).

Write D = De(i) + DJA ¡2) + De(0) and let M be the radical of D. According to

Albert [4, Theorem 7, p. 524] DJA ¡2) + De(0) £ M since e is principle. We write

M = J + De(lß) + De(0) where J=M nDe(l)and/l = Ae(l) + Ae(l ¡2) +Ae(0)-

We can now proceed as in [4, p. 525] to show that M is an ideal of A. Thus

M £ AT.

Now D 5¿ 0, A so 0 < d(D) < n and by the induction hypothesis D = T + M

where T is a semisimple subalgebra of D (and hence of A) and TflM = 0. Thus

T £ De(l) and De(l) = T + J is a Wedderburn decomposition of De(l). Likewise

D # 0, A means that 0 < d(Ae(0)) < n so ,4e(0) = S + N0 where S is a semi-

simple subalgebra of ^4e(0) (and hence of A), N0 is the radical of Ae(0), and

S n JV0 = 0. Note that £>e(0) £ N0 since De(0) is a nil ideal of Ae(0). Let

Na = J + Ae(l ¡2) + N0. Then N £ Na and just as in the proof of Theorem 2.1

N0 = Nn Ae(0). But 5 £ Ae(0) and T£ Ae(\) are semisimple subalgebras of A

so S © T is a semisimple subalgebra of A. Moreover (S © T) O N = 0 since

S r\N = S nNo = 0 and TnN=Tnj = 0. Hence A = Ae(i) + Ae(l ¡2)

+ Ae(0) = T+(J + AJA ¡2) + N0) + S = (S © T) + N is our desired Wedder-
burn decomposition of A.

(4.2) Theorem. If A is a stable commutative strictly power-associative

algebra with no nodal subalgebras and with characteristic not two, then A has a

Wedderburn decomposition.

Proof. Let P be the property of being stable, having no nodal subalgebras,

and having characteristic not two. By Theorem 4.1 we can then assume A has at

most two pairwise orthogonal idempotents.
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Since A is non-nil it has a principle idempotent, say e. Then by [4, Theorem 7,

p. 524] AJA ¡2) + AJO) £ N. Let Rx be the radical of AJÍ), Nx = N n AJÍ),
and M = Rx + AJÍ ¡2) + AJO). Clearly N £ M and since Rx is an ideal of AJÍ)

it is easily seen that M is an ideal of A. If x e M, then x = a 4- n for some aeRx

and neN. Thus x2ea2 4- N and by induction xkeak + N for every positive

integer k. But a is nilpotent so for some k, xke N, xk is nilpotent, and M is a nil

ideal of A. Thus M = N and Rx = Nx. So if ^4e(l) has a Wedderburn decompo-

sition, say AJÍ) = S + Nx, then A = S 4- N is a Wedderburn decomposition for

A So without loss of generality we can assume A has a unity element 1 to begin

with.

Suppose that A does not have two orthogonal idempotents. Then 1 is a primitive

idempotent. With this and the assumption of no nodal subalgebras we can use the

first part of the proof of Theorem 9 [4, pp. 526-527] to conclude that

A = i- F + N

is a Wedderburn decomposition of A.

Thus we can assume Í = u + v for primitive orthogonal idempotents u and v.

Then A = Ax + Ax2 + A2 as in §1, where we are letting Axx = Ax and ^422 = A2,

and as above Ax = uF + Rx and A2 = vF + R2 where R¡ is the radical of A¡.

Let N¡ = N C~\A¡ and Nl2 = N n Ax2 as usual.

Let xeAx2. If x2$Rx 4- R2, then x is said to be nonsingular and it is known

[4, Lemma 10, p. 517] that x2 = a 4- g for ge Rx + R2 and a a nonzero element

of F. If x2 €Rj + R2, then x is said to be singular.

Suppose every element in .412 is singular. If x, y eAx2, then

2xy = x2 4- y2 - (x - y)2 eRx + R2

so AX2 £ Rx + R2.  Let  M = Rx + AX2 + R2.  Then  by  stability

AM £ AXRX 4- AX2 + A\2 4- A2R2 S M.

Moreover M is nil, for if not, then M has an idempotent / = fx + f12 + f2 with

/eR¡ and fl2eAX2,fi2 ^ 0. Computing/2 =/and equating the components in

AX2 we get (/x 4-/2)/i2 =/i2- Let T be the linear transformation given by

T(x) = x/i2 for all x e Ax + A2. Then it is known [4, p. 517] that T is nilpotent.

But (fx +f2)fx2 =fx2 means that Tk(fx + f2) =/12 for every positive integer k.

Thus /i2 = 0 which is a contradiction. Therefore M is a nil ideal, M £ AT,

M = N, R¡ = N¡, AX2 £ N, and A = (uF 4- vF) 4- N is a Wedderburn decom-

position of/I.

Thus we can assume there is a nonsingular element xeAX2. Let

M = Rj 4- Ri^i2 4- R2^i2 4- R2.

Then the proof by Albert in [5, ending on p. 331] that M is an ideal is valid here
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since the only use of simplicity there was to obtain a nonsingular element in ,412.

As in the last paragraph M is nil so M £ N and R¡ = N¡.

Remark. The assumptions on A in [5] are more restrictive than ours but one

sees that the loss of algebraic closure there is repaired by our assumption that A

has no nodal subalgebras. Because of [7] the only difficulty in assuming A has

characteristic not two occurs in proving Lemma 5 [5, p. 326] when A has char-

acteristic three. But then taking x = y = w in formula (5) of [7, p. 364] we get

(wz)w = (((wz)w)w)w which enables us to prove the lemma as before.

For our uses we state the pertinent parts of Lemmas 3 and 7 of [5].

(4.3) Lemma. // x is a nonsingular element of Ax2, then there exists a

quantity ceF[x2] £ Ax 4- A2 such that w2 = 1 for w = cxeAX2. Moreover

Al2 = wB 4- G where B = {b e Ax + A2: w(wb) = b} and G = {geAx2: gw = 0}.

Remarks. There are some comments that need to be made regarding this

lemma.

The first comment deals with notation. In the rest of this section and in §6 we

will use R 4- C to indicate the sum of the subspaces B and C, whereas before it

indicated the direct sum. If, as in the lemma, we wish to emphasize that the sum

is direct we will use the dot over the plus sign.

Next we would like to indicate briefly how we intend to use Lemma 4.3 to

construct a Wedderburn decomposition for A. Let w = wx. Then we will show

that we can keep "breaking elements w¡ out of G" where w¡Wj = <5;j- (the

Kronecker delta) until what remains of G is a set of singular elements G(m) £ NX2.

From this we see that A = (uF 4- wxF + ■■• + wmF + vF) + N is a Wedderburn

decomposition of A.

Finally one easily sees that R={a + fo:aeF and beNx + N2 such that

w(wb) = b}. In particular this means that wB = {aw + wb:cteF and b e Nx + N2

such that w(wb) = b}. The importance in this for us is that wB £ wF + NX2.

Let e = 1 /2(1 + w). Then e is an idempotent and for xeA, ex — 1 /2(1 4- w)x

= 1 /2x if and only if wx = 0. Therefore w is in the annihilator of AJÍ ¡2). More

importantly we see that G = AX2 n AJÍ ¡2). And since A is stable, it is evident

that [^4/(1 /2)]2m_1 £ Af(i ¡2) for any idempotent/and every positive integer m.

Thus G2m_1 £ G for every positive integer m.

If z is a nonsingular element in G, then, according to Lemma 4.3, there is a

quantity c e F[z2] such that y2 = 1 for y = cz. But then

y = axz + a2z3 4- ••• 4- a^z2'-1

and by the last paragraph z2m~1eG for every positive integer m so yeG and

wy = 0. Applying Lemma 4.3 with respect to u and then with respect to e, we can

write Al2 = yBy + Gy and ^4e(l ¡2) =yByX 4- GyX  where

By =  {beAx + A2:y(yb) = b},     Gy = {ge AX2: gy = 0},



44 R. L. HEMMINGER [January

ByX  =  {beAJl) + AJO):y(yb) = b},

and

Gyi = {geAJÍI2):gy = 0}.

(4.4) Lemma. For yeG with y2 = Í we know that every element heAJÍ¡2)

has a unique representation in the form h = yb + g for ybeyByX and geGyX.

But for he G we also have yb e yBy and geG C\Gy.

Proof. GyX £ Ae(í¡2) so gw = 0 as noted above. But we have heAX2 so

(yb)x 4- (yb)2+ gx + g2 = 0 where the subscripts refer to the subspaces Ax, A2,

and ^412. Examining the Ax + A2 component of the equation 0 = wg = w(gx + g2)

+ wg12 we have wg12 = 0 since A is stable. Similarly yg12 = 0. Thusgx2eGC\Gy.

Since A is stable (yb)i2 = [y(bx + b12 + ö2)]i2 = y(Pi + b2). Thus

bx + b2e(Ax + A2) n(AJÍ) + AJO))

such that y[y(bx 4- fc2)] — bx + b2, so y(bx + b2)eyBy n yByX. Therefore

h = (yb)X2 + g12 where (yb)12eyByX and gX2eGyX. But h has a unique repre-

sentation in that form; namely, h = yb + g so we must have yb = (yb)X2eyBy

and g = gX2eG O Gy which proves the lemma.

Previous to Lemma 4.3 we had reached the point where ^412 had a nonsingular

element and N¡ = R¡. We can now put the intermediate pieces together by in-

duction to give a Wedderburn decomposition for A.

By Lemma 4.3 AX2 contains an element wx such that w2 = 1 and

A12 = wxBx + Gx

where Bx = {a + b:aeF and beNx + N2 such that wx(wxb) = b} and

Gx = {geAX2:gwx = 0}.

If every element of Gx is singular then let Mx = N 4- Gx. For x = n 4- geMx,

x2 = n2 + 2ng + g2eN so x2 is nilpotent, x is nilpotent, and Mx is nil. In

particular for x, y e Gx we have 2xy = x2 4- y2 — (x — y)2 e N so G2 £ N.

Thus AX2MX SJV + AX2GX £ N + (wxF + N + GX)GX £ N + G2 £ N £ Mx

and AXMX £ u(A/ 4- Gx) + NX(N + Gx) £ N + Gx = Mx. Likewise A2MX £ Mx

so Mx is a nil ideal of A. Hence Gx £ AJ and .4 = (uF + wxF + vF) + N is a

Wedderburn decomposition of ^4. Thus we can continue by assuming Gx has a

nonsingular element.

For notation in the general case we will have w¡eAx2 with wf = 1 and will

write Ai2 = wß, + G¡ by Lemma 4.3 where B¡ and G¡ are defined in terms of w,

as in the case i = 1 above. Let e¡ = 1 /2(1 4- w,).

Assume  that  j412 = wxF + ••• 4- wm-.xF + NX2 + G(m_t)  where

m-l

G(m-i)=nG"
¡=i

G^-!) has a nonsingular element x, and w,Wj = 5y for i,; = 1,2, •••, w — 1.
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From Lemma 4.3, as before, there is an element wm in G(m-X) such that w2|= 1

and wmWi = 0 for i = 1,2, ■■•,m — 1. Let G(m) = Gm Ci G(m_X). Then we wish

to show that we can write Al2 = wxF 4- •■• + wmF + NX2 4- G(m).

Let h be in G(m_xy Then h e G¡ for each i = 1,2, •••, m — 1 so taking G = G

and y = vvm in Lemma 4.4 the element h has a unique representation in the form

h = wmb¡ + gi, i = í,2,---,m-í, where wmb¡ewmBm and gieG^C». But

by Lemma 4.3, h also has the unique representation h = wmb + g for w,„b e wmBm

and ge Gm. Thus gt — g for i = 1, 2, ■••, m — 1 so ge G(m) as desired. For if

ae412, we have a = axwx + ••• 4- am_1wm_1 4- nm_x + h where nm_! is in N12

and n is in G(m_1). But by our last result we can write this as

a = axwx 4- ••• 4- am_!Wm_! 4- nm_t 4- (amwm + nm + g)

= uxwx + ■■■ + am_!Wm_! 4- amwm 4- n 4- g,

with ne A/ and geG(m) as desired.

This inductive process cannot continue indefinitely since d(G(m)) < d(G(m^x)) so

for some m, G(m) must consist of singular elements. Then as before G(m) £ N and

A = (uF + wxF + •■• + wmF + vF) + N is a Wedderburn decomposition of A.

5. Example. Let A be the 6-dimensional commutative algebra with basis

elx, e12, e2X, e22, m, n and multiplication table exx = elx, e\2 = e22, exxeX2

= e22eX2 = l/2e12, elxe2l = e22e2x = 1 /2e21, enn = el2m = n, e22m = e2ln

= m, Ci2^2i = 1 /2(eu + e22 + m + n), and all other products zero.

If we restrict A to have a base field F of characteristic not 2, 3, or 5 and carry

out the computation of Lemma 4 in [3, p. 554], we find that A is power-as-

sociative since A is commutative by definition.

The radical N of A is spanned by m and n, N2 = 0, and A — N ^ F2

with basis [en], [,e12], [e2i]> [^22] where F2 is the algebra of all 2 by 2 matrices

over F. Suppose A had a subalgebra S = A — N. Then S would have the usual

matrix basis gxx, gx2, g21, g22 for F2 and there would be an automorphism a of

A — N such that ff([ey]) = [&,]■ But this is a change of basis for the 2 by 2

matrices so there is a nonsingular element [y] = a[etl] 4- /?[e12] 4- y[e2i]4-<5[e22]

in A — N, with A = a<5 — /fy =¡¿ 0, such that [g¡j] = [y] o [e;;] o [y]-1 (note that

this multiplication takes place in F2). But

[y]"1-A-^O«] - /»[>i2] - fe] + «fe])
so computing [giy] = [y] o [e0] o [y]-1 we have

£11  = A_1(a<5ßii - aße12 4" ^21 - ßye22 4-Sim 4-e2n),

g12 = A_1( - ayelx + cc2e12 - y2e2X + aye22 + 9xm + 92n),

g2x  = isT\ßdexx - ß2eX2 4- ö2e2X - ßbe22 4- Xxm 4- X2n),\

g22  = A_1( - ßyexl + ocßeX2 - yôe2l + aôe22 4- nxm 4- n2n).



46 R. L. HEMMINGER [January

Equating coefficients of m and n in the products g¡jgkl (for example the coef-

ficients of m and n in glxgX2 and 1 \2gX2 are equal since gxxgx2 = i/2gX2) yields

equations in a,ß,y,o,Ex,£2,---,Ttx,n2 which force A = 0. But this is a contra-

diction so A has no subalgebra S ^ A — N and hence A has no Wedderburn

decomposition.

This example of course shows we can not prove the Wedderburn Principal

Theorem for the class of all commutative strictly power-associative algebras.

Moreover it shows that one needs more than a restriction on the base field, for in

our example the base field is arbitrary other than the restriction that the

characteristic not be 2, 3, or 5.

In connection with Theorem 4.2 we note that by using Theorem 2 of [9, p. 698]

we were able to show that the above example is not stable with respect to any

idempotent.

6. Completion of the proof of Theorem 3.1. Before continuing the proof we

need a few preliminaries.

The linearization of x2x2 = (x2x)x gives

4[(xj0 (zw) + (xz)(yw) + (xw)(yz)~]

(6.1) = x[y(zvv) 4- z(wy) + w(yz)~\ + y[x(zw) + z(wx) 4- vv(xz)]

4- z[x(yw) + y(wx) + w(xy)~\ + w[x(yz) + y(zx) + z(xy)~\.

We will also make use of (5) and (8) of [4, pp. 505-506]. We state them as

(6.2) [w1/2(x1)'1)]1/2 = [_(wxl2xx)yx + (wxl2yx)xx~\xl2,

(6-3) iwxl2(xxyx)]0 = 2[(w1/2x1)v1 + (wxi2yx)xx']0,

(6-4)                     [(w1/2>'i)xo]i = 112[(w1/2x0)yx]1,

where zk, X = 0, 1 ¡2, 1, is the AJX) component of z; e an idempotent.

Before continuing, we need to explain some new notation we will use. Recall

that in this section B + C will only indicate the sum (not necessarily the direct

sum) of the vector spaces R and C.

We have previously used the product BC but it is too restrictive for our purposes

now so we introduce a new product, B o C, of the subspaces B and C. Since A has a

unity element, denoted by 1, and three pairwise orthogonal idempotents we can

write 1 = ex 4- e2 + e3 where the e¡ are pairwise orthogonal idempotents. Then as

in §1 A has a corresponding decomposition as A = y.ièjAu, i,j= 1,2,3. We

define BoC = Z.g/RC)^ where x e (BC)U if and only if there exists an element

yeBC, 3;= Zisj^jj, such that x = ytJ. We write RoR=R(2). Evidently

BC £ Ro C but it may happen that Bo C^BC. But if BC is an ideal of A, then

BC = BoC (this can easily be seen by making appropriate linear combinations

and multiplications by the e¡; for example, ex(2exy — y) — yxx). Since we are
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only interested in using the product of subspaces to construct ideals, we will use

the product BoC since it is easier to work with and may in fact be an ideal even

though BC is not.

(6.5) Lemma.   For i, j, k distinct we have

(a) A^Atj oAJk) £ (AuAtJ) oAJk,

(b)AikA\P^(AikAij)oAiJ,

(c) Au(AikoAjk) ^ A¡2) + Aj2k\

(d)AiiA¡P^(AiloAij)oAiJ.

Proof. Let g = e¡ + e¡. Then Ag([)= Au + Au 4- A}i, Ag(í¡2) = Aik 4- Ajk,

and Ag(0) = Akk as in §1. By (6.2) we have [w¿*(%yy)]i,2 = [C%W/*)j>M

+ Xu&ijWj^^ = lxH(yijWjk)']1/2 since xüwjk = 0. From (6.3) we get [w#(%yy)]o

= 2[xii(y,J.w^)]0. So xu(y¡jWjk) = [wJk(xiiyij)']ik + [w^x^y)],-* 4- l/2[wJ.k(xii>'ij)]llfc

e Ajko(AiiAi]). But AuAJk £ Aik so AuAJk = Au o Ajk which proves (a).

We note that (A^A^Au £ AjkA¡¡ £ Aik so using (6.2) and (6.3) as before we

have wik(xijylj)=[(wikxlJ)yu +(w¡kyiJ)xíj']íke(AikA¡j)o Au. Moreover AikAf>

= AikA2j. That proves (b).

To prove (c) take xu, yik, wJk, and e¡ in (6.1) to obtain Xy(yikwjk) + wjt(xfjyifc)

= y¡k(xuWjk) + ej[xu(yikwjk) + wjk(xijy¡k)'] as a result of simplifying and noting

that ejly^XijWjJ] = 0. Multiplying this by e¡ gives ei[xij(yikwjky] = ei[yik(xijWjk)'].

Interchanging the roles of i and / and of y and w in this gives ej\_xij(yikwjk)']

= ej\.wjk(Xijyiki\. Adding the last two equations, we have

Xij(yikWjk) = e[yik(xiJWjk)'] + eJ[wjk(xijyik)'] e e¡A2k + ejA2k £ A¡£> + A%\

Now AikAjk £ Au so AikAjk = Aik o Ajk and we have (c).

If we substitute xu, yu, wtJ, and e¡ in (6.1), we get x«0>yWy) = - 1 /2[yÍJ(x¡iwiJ)

+ wij(xiiyij)] 4- ely^XaWij) + Wy^y)] 4- j\7[e¡(x;iwlV)] + Wy^x^y)] which

is in Ay o (Au o Ay). But AuA2j = Au(A2j)u = AÜA^ so we have proved (d).

Let e be an idempotent of A and define Be = {xeAJÍ): xAJi/2) £^e(0)} and

Ce = {xeAJi): xAJi ¡2) = 0}. Obviously Ces Beç AJÍ). Moreover by [4,

Lemma 1, p. 506] Ce is an ideal of A, Be is an ideal of AJÍ), B\ £ Ce, and

AJÍ) — Be is a Jordan algebra.

Let / = ex + e2, h = ex + e3, and m = e2 + e3. Then if g = e¡ 4- e¡ is one of

these idempotents we will use the notation Bgi = Bg n Au, BgiJ = Bg O Ay,

B, = Be¡, C¡=Ce¡, Cgi=CgnAu, and CgiJ = Cg O Au. Note that if by

e BgiJ £ Ay,    then    buAg(í ¡2) = &y(.4tt + Ajk) = btJAik + buAJk £ ,4,(1/2)    so

Míí1 /2) = ° a"d   ß?ü = <W
Moreover, if R?0 = 0, then Bg = B¡ + B¡. For one easily sees that B¡ £ Bg and

if x 6 Rg = Bg¡ + BgJ, say x = x; 4- Xj, then x¡ e Au such that XjC^tt 4- AJk) £ /!**.

But R? is an ideal of /4g(l)sox,v4y £ BgJ £ ¿4y. Therefore x¡(Ay 4- A,*) £ A/j 4- Akk

and x¡ e B¡. Likewise Xj e Bj so Bg — B¡ + B¡.

We are now ready to continue the proof of Theorem 3.1.



48 R. L. HEMMINGER [January

Let B = Bf + Bh + Bm. Then as in [4, p. 510] B is an ideal of A. By Lemma

3.2 we can assume B = 0, N, or A.

For B = 0 Albert proved in [4, Theorem 1, pp. 512-514] that A is a Jordan

algebra. So by the results of Penico in [11] A has a Wedderburn decomposition.

(At the time [11] was published the simple Jordan algebras of degree one and

dimension greater than one were unknown. In [6] Jacobson shows they are

isomorphic to the base field. This completed the classification of the simple Jordan

algebras, and since no new type appeared, the proof in [11] is valid for all Jordan

algebras of characteristic not two.)

Let B = A and suppose the ideals Cf, Ch, and Cm are all nil. Then All = BfX + BhX

since Bm c\ Axx = 0. But we know that BfX is an ideal of Axx since Bs is an ideal

of As(i) and AXI £ Af(i). Moreover, B2X £ fl2 £ Cf so BfX is a nil ideal of A1X.

Likewise BhX is a nil ideal of Axl. But then A1X = Bfi + BhX is nil which is a

contradiction since ex e Axx. Thus one of the ideals Cf, Ch, or Cm is a proper non-

nil ideal of A and by Lemma 3.2 A has a Wedderburn decomposition.

Thus we can assume B = N.

The above indicates our use of Lemma 3.2. Since we will make a few more such

reductions, we label some cases to facilitate following the argument.

The following outline covers the remaining possibilities.

(A) N = B = Bf = Cf. This comes from assuming Cg # 0 where g is one of

/, h, or m and without loss of generality we assume g = f. Clearly Cf # A so by

Lemma 3.2 we can assume Cf = N. So N = Cf £ Bf £ R = N.

(B) Cf = Ch = Cm = 0,B = N.
Case (A) has two subcases :

(A.l) If = 0 where

// = {Y,(y0wx/2)i : y0 e ^/(0) and wl/2 e Af(i ¡2)}

~ (^13^33)11 4- (A23A33)22.

(A.2) If = N. This comes from If # 0. For clearly If j^ A so by Lemma 3.2

we can assume If = A7.

tA) N = B = Bf = Cf. Let / = If + N where If is defined in (A.l) above.

If xx e Af(i), then by (6.4) we have

*iOoWi/2)i = [*iOoWi/2)]i = 2[(x1w1|2)y0]i = 2[(xiwll2)1/2y0]xelf

so If is an ideal of Af(i) and / is an ideal of Af(i). Since N = Cf, we have

NAX3 = NA23 = 0. Combining these results we get AI £ / 4- A13I + A23I

= I + AX3If + A23If.~Nov/AX3If = Ai3Ifl +AX3If2 = /l13//1 = Ai3(^i3^33)ii

where Ifi = If n Au. By Corollary 1.2, A — N has three pairwise orthogonal

idempotents since A has, so by [4, Theorem 1, p. 512] A — N is a Jordan algebra

since A - N is simple. Moreover, N £ Af(i) so AX3A33 £ AX3 4- Nx. Therefore
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Ai3(Ai3A33)xl £ AX3NX £ N £ /. In the same manner we have A23If £ / and /

is an ideal of A.

But I ¥=0 since N ^ 0 and / ^ A since e3 <£ /; so by Lemma 3.2 we can assume

that I = N = Cf. Thus If £N and AIf £/, + Af(i\2)Is = If + Af(i/2)Cf = If
so /y is a nil ideal of A. This brings us to cases (A.l) and (A.2).

(A.l) N = B = Bf = Cf and If = 0. Hence A33Ai3 £ Ai3 and ^33^23 ^ ^23-

As noted in case (A), A — N is a Jordan algebra and hence is stable. But

N = Cf £ Af(i) so we have AxlAl3 £ Ax3 and A22A23 £ /f23- Since AxlA23

= A22AX3 = 0 we can combine these results into

(6.6) AUAJ3 £ 4,3 for f = 1,2,3; j = 1,2.

Let Hf = Af(l/2) + [Af(il2)J2) = A13 + A23 + Ax3oA23 + A\2J + A223\

Now An(Al3 + A23)çAl3 + A23çHf by (6.6), Alx(Ai3o A23) ç(AlxA13)

oA23 £ Ai3oA23 £ Hf by (6.6) and (a) of Lemma 6.5, and AiiA\23) £ (AxloAi3)

o A13 £ (A1XAX3) o Ai3 £ A13 o ^13 £ Hf by (6.6) and (d) of Lemma 6.5.

Similarly j4u,422)£ Hf so AllHf £ //,. By similar uses of (6.6) and Lemma 6.5

we can show in general that AtjHf £ Hf; so H, is an ideal of A and we can assume

Hf = 0, N, or A by Lemma 3.2.

If //, = 0 or A/, then .4,(1/2) = 0 since N £ Af(i). Thus A = Af(i)@ Af(0),

Af(0) is an ideal of A with Af(0) / 0, N, or A, and .4 has a Wedderburn decom-

position.

IÎ Hf = A, then AiX=(A213)lx and d22 - (A223)22 ; so NtAlx = NJA™)^

^ NiA\23)^(Ni oAl3)oA13 by (d) of Lemma 6.5 where N¡ = N nAu and

Nu = Nr\A¡j. But Nx = C/1 soby(6.6)iV1o/l13 = A/i^13=0. Thus A/^n =0.

But e^^n so N, = exNx =0. In the same manner we obtain N2 = 0 so

N = N12 £ /112. Then by (b) of Lemma 6.5, Ni2Axx ^ N12A(23) ̂ (NX2A13)oA13

= 0 again because N = Cf. But this gives N = N¡2 = exN12 = 0 which is a

contradiction. That completes the proof in case (A.l).

Before taking up case (A.2) we prove two lemmas.

(6.7) Lemma. // N = BX+B2 + B3 and Hg = ^(1/2) + [Ag(i /2)](2) where

g =f,h, or m, then Hg + N is a nonzero ideal of A.

Proof. As noted in case (A), A — N is a Jordan algebra and hence it is stable.

This and having N £ A¡ , + A22 + A33 gives

(6.8) AuAy £ Au + Bj for i * j ; i,j = 1,2,3.

Without loss of generality we can assume g =/. Then the proof that Hf + Nis an

ideal of A is essentially the same as the proof in case (A.l) that Hf was an ideal of A.

We only indicate this by considering two of the relations that need to be checked.

By (6.8) and (a) of Lemma (6.5) we have All(Al3oA23)^(AllA13)oA23

£ G413 + B3)oA23 £ Al3 o A23 + N £ //r + N. By (6.8) and (d) of Lemma

(6.5) we have AllAill}s(AlloAl3)oAl3^(A13 + B3)oAl3çA[23+N^Hf + N.
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(6.9) Lemma. If A = Hf + N = Hh + N = H,„ + N, then Hf is a subalgebra

of A. If we also have Cx = C2 = C3 = 0, then A = Hf + Nisa Wedderburn

decomposition for A.

Proof. By (c) of Lemma 6.5, (A23)33 = [A13(A12A23y]33 £ (¿i? + AV)33

= (Af)33 - (A223)33. Similarly (A23)33 £ (A23)33 so (A223)33 = (A¡3)33. Denote

these as S3. By a similar argument we set S2 = 0423)22 = (Al2)22  and Sx

= (/*12)ll  = (AX3)XX.

The proof that A12Hf £ Hf given in case (A.l) is valid here since (6.6) was not

used. Therefore (Ax3oA23)Hf — A12Hf £ Hf.

Clearly A13(AX3 + A23) £ H¡. Also AX3A22¡ z(AX3A23)oA23 = AX2oA23

= AX3 £ Hf by (b) of Lemma 6.5. Similarly AX3A(H £ A13 £ Hf. From these

and the relations for Sx and S3 we have AX3A(23 = Al3[(A2l3)iX + 0423)33]

= AX3[_(A22)lx + (^3)33] S AX3(A[2} + A22j) £ Hf. Thus A13H, £ Hf and by

symmetry A23Hf £ //,.

By symmetry and what we have just checked of HfHr it remains to show that

A?3>A$ and A^A^il are subsets of Hf. But A$A&= ^ÎVK^Î3)ii + (A23)33]

=A(x23)l(Ax22)xx + (A2\)33\ £ AJ&AfU + A{3 A22¡. These summands are handled

in the same manner so we will only consider the latter. We note that A^^s

= A\3A223 since AuAfí = 0 for i #/ Taking x13, y13, z23, w23 in (6.1) gives

4(x13y13) (z23w23) 4- 4(x13z23)(>'13w23) + 4(x13w23)Cy13z23) = xl3[yX3(z23w23)

4-  Z23(>'l3w23) 4-  W23(y13Z23)] 4- yi3[Xl3(z23w23) 4- Z23(x13W23) +  W23(x13Z23)]

+ Z23LX13O13W23) 4- yi3(xX3w23) 4-w23(x13y13)]4-W23[x13(y13z23)4->>13(x13Z23)

4" Z23(Xl3>,13)]   Which  iS   in   A13{AX3A¡3    4-   A23(AX3A23)]    4-   ^23[^13(^13^23)

4- A23AX3] £ A13Hf + A23Hf £ Hf by our previous results. Also

4(x13z23)0>13W23) + 4(x13w23)(>;13Z23)e(^13^23)2£ ^12 £ #/•

So A^AfJ = A\3A223 £ Hf and Hf is a subalgebra of A.

Now assume we also have Cx — C2 = C3 = 0. Evidently SxAl2 = (A2X3)XXAX2

£ A12A(2l £ C412.413)o,413 £ A23oA13 £ AX2 by (b) of Lemma 6.5. Likewise

SXAX3 £ y413. So for xeSx we get x(AX2 + A13) ^ Ax2 + Al3 while xeBx

implies that x(^i2 4- .413) £ B2 + B3 £ .422 + A33. Therefore St n N = SX n Bt

£ Cx = 0. Similarly S2 n A/ = 53 O A/ = 0 so A = //, + A/ is a Wedderburn

decomposition of A.

(A.2) A/ = R = Bf = Cf = If £ Axx+ A22. Thus R/12 = R3 = 0 and A/

= Bx + B2. So by Lemma 6.7 Hf + N, Hh + N, and Hm + N are nonzero ideals

of A. If one of them, say Hf + N, is N then //, £ N, Af(i ¡2) = 0, A = Af(i)

© .4,(0), .4,(0) is a proper non-nil ideal of A and A has a Wedderburn decom-

position by Lemma 3.2. Thus we can assume A = Hf + N = Hh + N = Hm + N.

If Cx = C2 = 0 (we already have C3 ^ B3 = 0), then by Lemma 6.9 A has a

Wedderburn decomposition. Therefore we assume, without loss of generality,

that Cx # 0. Clearly Cx # A so by Lemma 3.2 we can further assume that C, = A7.
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From N = /, = R, we notice that N2 = /,R, = 0. For if bx e R, £ .4,(1) and

OoWi/2)i e /, £ .4,(1), then bxwx/2 e .4,(0); so by (6.4), bx(y0wx/2)x = [bl(y0wx/2)]x

= 2[(fc1w1/2)y0]i = 0.

But we also have N ■» Ct S Atl = (^23)n 4- A/. From this and (d) of Lemma

6.5 we get NAXX £ NA&+ N2 = NA^ £ (N o Ax3)o A13 = 0. But exeAxx

so N = exN = 0 which is a contradiction.

There remains case (B).

(B) Cf = Ch = Cm = 0, B = N. Recalling the preliminaries we see that Bgij = 0

for g =/, h, m; i ¥> j; i, j = 1, 2, 3, and so N = Bx + B2 + B3. In addition

C¡ £ Q, for if xeC„ then x(Ay 4- Aik) = 0. Butxe^¡¡ so xAjk = 0. Therefore

xAg(i ¡2) = x(Aik + AJk) = 0 and xeCg. Thus Cx = C2 = C3 = 0. We then

proceed as in the first part of case (A.2) using Lemmas 3.2, 6.7, and 6.9 to show

that A has a Wedderburn decomposition. That completes the proof of case (B)

and consequently of Theorem 3.1.
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