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1. Introduction. A von Neumann algebra on a separable Hubert space has an

essentially unique representation as a direct integral of factors. In this paper we

shall investigate the extent to which such decompositions reduce the classification

problem for von Neumann algebras to that for factors. G. W. Mackey [18]

has studied the corresponding questions that arise in the direct integral theory

for representations of a separable locally compact group G. The essential concept

that he introduced was the dual G of G, the set of unitary equivalence classes of

separable, irreducible, unitary representations of G. ô, together with a natural

tr-algebra of sets (a "Borel structure"), may be used as an index space for direct

integrals of irreducible representations. We follow Mackey's program by intro-

ducing canonical index spaces !F and ¡F for direct integrals of factors.

Let §„ be a fixed Hubert space of dimension n, 1 ¿L n z% co = K0 and sén be

the set of all von Neumann algebras on §„. In [5] we introduced a standard

Borel structure on $tn. Let sé = {J™=lsén have the Borel structure generated

by the structures on the sén. The relative structure on the set of factors F is

standard [5, Corollary 3 of Theorem 3]. We define !F and ¿F to be the spatial and

algebraic isomorphism classes in !F, together with the quotient structures.

We have been unable to determine if SF and IF are smooth, i.e., if they have

countably separated structures. The problem is of considerable interest, as when

a group G has a nonsmooth dual, direct integrals provide one with representations

of G having unusual (i.e., nontype I) global structure (see [4, §4]). In §2 and §3

we show that points in F and & are Borel, and that & is smooth if and only if F

is smooth. It follows that if there should be only countably many points in F,

IF and IF would be smooth. At present only nine algebraically distinct nontype I

factors have been identified (see [22], [23]).

The decomposition of a von Neumann algebra into factors induces a measure

on ¡F. We say that the algebra is centrally smooth if the complement of a null

Borel set is countably separated. In §5, we show that such algebras are those

of the form

i ( m)dpm(t)®ym
m = 0 J
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where the pm are countably separated measures on F, almost every 23(i) is a factor

in the equivalence class £, and the ^Bm are various abelian von Neumann algebras.

The proof uses a double integral technique of Mackey [16, Theorem 2.11]. In an

attempt to make the latter more accessible, we have included a careful exposition

of the theory in §4. Our approach gives some information even when the quotient

measure is not countably separated (see Lemmas 4.4 and 4.5).

In §6 we consider the global pathology that might occur should F be non-

smooth. Introducing the notion of global type, it becomes apparent that a von

Neumann algebra of global type II could not be centrally smooth.

We are indebted to R. V. Kadison for several fruitful conversations on the

material in §6, and to both him and J. Ringrose for ideas that resulted in Lemma

2.5. We have recently a manuscript from J. Feldman [6], in which he has proved

the analogue of Theorem 2.8 for the representation and state spaces of separable

C*-algebras.

2. Subsets of sé. Let Q„ be the bounded linear operators on §„. The weak,

(T-weak, strong, and cr-strong topologies generate the same Borel structure on

ß„, and the algebraic operations are Borel.

Let G„ be the group of unitaries on §„ with the strong topology. G„ is a polonais

topological group [3, Lemma 4], and defining <p„:G„®sén->sé„ by <£„([/, 21)

= 1/2Ï.I/-1, we obtain a transformation group.

Lemma 2.1. 4>„ is Borel.

Proof. Let 21 -» ^4£(9I) be Borel choice functions on sén with ^¡(21) weakly dense

in 2Ii for each 21 [5, Corollary of Theorem 2]. If/e£„.,

||/| MU,21) || = sup{\f(UAmV*)\ : i = 1,2, •••}.

As multiplication is Borel, (U, 2I)->/(CMi(2l)[/*) is Borel. Thus

is Borel, and from [5, Theorem 1], <j>n is Borel.

Let 3„ be the scalar multiples of the identity operator on §„. 21 -» 21 ® 3œ

may be realized as a map 9 of sé into séœ as follows. For each n, choose an in-

finite sequence of isometries U¡„ of %>„ into §œ, for which the projections

Ein = UinUfn are orthogonal and E»Ete-/. Define 0n': £„->£„ by 0X4)= ZtUinAU*.

6'n is a a-weakly continuous isomorphism of £„ into fiœ which preserves the identity.

If %esén, let Ö„(2I) = {0„'G4):.4e2I}. As 0„' is <r-weakly continuous, it is the

adjoint of a map 6'n, : £œ.-►£„.. As 8'„ is an isometry, we have for /efix,,

||/K(2I)|| = K./|2I||,

and from [5, Theorem 1], 6„ is Borel. We let 6 = \J„9„.
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Theorem 2.2. // 21 e .s/, the spatial and algebraic equivalence classes [21]

and [[21]] containing 21 are Borel.

Proof. If 21 e sé„, let G„(2I) be the stabilizer subgroup of 21 in G„, i.e., those

unitary U with U%U* = 21. As G„(2I) consists of the UeGn with 1/21(7* £ 21

and l/*2Il/ £ 21, G„(2I) is closed in G„. From [3, Lemma 3], there exists a Borel

set T in G„ intersecting each left coset of G„(2I) in one point. We have

[21] = UGn x {21}) = 4>n(T x {21}).

As <pn is Borel and one-to-one on;the standard Borel space T x {21}, [21] is Borel

(see [18, Theorem 3.2]). von Neumann algebras with purely infinite commutants

on a separable Hubert space are algebraically isomorphic if and only if they are

spatially isomorphic, hence

[[2I]] = 0-([0(2I)]),

and [[21]] is Borel.

Let sé and sé be the spatial, respectively algebraic, equivalence classes in sé,

with the quotient Borel structures.

Corollary 2.3. Points in sé and sé are Borel.

Corollary 2.4. The set sé¡ of von Neumann algebras of type I is Borel.

Proof. Let & denote the properly infinite type I von Neumann algebras. To

within algebraic equivalence, there are only countably many such algebras.

Thus Se is a countable union of algebraic equivalence classes, and is Borel. A von

Neumann algebra 21 is of type I if and only if 0(21)' is properly infinite and type I.

Thus

séI = e~1(^'),

and as ' is a Borel isomorphism of sé into itself [5, Theorem 3], sé¡ is Borel.

Let Fn be the factors on §>„, and ^ = \J™=xFn. From [5, Corollary 3 of

Theorem 3] Fn is a Borel subset of sé„, hence F isa Borel subset of sé. We wish

to show that Ffin, the finite factors, is also Borel.

If 21 is a von Neumann algebra and A e 21, let Kn(A) be the weak closure of

finite convex sums of elements of the form UAU*, with U a unitary in 21.

Lemma 2.5. Let 'übe a factor and E j= 0,1 be a projection in 21. 21 is infinite

if and only ifOe k%(E) or Oe k%(I — E).

Proof. If 21 is finite, and t is the normalized trace on 21, t must be constant

on each of the sets k%(E) and k%(I — E). As x(E) and z(I — E) are nonzero,

0 i k<u(E) and 0 i m(I - E).
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If 21 is infinite, say that I — E is infinite. For any n, we may choose partial

isometries Ux,---,Un with UfUt = E and UiU* = Ei orthogonal projections

with Ei^I-E. Let

Vi=Ul+Ur + [I-(E + Ei)].

Then V¡ is unitary, and

1- i wi--.
i » f.i I       n

As n is arbitrary, 0 e k%(E). Similarly, if E is infinite, 0 e k%(I — E). As one or

the other is infinite, we are done.

Lemma 2.6. There exist Borel choice functions 21 -» A¡(^L) and 21 -» £^(21)

on sé with the /4¡(2I) strongly dense in %Sa, i > the self-adjoint elements A e 21

with \\A\\ z% 1, and the £/¡(2I) strongly dense in the unitaries of SU, for all %esé.

Proof. From [5, Theorem 2], there exist Borel 21 -» C,(2I) with the

C/2I) weakly dense in 2Ii. As the adjoint operation is weakly continuous,

21 - B0[) = i[C/2I)* 4- Cj(%)] is Borel, and the 5,(21) are weakly dense in

2ISjl !. Let ^4¡(2I) be an enumeration of the finite sums of the form Y,r,BX^S),

where the r¡ are positive rationals with £,?•; = 1. For each 21, the strong closure of

the v4¡(2í) is convex, hence it is weakly closed and coincides with 2ISA> x.

Define / on the closed interval [ — 1,1] by f(t) = exp(int), and g on the unit

circle by letting g(z) be the unique real t with — 1 ;g t < 1 and exp int = z. If

A e Wsa, i > f(A) is unitary, and if U is unitary, g(U) e 2ISy4> x and

f(g(U)) = (fo g)(U)=U. Thus g maps 21,5,4, i onto the unitaries of 21. As

A^f(A) is strongly continuous [12, p. 232], the operators (/¡(2Í) =f(Ai(')l))

are strongly dense in the unitaries. From the argument used in [5, Theorem 5],

21 -» l/;(2I) is Borel.

Lemma 2.7. There exists a Borel choice function 21 -» £(21) on sé with £(2i)

a projection, £(21) # 0, I for 21 ?* 3„, n = 1,2, ••• co.

1},

1},

Letting X; be dense in the unit ball of §„,

m(A)  = inf {Ax¡ ■ x¡ : ¿ = 1,2, •••},

hence m, and similarly M, are Borel on £„ s¿.  co(,4) = 0 if and only if A is a

Proof. If ^4 is a self-adjoint operator on §„, let

m(/4) = inf {^4x • x : | x | =

M(A) = sup {4x • x : I x || =

to(A)  = M(A)-m(A).
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scalar multiple of /. Let 21 -> ̂ 4¡(2I) be Borel choice functions on 21 with ^4¡(2I)

weakly dense in 2ISvl>,. If ca(A¡(Síí)) = 0 for all i, 2Í = 3„ for some n. Define a

Borel choice function B by £(3„) = 0 for all n, and if 21 # 3„, 5(21) = A¡(%),

where i is the first integer with co(Ai('ñ)) # 0. Let £(21) = / >J(£(2I)), where /* is the

characteristic function of the closed interval

^m(ß(2I)) + ^M(ß(2I)),l] .

Then £(21) # 0, / for 21 # 3„, and it suffices to show that 21 -» /a(5(2I)) is Borel.

Let G be the continuous real-valued functions on [ — 2,1] with the uniform

norm. The map

<Zx2„,SA,x->ün:(f,A)^f(A)

is continuous in the first variable, and Borel in the second (see the proof of

[5, Theorem 5]), hence it is jointly Borel (see [15, Lemma 9.2], [13,§27V]).

Given a e [ — 1,1] and a positive integer k, define fke (£ by fk(t) = 0 for t zi a — 1/fc,

fka(t) = 1 for t ^ a, and letting fk(t) be linear on intermediate points, a ->/£ is a

continuous map of [ — 1,1] into (£, hence letting

K2l) = ̂ m(ß(2i)) + ̂ M(ß(2I)),

2W*"(?l)(/K2t)) is Borel for each k. Fixing 21, the /f(3,) are uniformly bounded

and converge point-wise to f, hence /¿J(5I)(£(2I))->/?l(ß(2I)) weakly. Thus

21 ->f\B(W)) is a limit of Borel functions, and is itself Borel.

Theorem 2.8. Ff¡„ is a Borel subset of F.

Proof. Choose 21 => (J¡(21) and 21 => £(21) as in Lemmas 2.6 and 2.7. Let d be

a metric for the weak topology on £œ A . If 21 e séœ and 0 e Ksi(F(2I)), then given

e > 0, there exist finitely many unitaries V¡ e 21 and non-negative reals t¡ with

Ii,- = 1  and

í/(IíJ.FJ.£(2I)F/,0)<e.

As multiplication is strongly continuous on bounded sets, and the adjoint operation

is strongly continuous on the unitaries, we may choose non-negative rationals

r¡ with Sr¡ = 1 and

d( Irit/i(2t)F(2I)L/¡(5í)*,0) < e.
Letting

Ax = {216 sém : infd( Ir¡l/¡(2I)F(2I)Í/¡(2I)*, 0) = 0},

the inf being taken over all such finite rational convex sums, Ax is Borel, and

consists of those 21 e séœ for which 0 e k>¡i(£(2I)). Similarly the set A2 of 21 e séœ

with 0 e Ka(/ — £(21)) is Borel. From Lemma 2.5,
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*m = Í U ■*») U C-^oo - (At U A2)] U {3J,

and Ffi„ is Borel.

3. Coupling and the index spaces. If x is a vector in £)„ and %esé„, let

[2Ix] e 21 ' be the projection on the smallest linear space containing x, invariant

under 21. If 21 e Ffin, let t% be the normal trace on 21 with x%(I) = 1. If

21 e Ffin n F'fin, and x is a nonzero vector in the underlying Hubert space,

Tgi([2I'x])/T3j-([2lx]) does not depend on x, and is known as the coupling

C(2I) of 21. Two algebraically isomorphic algebras in J^-',„ n Ffin are spatially

isomorphic if and only if they have the same coupling (see [2, Chapter III, §6.4]).

Lemma 3.1. Ifxefy,,, 21 -* [2Ix] is a Borel map of sé„ into £„.

Proof. If £e£„ is a projection and ye§>„,

|| (I-E)y || = inf {|| y-z || :ze£§„}.

This is due to the fact that the closest vector in £§„ to y is Ey (see [11, §11]).

Let v4,(2í) be Borel choice functions on sén, weakly dense in 211 for each 21, and

.8,(21) be the finite rational combinations of the /4;(2I). The strong closure of the

5,(21) is linear, hence weakly closed, and contains 2li. Thus the 5/21) are

strongly dense in 21, and for y e §>„,

¡(I -[Wx])yl=M{\\y - B¿<mx¡}.

Thus

21 - [2Ix]y y = || y \\2 - ||(/ - [%xj)y \\2

is Borel, and the lemma follows.

Lemma 3.2. // 21 -»^4(51)e21 ! is a Borel choice function on Ffin, then

21 -* Tai04(2I)) is also Borel.

Proof. It suffices to prove that the function is Borel on Ffin n sé„. From

Lemma 2.6, we may let 21 -* fJ¡(5I) De Borel with C/;(2I) strongly dense in the

unitaries of 21. Let d be a metric for the weak topology on £„_ x. Fixing 21,

ra(y4(2I))/ is the unique element in ««04(21))n3„ [2, p. 272]. Thus given a closed

subset F of the complex plane, if t<hG4(2I)) e F, then for any s > 0 there exist

non-negative rationals r¡ with S r¡ = 1 and

d( 1^(7X21)^(21)^(21)*, £/) Ú £•

Conversely if for each integer j there is a finite rational convex sum B¡ satisfying

the above inequality for £ = 1/j, let Bj be a weakly convergent subsequence.

We have 1*04(21))/ = lim BJk e FI. Letting T(2t) = ^04(21)),
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T~\F) = {21: inf d( Ir;(7X2IM(2I)tOT*,£/) = 0},

the inf taken over all finite convex rational sums, hence T~ 1(F), and T, are Borel.

Theorem 3.3. The coupling function 21 -> C(2I) on F ¡in n F'fin is Borel.

Proof. Let x„ be a fixed nonzero vector in §>„. As 21 => 21' is Borel, we have

from the above lemmas that

21 => C(2I) = T3l([2I'xn])/r!a.([2IxB])

is Borel on F{in nF'finn%n.

From Corollary 2.3, Borel sets in F and F separate points. We recall that

a Borel space is countably separated if there exists a countable family of Borel

sets, or equivalently, complex-valued Borel functions, separating points. As F is

standard, should F or F be countably separated, it would be analytic [18, p. 141].

Theorem 3.4. F is countably separated if and only if F is countably sep-

arated.

Proof. Let nx and n2 be the quotient maps of F onto F and F, respectively,

and define abyaoit! = n2. a is Borel, as if B is Borel in F, nx 1(a~1(B)) = n2 1 (B)

is Borel in F. Extend coupling to F by letting C(2I) = 0 for 21 $Ffin nF'fin.

C is Borel (Theorems 2.8 and 3.3), and constant on spatial equivalence clas-

ses, hence it defines a Borel function C on F. Similarly the commutant

operation ' defines a Borel isomorphism on F, which we again indicate by '.

Let Fin¡ be the infinite factors.

Suppose there exist Borel functions/, i = 1,2, ■••, separating points in F. Then

we claim the functions / o a, / o a o ', and C together separate points in F.

As two factors with infinite commutants are spatially isomorphic if and only

if they are algebraically isomorphic, the / o a separate points in Flni. It follows

that the f¡ o a o' separate points in Fln¡. C together with the /,oi separate points

in Ffin n F'¡in. The f, o a separate Ffin from Finf, hence all points are separated.

Let T be the Borel set {21 e Ffin nF'fl„ : C(2I) = 1} v[Finf nF[nf\ and

f=nx(T). a is a one-to-one Borel map of f onto F. We shall prove that a is a

Borel isomorphism on f. It will follow that if F is countably separated, then

so is &.

If B is a subset of F, let Bs and B" be the saturations of B with respect to spatial

and algebraic equivalence, respectively. Using the notation of §2, if B is Borel

Bs = U<Pn(Gnx(Bnsén))

and

Ba = 0_1(0(B)S)

are analytic. If D is a Borel subset of f,
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vT2l («(£>))  =  (V (D))°

and

7t2-,(#-a(D)) = n^^t-D))

= (n-x1(t-D))a

are disjoint analytic sets. As their union is the standard space F, both must be

Borel (see [13, §35, III]), hence a(D) is Borel in F.

4. Direct integral theory. We begin with a brief summary of the constructive

theory in order to introduce our terminology. Details and omitted proofs may

be found in [2, Chapter II].

As suggested in [7, pp. 83-84] and [19, p. 634], one may regard a field of objects

over a Borel space as a cross-section in an appropriate "bundle". We shall instead

use "coherences" to map fields into bundles with constant fiber. (We essentially

follow [17].) It is then unnecessary to introduce the bundle terminology.

By a measure p on a Borel space (Z, F), we mean a real, non-negative, finite,

countably additive function on F. If x:Z^>$>„ is weakly Borel, let x(p) be the

class of weakly Borel functions of Z into $„, equal to x /¿-almost everywhere. Let

L2 (p) = L2  (Z, F, p) be the weakly Borel functions x : Z -> §„ with

[||x(0|2i/K0<a)-

L2(p) is a linear space with Hubert pseudo-norm ¡x|| = [ J|| x(0¡2íi/,í(Q]i/2,

and null space the functions equal to 0 /¡-almost everywhere. Let L2n (p) = L2„ (Z,F,p)

be the quotient Hubert space.

If A: Z -» £„ is a uniformly bounded, weakly Borel function, define À on L2(p)

by (Â(x))(C) = A(C)x(Q. À preserves null functions, and induces a map A(p) on

L2(p) with || A(p) I = ess. sup || A(01|. If 21: Z -+ sé„ is Borel, let 2I(/t) = j W)dp(0
be all operators of the form A(p), where A : Z -> £„ is a uniformly bounded weakly

Borel function with A(Ç) e 21(C) for all Ç. 2I(/0 is a von Neumann algebra with

2%)' = St'Gi).
Let §0 = £0 = sé0 = {0}. As it will be necessary to consider four varieties of

fields, we introduce the "fibers":

•#" = {&>.$>!.-.$>«},
!

00 •• ■ '     .

ô« = U £»>
n=0

00

n=0

CO

•*« = U ^„ = •^^^'0.
n = 0
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where we regard the last three unions as disjoint. Let 2? have the discrete Borel

structure, §>„ and £„ have, the structures generated by the weak (or, equivalently,

strong) structures on the <rj„ and £„ and séu have the structure generated by those

on the sé„.

lf$):Z-*Fr is Borel and Z, « {C : £(0 - £„}, define $>(P-) = ) $>(Qdp(0
to be S„œ= i L2(pn), where pn is the restriction of p to Z„. <rj (/i) consists of all

sequences x(m) = (x(/z„)), where x : Z -* £j„ is Borel with x(C) e £)„ for Ç e Z„ and

1 x(p) |» - f f | x(o i2d/ao = f I *(o \\2dp(o < co.

Similarly, if 21 : Z -» .*/„ is Borel, and Z„ = {C : 21(C) e •<,}, we define

2I(/í)= J 2I(C)d/i(C) to be S*=12I(«,,). Assuming the Z„ for £ and 21 coincide,

2I(/j) is defined on £)(«). It consists of all sequences ,4(«) = (A(pn)), where A : Z -» £„

is uniformly bounded and Borel, and 4(C) e 21(C) for all C-

If Z is a set, a /ie/d o/ Hubert spaces § on Z is a map C -* §>(() of Z into a

collection of separable Hubert spaces. Letting Z„ = {^ : dim$(Q = «} a coherence

y for § is a map C -» y(C)> where 7(C) is an isometry of §>({,) onto §„ for C e Z„.

A vector field x in $ is a map C -» x(C) e$(C)> an operator field A on $ is a map

C -» /1(C) e fi(§(C)), and a /¿eZd 0/ ron Neumann algebras 21 on § is a map

C -> 21(C) 6 ^($(0). If Z has a Borel structure and y is a coherence for §, we say

these fields are y-Borel when

mo - y(0$(0,
*y(C) = r(CMC),

¿"(C) = yCCMÖMT1.

W(0 = ïOTOïK)"1,

are Borel maps of Z into ^, §u, £„, and ^/„, respectively. As § is y-Borel if and

only if the sets Z„ are Borel, the coherence is irrelevant, and we say §> is Borel

if the latter is true. If p is a measure on Z, we write J"7 §>(Qdp(Q and \p%(Qdp(C)

for  J" $\MtiO and J 2F(C)dMC), respectively.
Let / be a finite or countable set. For each sequence m = (m¡)isI of non-negative

integers, let am be an isometry of Z$m¡ onto §Lm¡. If ($>l,y¡) are Borel coherent

fields (i.e., each §>' is Borel and has coherence y¡), and C is such that dim$'(C) = w¡>

define for (x;)e S§'(C)

(Syi(0)W = <rm(yi(0xi).

Then ( Z$¡, Sy¡) is a Borel coherent field. If 2I¡ are y ¡-Borel, then Z2I¡ is Eyf-

Borel, and

Í2V< pi221^)^(0= I       %(0dp(Q.
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Without going into details (see the proof of Lemma 4.5), we remark that the

underlying isometry is defined by

where x¡ is a sequence of yrBorel vector fields with S J" \\ x¡ \\2dp < co.

Let rm „ be a fixed isometry of <r>m ® §„ onto §m„ for m, n 2: 0 (we let 0 ■ co = 0).

If (§>?) and (5\,<5) are Borel coherent fields, and C is such that dim$(Q = m,

dimR(C) = n, let y(0®S(0 be the unique linear isometry of §(C)®-ft(C) onto

§m ® §„ satisfying for u e§(C), »e ft(C), y(C) ®¿(C)(" ® o) = y(0(«) ® «5(C) W-

Let y ® 0(0 = v„o (y(C) ® ¿(C)). Then (§ ® ft, y ® ¿) is a Borel coherent field.

If 21 and 23 are y and ¿-Borel respectively, 21® 23 is y ® ¿-Borel. If 23á(C) = 230

for all C,

(2) J       2I®23(C)a>(C) = J   2KOW0® So-

Let £)„ underlie 230, Vj be arbitrary vectors in £j„, and yj(C) = ô(Q~1(vJ). The

spatial isometry of (2) is the closure of the map

E(*,®jvy®fy)-> ZxKp)®vj,

where the sums are finite, and the x; are y-Borel vector fields with J || x¡ ||2 d/i < co

If 21(C) = 2X (the complex numbers) for all C, it follows that

(3) j230dKC) = £co(/t)®230,

where Ve (p) acts on L2(p) by multiplication.

Suppose that Zx and Z2 are Borel spaces with measure px and p2 respectively.

A measure isomorphism (T,NX,N2) of Zx and Z2 is a Borel isomorphism T of

Zx— Nx onto Z2 — N2, where JV; are Borel in Z¡, /í¿(N¡) = 0, such that the p2-

null sets in Z2 — N2 are the images of the /^-null sets in Zx — Nx.

Lemma 4.1. Say thatZ^i = 1,2 are standard Borel spaces with Borel coherent

fields (§¡, y¡), y ¡-Borel fields 2I;, ana measures p¡. If there is a measure isomor-

phism (T,NX,N2) of Zx and Z2 with 2I1(Ci) = %>(T(Ci)) /or a// CeZ*-^,

***» f 2i1(c1^1(c1) = rn&iWiGi)-

We say a family of vectors {xx} spans a topological vector space X if the linear

space generated by the xx is dense in X. Rephrasing some of the results in [2,

Chapter II], we have

Lemma 4.2. Suppose that (§,y) is a Borel coherent field on a Borel space Z.

Given a measure p on Z, say g¡ are bounded Borel functions with gt(p) spanning

L°°(/¿) in the weak* topology. If Xj is a sequence of uniformly bounded y-Borel

vector fields in §> with xy(C) spanning §(C) for all C, then the vectors g¡xyj(p)



444 E. G. EFFROS [February

span §y(u). // 21 is a y-Borel field of von Neumann algebras on Z, and Ak is

a sequence of uniformly bounded y-Borel operator fields in 21, with Ak(Q,

generating 2t(Q, the operators Ayk(p), together with the g¡(p)I, generate W(p).

Proof. Let x be a y-Borel field in § with xy(p) e &y(p), and xy(p) ±g¡x](/i)

for all i, j. Then

0 = xy(p) ■ gixyj(p)

= I J xy(Q ■ gi(0x](0dp„(0

- Z f [x(C) • x/OMO«)

=  J [x(C) • Xj(0]gi(Odp(0

for all i implies x(C) ■ Xj(Q = 0 a.e. It follows that x(C) = 0 a.e., hence x(p) => 0.

Let 23 be the von Neumann algebra generated by the Ayk(p) and g-^p)I. It suffices

to prove that 23' S W(p)'. If B'e23', B' commutes with the gt(p)I. From the

decomposition theory, it follows that there is a uniformly bounded y-Borel oper-

ator field C-"C(C)eß($(C)) with B' = Cy(p). As B' commutes with Ak(p), C(Ç)

commutes with Ak(Q a.e., hence C(l) e 21(C)' a.e., and B' e %'(fi) = 2%)'-

If Z is a Borel space, let M(Z) be the measures on Z, together with the Borel

structure defined by the functions p^ffdp, with / a bounded Borel function

on Z. If Z is standard, let Z have a compact metrizable topology generating its

structure, and let (£(Z) be the continuous functions. M(Z) is Borel isomorphic

to the positive cone of (£(Z)* with the weak* topology, and thus is standard.

Lemma 4.3. Say that Z is standard, and § : Z -> Ff is Borel. Then p^>£>(p)

is a Borel field on M(Z), and there exists a coherence y(p) for %>(p) with the

following properties:

(1) //x:Z->§„ is a uniformly bounded Borel field in §>, p-*x(p) is a y-

Borel field in p->$(p), uniformly bounded on M(Z)X.

(2) If A:Z->2U is a uniformly bounded Borel field on §, p-+A(p) is a

uniformly bounded y-Borel field on p^§>(p).

(3) // 21: Z -+séu is a Borel field on$>, « -> 2I(ju) is a y-Borel field in p -* §>(p).

Proof. Let Z have a compact metrizable topology generating its structure, and

let (£(Z) be the continuous functions on Z. Choose g¡ uniformly dense in G(Z).

Then for each peM(Z), the gt(p) span L00 (pi) in the weak* topology. Let

eni,e„2, ••• be an orthonormal basis for §„, n ^ 1, and define xnj{Ç) = enj for

C e Z„, x„j(Q = 0 elsewhere. From Lemma 4.2, the vectors g¡xn/jí) span §(u).

Furthermore, for any combination of subscripts,
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giËi'dp  it n = n',   j=j',
(4) p-*giXnJ(p) • grx„.j.(p) = < J

L 0 otherwise,

is Borel on M(Z). Let vp(Ç) be an enumeration of the fields g¡(OxnJ(C). A simul-

taneous orthonormalization procedure (see [2, p. 139]) on the vp(p), peM(Z),

yields vector fields

(5) wk(p)=    I   K(p)vp(p)
lgpgfc

where hkp(p) is a Borel scalar function on M(Z), and the wk(p), k ;£ dim§(w) form

an orthonormal basis for §>(p), wk(p) = 0 for k > dim§(/¿). From (5) and (4),

I1 ~* I vvfc(j") ||2 is Borel, hence the set Mm of p with dim§>(p) = m is Borel, and

P^-Up) is Borel. If peMm, define yGu): $(/i)=-$m by

y(p)y =zZ(y wk(p))emk.
k

A vector field p -» y(/i) will be y-Borel if and only if y(p) • wk(p) is Borel for all k,

hence from (5), if and only if y(p) ■ giXnj(p) are all Borel.

Let x, A, and 21 be as described above. Since

p -* x(p) ■ gtxnJ(p) = I        x(C) • enJgi(Odp(0= I    Í   x(
n    .' Z,,

is Borel, p-*x(p) is y-Borel, and if ||x(C)| è K, ¡x(aO|| úKp(Zy12. Turning

to A, if I A(0 || ̂  L, I ¿(/i) I ^ L. To show that p -* ¿'(u) is Borel, it suffices

to prove that on Mm

p -> Ay(p)emi ■ emj = A(p)wt(p) ■ Wj(p)

is Borel. This follows from (5) as

p -► A(p)g¡xnj(p) ■ gvxnJ.(p)

L(A(Oenj ■ enj.)gl(0gr(0dp(0
'z„

is Borel.

From [5], we may select uniformly bounded Borel fields Aj(() in 21(C) generating

21(C) at each C- From Lemma 4.2, the fields A"j(p) and #¡0^)/ generate W(p) at

each p, hence p -> W(p) is a Borel map of M(Z) into séu (see discussion at the

end of §3 in [5]).

Let R be an equivalence relation on a Borel space X, and n be the quotient map

of X onto the set of equivalence classes X/R. Providing X/R with the quotient

structure, we say that R is smooth if X/R is countably separated. If p is a measure

on X, define the quotient measure v on X/R by v(T) = «(7t-1(T)).  We have
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included the following version of the decomposition theorem for p (see [1],

[21], [9], [20]) as it gives partial results for non smooth relations.

Lemma 4.4. Suppose that R is an equivalence relation on a standard Borel

space Z, p is a measure on Z, and v is the quotient measure on Z\R. Then there

exists a Borel map £-►«,; of Z\R into M(Z)X such that if f is a bounded Borel

function on Z, and h is a v-integr able function on Z/R, then

(6) j h o n(0f(0dp(0 = ¡KO¡ f(0dp,(C)dv(0.

If R is smooth, each pt may be chosen concentrated in 7i_1(C).

Proof. If Z is countably or uncountably infinite, it is Borel isomorphic to the

one-point compactification of the integers, or to the Cantor set, respectively.

Thus we may let Z have a zero-dimensional, compact, metrizable topology. Let

£ be the algebra of sets generated by a countable basis of compact open sets.

1, is countable, and any decomposition of a set in £ into non empty disjoint sets

in Ü must be finite. It follows that any finitely additive, non-negative function on S

is a measure, and as E generates the Borel structure on Z, extends uniquely to a

measure on Z (see [10, p. 54]).

For each Borel set S in 2, C-* p(Snn~1(C)) is absolutely continuous with

respect to v, hence there is a non-negative Borel function gs on Z\R with

(7) p(Snn-1(C)) = jcgs(è)dv(a

If S and S' are disjoint sets in S,

p((S US') HtT'OC)) = p(Snn~1(C)) + p(S' nn-\C)),

hence

jc gs,s'(Odv(0 = jc [gs(0 + gS'(0]dv(0

for all Borel C, and

gsusW = gs(0 + gs>(0

for all v-almost all C- If S = Z in (7),

v(C)   = j gz(Ç)dv(Ç),

hence gz(C) = 1 v-almost everywhere. Letting the gs be zero on a Borel v-null set,

we may assume S -* gs(0 is finitely additive, and extends to a measure p( e M(Z)X.

The family of Borel sets T in Z for which £ -* p¿T) is Borel and
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(8) p(Tnn-\C))= J fi¿T)dviO

for Borel C in Z/R, is monotonie and contains X. Thus from [10, p. 27], the

family consists of all Borel sets in Z. If / and h are Borel characteristic functions,

C -> / fdps is Borel, and (6) is true. Linearity implies the same for simple / and h,

i.e., finite linear combinations of Borel characteristic functions. If / and h are

as described in the lemma, choose simple /„ and h„ with /„-»/, hn-+h point-

wise, and |/„|^|/|, \hn\ ;g | h\. As /is bounded, it is /¿¿-integrable, and

J" fndPi -* j fdpç • Thus C -* j" fdpç is Borel, and as / was arbitrary, £ -> p^

is Borel. As £-» j |/|^ is bounded, |fr(£)| J |/|^i is a v-integrable function

dominating the «„(£) J /„du?. Similarly, | h o 7t(C)/(C) | is /¿-integrable and dom-

inates h„ o n(C)f(0- Taking limits, we obtain (6).

If D is Borel in Z\R, we have from (8)

Jc XrXC)av(C) - v(D n C) =  £ p^^dv^).

Thus

(9) p4(n-1(D)) = Xo(0

v-almost everywhere. If A is a countable separating algebra of sets in Z\R, let N

be Borel with v(N) = 0 and (9) valid for De A and C $ N. If Ç$N, choose

Dx=>D2=t ••• in A withp|Df = {C}. Then ^(ti_1 (/),)) = 1 implies that p¿n~1(C)) = l,

i.e., ju? is concentrated in n~1(0- Letting p4 = 0 for CeiV, we are done.

Lemma 4.5 ([16, Theorem 2.11]). Say that Z is standard Borel space with

a Borel field 21: Z -*■ séu. IfR is an equivalence relation on Z, and p is a measure

on Z, let p = $pçdv(Ç) be a decomposition of the type described in Lemma 4.4.

Then there is a spatial isomorphism

j m)dp(o = jßK(p()dv(o

where /?(£) = y(p¿), y a coherence for /i ->£(/i) as described in Lemma 4.3.

Proof. Let §> : Z -* Jf be the underlying field of Hubert spaces for 21. %> is

Borel as Z„ = {C : 21(C) £^B} is Borel. We must define an isometry

U:S(M)-»JV(He)dv(i).

Let 23 be the uniformly bounded Borel fields x : Z -> §„ in %>, and for each A e M(Z),

let 23(2) be the corresponding subspace of §(/l). From Lemma 4.3, if xe23,

2->x(X) is a uniformly bounded y-Borel field in £j(/l) on M(Z)X. Thus Ç->x(p()

is uniformly bounded and jS-Borel in §(u?), and
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We have

x(pç)<>(V)e j $>ß(ps)dv(0.

\x(ps)0(v)\\2= j ¡KQxOidfdviO

= j \\x(ps)\\2dV(0

= J|||x(C)||2^(C)dv(C)

= j ¡x(C)|24u(C)

= l*oo||2-

Defining U on 23(/¿) by U(x(p)) = x(jt¿f(y), U is an isometry.

As in the proof of Lemma 4.3, we may select uniformly bounded Borel functions

gt on Z which span £"(2) for all X e M(Z). The functions n¡(¿;) = J" g^Qdp^Ç) are

bounded and Borel on ZjR. They span Lc0(v), as if h e £J(v) and h ±ht for all i,

0 = J hh,dv = j h o n(Qgi(Qdp(Q,

i.e., h o n = 0 /¿-almost everywhere, and « = 0 v-almost everywhere. If h is a

uniformly bounded Borel function on ZjR, we assert that the class h o n{p¿)

is that of the constant h(Ç) for v-almost all £\ If C is Borel in Z/.R, letting the

« of (6) be Xc » an<3 then /c/i,

Jc J ft o TrtCWCMMOcMC) = f h(0 j UOdiúQditQ,

hence there is a Borel set TV in ZjR with v(/V) = 0 and

j h o n(Ogt(ödp((o = J* mg¿mii¿c)

for all ££N. As the gf span L00^), fco 7t(Q = h(Ç) for /¿¿-almost all C, ítN.

Again from the proof of Lemma 4.3, we may choose uniformly bounded Borel

vector fields Vj in §> with Vj(l) spanning £j(A) for all A e M(Z). From Lemma 4.2,

the vectors

n¿v)t>>/(v)= (7(^0 </;>>))

span J" $f(ßt)dv(C). As the tfj(/¿) span $)(p), 23(/¿) and its image are dense, and U

extends to the desired isometry.
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If A is a uniformly bounded Borel field in 21, we have from Lemma 4.2 that

C -» A(p¿) is a uniformly bounded /?-Borel field in ÎIQij), and

A(psY(v) e j\(p,)dv(0-

If x is in 23, (Äx)(C) = A(C)x(0 is another field in 23,

UA(p)x(p) = U(Äx)(p)

- l(Ax){p¿Y(v)

= [/?(|M(/i4)x(/¿,)](v)

= [A(p(Yx(psf](v)

= [^/(vflxfo^v),

hence UA(p)U_1 = A(pi)ß(v). As

U(hion(p)x(p)) = hi(v)x(pi)p(v),

UhiOnQijIU'1 =h¡(v)I.

Letting Bk(Q be an enumeration of the fields ft(Ç)I and Aj(Q described in the

proof of Lemma 4.3, the Bk(X) generate 21(A) for each Ae M(Z). From Lemma 4.2,

the Bk(p¿f(v), together with the operators ht(v)I, generate J7* 2I(/¿í)c¿'v(<C'). As

these are the images of the Bk(p) and the h¡ o n(p)I, respectively, U defines a

spatial isomorphism of j2I(C)d/¿(C) onto j* 2I(/¿?)dv(C)-

5. Central decompositions. If 21 is a von Neumann algebra on a separable

Hubert space, a central decomposition (Z,F,p,^) of 21 is a standard Borel space

(Z, F) with a measure p and a Borel field $ : Z -+ F with

%& jm.odKo-

Such a decomposition always exists, and if (Z0, F0,p0,^0) is another such de-

composition, there is a measure isomorphism (T,N,N0) of Z and Z0 (see §4)

with g(C) = g0(T(C)) for all ÇeZ-N. Letting 7^ be the quotient map of F

onto ^", 7^0 g and 7^0 g0map/¿ and /¿0, respectively, onto null-set equivalent

measures p and /¿0 on F. We say that 21 is centrally smooth if there is a Borel set

P S F with /¿(P) = 0 and F — P countably separated. Enlarging P by a Borel

null-set, we may assume F — Pis standard (see [18, Theorem 6.1]), hence we call

such measures standard.

If Z is a Borel space, let M0(Z) be the continuous measures on Z, i.e., those

measures for which all one-point sets have zero mass. For cardinals m with

1 ^ m z% co =K0, let MJZ) be the measures totally concentrated in m points.

Given an arbitrary measure p, there exist unique measures pc and pd,   with
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p = pc + pd, where pc is continuous, and pd is discrete, i.e., totally concentrated

in points.

If p e M(Z), define

||/¿|=sup{|/¿({C})|:CeZ}.

Lemma 5.1. IfZ is countably separated , then p -> | /t || is Borel on M(Z).

Proof. Choose a sequence of Borel sets Sk separating Z. Let Sk = Sk,

Sk — Z — Sk, S(0) = Z, and for any sequence i,, ••■, /„ of zeros and ones, let

S(¿1,-,/„) = s;''n--ns„i".

If peM(Z), define

I p ||„ = maxp(S(ix, ■■■, in)),        ¿i, ••■, i„ = 0,1.

p IL is a decreasing sequence, hence its limit exists. As p -» || p ||„ is Borel, it will

suffice to prove that for all p e M(Z), \\p\\= lim || p ||„.

If S is Borel, define the measure p\S by (p\S)(T) = p(S n T). If

lim I/¿]|„ = ¿ > 0, define a sequence j0,jx,--- as follows. Let j0 = 0. Suppose

thatj'o, •••,_/, have been defined with

(10) lim||/¿|S(j1,-Jr)||„ = ¿.

As the sequences

ö«=  \\v\S(Ju---Jr,V)\\n-l>

K=  || v\S(jX, —,jr, l)|n-l

are decreasing, and

|| M| S(Ju—,jr) I» = max{a„,b„},

lim |/í | SO'i, ••-,/,) I» must coincide with either lima,, or limfr„. This provides

us with jr+i satisfying (10). As the sets Sk separate Z, f\S(/i>"'>Jr) has at most

one point. On the other hand,

KS(ji> -Jr)) ^ I A« | sUu -Jr) I» = "5 ;

hence the intersection must contain a point C with /(({C}) ̂  ¿- We conclude that

I p I ^ lim I /¿ ||„. The converse inequality is trivial.

Lemma 5.2. If Z is countably separated, the sets Mm(Z) are Borel in M(Z),

and the maps p -» pc and p-* pd are Borel.

Proof. If ¿ > 0 and peM(Z), there are at most finitely many C with p({Q) ^ ¿.

Thus there always exist C e Z with /¿({C}) = || At || • We call such C maximal p-atoms.

Define S(ix,---,i„) as in the proof of Lemma 5.1. For each peM(Z), define
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Ío(aO = 0- Suppose that ¿0(/¿), •••,¿„(/¿) have been defined with S(ix(p),--.,i„(p))

containing a maximal /¿-atom. Let in + 1(p) = 0 or 1 be the least integer with

S(ix(p),---,in+i(p)) containing a maximal /¿-atom. Define

(11) p.' = mait\S(.it(ii),---,in(fi)),

where limit is taken in the sense of convergence of the corresponding integrals

of each bounded Borel function, p" is the "part" of p concentrated in some

maximal /¿-atom. It will suffice to show that /¿->/¿" is Borel. For then, letting

Ci(aO = At - A*"» and cn+x(p) = cx(cn(p)),

M0(Z)   = {/¿:c1(/¿) = /¿},

U  Mk(Z)= {p:c„(p) = 0}       (n<co),
lStSn

(J Mk(Z)= {/¿:limc„(/¿) = 0},
lgtgoo

pc = limcn(p).

If n = 0, p^yp\S(ix(p), •■•,in(p)) = p is Borel. Suppose that we have proved

p-+p\S(ix(p),.--,i„(p)) is Borel. Then the maps

At-» At| S(ix(p), -,in(p),j) = p| S(ix(p),-,in(p)) nSJn,        j = 0,1,

are Borel. From Lemma 5.1,

g(fi) = i At I - || At| S(ix(p), •••, in(p),0) \\

is Borel. Letting h(0) = 1 and h(t) = 0 for real t j= 0,

At -» At| S(ix(p), •••, in(p), in + x(p))

= h(g(p))p\ S(ix(p), -, ¿„(/¿),0) + [1 - h(g(p))-]p\S(iL(p), -, i„(p), 1)

is Borel. From (11) it follows that /¿-> /¿° is Borel.

Let ^30 = L°°([0, l],v) where v is Lebesque measure. If 1 z% m ^ co = K0, let

23m = £ (J™, vm), where Jm are the first m integers, and vm is the measure with

vm(i)= 2 ~'. The 23m are von Neumann algebras when they are represented on the

corresponding £2-spaces. If p is a standard continuous or discrete measure acting

on a Borel space Z, L°°(Z,/¿) represented on L2(Z,p) is spatially isomorphic to one

of these algebras.

Theorem 5.3. //21 is a centrally smooth von Neumann algebra, there exists

a Borel subset W of F, a Borel map 23 : W ->F with ttxo 5B(i) = £> and standard

measures vm on W for which
CO fi

21^   I       23(C)dv,„(C)®23m.
m = 0   J

The measures vm with m > 0 may be chosen disjoint.
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Proof. Let (Z,F,p,$) be a central decomposition for 21, and pbe the induced

measure on F. As p is standard, we may choose a Borel set W^F with

p(F — W) = 0, and W standard in the relative structure. Decreasing IF by a

Borel null set, we may let 23 : W -> F be a Borel cross-section for nx (see [18,

Theorem 6.3]). Letting Z0 be the nxo^ inverse image of W, the Z0 quotient structure

must correspond to the relative structure on W, as the latter is countably separated

(see the proof of [18, Theorem 5.1]). From Lemmas 4.4 and 4.5, we have a Borel

map {-* pt of W into M(Z0)X with p( concentrated in ref1^) and

Sis J'g(/i4)#(C).

As <5(A¡{) = 3(a4) © «Ka4)> we have from Lemma 4.1 and (1)

(12) 21S J    %(p¡)dp(0®j   vs(4)dp(0,

where /?C(C) = y(/¿£) and /^(C) = y(/¿*). Let v0 be the restriction of p to

W0 = {£ : /¿| ^ 0} and for m ^ 1, let vm be the restriction of /¿ to {£ : /^ e Mm(Z0)}.

Then from Lemma 4.1 and (3),

S0#s 23(C) ®230

for v0-almost all C, and for m ^ 1,

g(/4)^ 23(C) ®s43m

for vm-almost all £. The theorem follows from (12) and (2).

It is readily verified that the measure classes of the vm are uniquely determined

by 21, and that any such system of standard measures arises in this manner from

a centrally smooth von Neumann algebra. The latter is in contrast with the group

representation situation, in which "noncanonical" standard measures can occur

(see [18, p. 164]).

6. Global structure. Let 21 be a von Neumann algebra on a Hubert space §,

3 the Boolean algebra of central projections in 21. We say E,Fe$ are spatially

equivalent, £ = F, if 2IE and 2IF are spatially isomorphic (a corresponding

theory may be formulated using algebraic isomorphisms). Letting M(2I) be the

operators T on § with T2IT* £ 21 and T*2IT £ 21, we have £ s F if and only

if there is a partial isometry U e M(2I) with U*U = £ and (7(7* = F. 3, together

with the equivalence S, may be thought of as a global analogue of the lattice

of all projections in 21 with the usual equivalence. More precisely, (3, =) is a

dimension lattice in the sense of Loomis [14], and we may examine all of the

concepts normally associated with such a lattice.

Projections £, Fe$ are globally disjoint if there do not exist Ex, Fx e3 with

0 5¿ £, = E, 0 t¿ Fx i% F and Ex S Fx. £ is globally central if £ and / - £
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are globally disjoint. We let 3g De the collection of such projections. If EeSa

and F 9t £, F z% E.

Lemma 6.1. 3g consists of the central projections left fixed by the spatial

automorphisms of 21.

Proof. If £ is globally central, and V induces a spatial automorphism of 2t,

then V*EV s £ and VEV* = E imply V*EV = E. If £ is not globally central

choose a nonzero partial isometry (7eM(2I) with U*Uz^E, UU* — I — E.

Then the unitary V = U + U* + [I - (U*U + UU*)] induces a spatial auto-

morphism of 21 that does not leave £ fixed.

If £ e 3, we let G(£) be the minimal projection in 3G with £ g G(£). We say 21

is a global factor if3e = {0,/}, and 21 is globally multiplicity free if 3c =3- ®

is of global type I if there is a projection £e3 with G(£) = / and £ globally

multiplicity free. 21 is globally finite if £e3 and £ s / imply £ = /. 21 is globally

semi-finite if there is a projection £e3 with G(£) = / and 2I£ finite. 21 is of

global type II if 21 is globally semi-finite, and there does not exist £e3 with

£ # 0 and 2I£ of global type I. Finally, 21 is of global type III if there does not

exist £ e 3 with £ # 0 and 2I£ globally semi-finite.

It is a simple exercise to check that the centrally smooth global factors are

those of the form % ® 23m, $ a factor, and that such an algebra has global type I

if m — 1, and global type III if m = 0. Thus a global factor (or in fact, any von

Neumann algebra) of global type II would not be centrally smooth. The existence

of such an algebra would imply that F and F are nonsmooth, and the existence

of uncountably many nonalgebraically isomorphic factors would follow. We are

currently examining the von Neumann algebras associated with the regular rep-

resentations of countable discrete groups. We remark that it is not difficult to

prove that if such a group has all of its automorphism classes (other than that

of the identity) infinite, then the corresponding algebra is a global factor. The

rationals under addition form such a group.

We have been unable to give a global characterization for the centrally smooth

von Neumann algebras. In particular, we do not know if the analogue of

Guichardet's theorem for multiplicity free representations [8] is true. Specifically,

is any globally multiplicity free von Neumann algebra on a separable Hubert

space centrally smooth?
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