GLOBAL STRUCTURE IN VON NEUMANN ALGEBRAS

BY
EDWARD G. EFFROS(1)

1. Introduction. A von Neumann algebra on a separable Hilbert space has an
essentially unique representation as a direct integral of factors. In this paper we
shall investigate the extent to which such decompositions reduce the classification
problem for von Neumann algebras to that for factors. G. W. Mackey [18]
has studied the corresponding questions that arise in the direct integral theory
for representations of a separable locally compact group G. The essential concept
that he introduced was the dual G of G, the set of unitary equivalence classes of
separable, irreducible, unitary representations of G. G, together with a natural
g-algebra of sets (a ‘‘Borel structure’’), may be used as an index space for direct
integrals of irreducible representations. We follow Mackey’s program by intro-
ducing canonical index spaces % and Z for direct integrals of factors.

Let $, be a fixed Hilbert space of dimension n, 1 £ n =< o0 =8, and &, be
the set of all von Neumann algebras on §,. In [5] we introduced a standard
Borel structure on &7,. Let &/ = U,‘,”:lﬂ,, have the Borel structure generated
by the structures on the «/,. The relative structure on the set of factors & is
standard [5, Corollary 3 of Theorem 3]. We define % and Z to be the spatial and
algebraic isomorphism classes in & together with the quotient structures.

We have been unable to determine if & and & are smooth, i.e., if they have
countably separated structures. The problem is of considerable interest, as when
a group G has a nonsmooth dual, direct integrals provide one with representations
of G having unusual (i.e., nontype I) global structure (see [4, §4]). In §2 and §3
we show that points in % and F are Borel, and that & is smooth if and only if F
is smooth. It follows that if there should be only countably many points in Z,
Z and Z would be smooth. At present only nine algebraically distinct nontype I
factors have been identified (see [22], [23]).

The decomposition of a von Neumann algebra into factors induces a measure
on #. We say that the algebra is centrally smooth if the complement of a null
Borel set is countably separated. In §5, we show that such algebras are those
of the form

[ B@du© .
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where the p,, are countably separated measures on F , almost every B(¢) is a factor
in the equivalence class &, and the 3,, are various abelian von Neumann algebras.
The proof uses a double integral technique of Mackey [16, Theorem 2.11]. In an
attempt to make the latter more accessible, we have included a careful exposition
of the theory in §4. Our approach gives some information even when the quotient
measure is not countably separated (see Lemmas 4.4 and 4.5). ~

In §6 we consider the global pathology that might occur should % be non-
smooth. Introducing the notion of global type, it becomes apparent that a von
Neumann algebra of global type II could not be centrally smooth.

We are indebted to R. V. Kadison for several fruitful conversations on the
material in §6, and to both him and J. Ringrose for ideas that resulted in Lemma
2.5. We have recently a manuscript from J. Feldman [6], in which he has proved
the analogue of Theorem 2.8 for the representation and state spaces of separable
C*-algebras.

2. Subsets of &/. Let £, be the bounded linear operators on §),. The weak,
o-weak, strong, and o-strong topologies generate the same Borel structure on
£,, and the algebraic operations are Borel.

Let G, be the group of unitaries on $, with the strong topology. G, is a polonais
topological group [3, Lemma 4], and defining ¢,:G,® «,— «, by ¢,(U,A)
= UAU ', we obtain a transformation group.

LEmMMA 2.1. ¢, is Borel.

Proof. Let A — A,(A) be Borel choice functions on &, with 4(N) weakly dense
in U, for each A [5, Corollary of Theorem 2]. If fe &,.,

| £18a(U, A) | = sup {| F(UAU*) | : i = 1,2, -},
As multiplication is Borel, (U, W) - f(UA(A)U*) is Borel. Thus

U, W~ | f|oU, W |

is Borel, and from [5, Theorem 1], ¢, is Borel.

Let 3, be the scalar multiples of the identity operator on §,. A->AR I,
may be realized as a map 6 of & into &, as follows. For each n, choose an in-
finite sequence of isometries U, of §, into §,, for which the projections
E,,=U,U} are orthogonal and %;E;,=I. Define 6,: 2,2, by 0(4)= Z,U,,AU*.
0, is a o-weakly continuous isomorphism of £, into £, which preserves the identity.
If Ae,, let 0,(A) = {0,(4): AeA}. As 6, is g-weakly continuous, it is the
adjoint of a map 6,.: £,,. > £,.. As 0, is an isometry, we have for fe ..,

| 716,20 | = [ 6:.f | %],
and from [5, Theorem 1], 6, is Borel. We let 8 = |, 6,.
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THEOREM 2.2. If e o/, the spatial and algebraic equivalence classes [U]
and [[U]] containing W are Borel.

Proof. If e ,, let G,(A) be the stabilizer subgroup of A in G,, i.e., those
unitary U with UAU* = A. As G,(N) consists of the Ue G, with UNU*<= A
and U*AU = A, G,(W) is closed in G,. From [3, Lemma 3], there exists a Borel
set T in G, intersecting each left coset of G, () in one point. We have

[A] = ¢.(G, x {U}) = ¢u(T x {A}.

As ¢, is Borel and one-to-one on'the standard Borel space T x {2}, [] is Borel
(see [18, Theorem 3.2]). von Neumann algebras with purely infinite commutants
on a separable Hilbert space are algebraically isomorphic if and only if they are
spatially isomorphic, hence

[[1] = 07" ([6WD),

and [[A]] is Borel.
Let o/ and &/ be the spatial, respectively algebraic, equivalence classes in &7,
with the quotient Borel structures.

COROLLARY 2.3. Points in o/ and s/ are Borel.
COROLLARY 2.4. The set o/ of von Neumann algebras of type I is Borel.

Proof. Let # denote the properly infinite type I von Neumann algebras. To
within algebraic equivalence, there are only countably many such algebras.
Thus £ is a countable union of algebraic equivalence classes, and is Borel. A von
Neumann algebra U is of type I if and only if ()’ is properly infinite and type L.
Thus

oy=0""(B),

and as ’ is a Borel isomorphism of &/ into itself [5, Theorem 3], &, is Borel.
Let &, be the factors on §,, and & = U,‘:‘;,."/’,,. From [5, Corollary 3 of
Theorem 3] &, is a Borel subset of «,, hence & is a Borel subset of «/. We wish
to show that & ;,, the finite factors, is also Borel.
If A is a von Neumann algebra and A e U, let xy(A) be the weak closure of
finite convex sums of elements of the form UAU*, with U a unitary in 2.

LeMMA 2.5. Let % be a factor and E # 0,1 be a projection in W. A is infinite
if and only if 0 € ku(E) or 0 e xu(I — E).

Proof. If U is finite, and 7 is the normalized trace on A, T must be constant
on each of the sets xu(E) and xyu(I — E). As ©(E) and (I — E) are nonzero,
0 ¢ xn(E) and 0 ¢ kn(I — E).
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If A is infinite, say that I — E is infinite. For any n, we may choose partial
isometries U,,---,U, with U¥U;=E and U,Uf = E; orthogonal projections
with E, < I — E. Let

Vi=U;+ U +[I - (E + E)].
Then V; is unitary, and

|4 £ e+
n ;=1 n

As n is arbitrary, 0 € xy(E). Similarly, if E is infinite, Oe ky(I — E). As one or
the other is infinite, we are done.

LeMMA 2.6. There exist Borel choice functions W — A(W and A - U(N)
on &/ with the A(N) strongly dense in s, ,, the self-adjoint elements Ae N
with | A|| £ 1, and the U() strongly dense in the unitaries of U, for all est.

Proof. From [5, Theorem 2], there exist Borel A — C;(A) with the
C;(A) weakly dense in U,. As the adjoint operation is weakly continuous,
A — B(W) = 3[C;(W* + C(AW] is Borel, and the By(A) are weakly dense in
sy 1. Let 4(A) be an enumeration of the finite sums of the form Zr;B; (%),
where the r; are positive rationals with Z;7; = 1. For each ¥, the strong closure of
the A() is convex, hence it is weakly closed and coincides with g, ;.

Define f on the closed interval [ — 1,1] by f(¢) = exp(int), and g on the unit
circle by letting g(z) be the unique real ¢t with —1=t<1 and expint =z. If
AeWsy, 1, f(A) is unitary, and if U is unitary, g(U)e U5, ,; and
fgU))=(fo g)(U)=U. Thus g maps Ug, ; onto the unitaries of A. As
A - f(A) is strongly continuous [12, p. 232], the operators Uy(A) = f(4(N))
are strongly dense in the unitaries. From the argument used in [S, Theorem 5],
A — U(Y) is Borel.

LeMMA 2.7. There exists a Borel choice function W — E(A) on of with E(A)
a projection, EQN) #0, I for W# T, n=1,2,--- 0.

Proof. If A is a self-adjoint operator on §,, let
m(4) = inf {Ax - x:| x| = 1},
M(A4) sup {Ax - x: “x ” = 1},
w(4) = M(A) — m(A).

Letting x; be dense in the unit ball of §,,
m(4) = inf{dx; x;: i=1,2,-},

hence m, and similarly M, are Borel on £, 5, @w(4) =0 if and only if 4 is a
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scalar multiple of I. Let A — A4,(A) be Borel choice functions on W with A,(A)
weakly dense in Wg, ;. If w(4(A)) =0 for all i, A=, for some n. Define a
Borel choice function B by B(J3,) =0 for all n, and if A £3T,, B(A) = 4,(A),
where i is the first integer with w(4,(2)) # 0. Let E(A) = 1 "(B(A)), where f* is the
characteristic function of the closed interval

E m(B) + %M(B(‘II)), 1] .

Then E(N) # 0, I for A #,, and it suffices to show that A — f*(B(A)) is Borel.
Let € be the continuous real-valued functions on [ — 2,1] with the uniform
norm. The map

€ x 'gn,SA,l_’Bn:(f,A)_’f(A)

is continuous in the first variable, and Borel in the second (see the proof of
[5, Theorem 5]), hence it is jointly Borel (see [15, Lemma 9.2], [13,§27V]).
Given a e[ — 1,1] and a positive integer k, define f'e € by fi(1)=0 fort < a—1/k,
fi(®) =1 for t = a, and letting f,'(f) be linear on intermediate points. a — f¢ is a
continuous map of [ — 1,1] into €, hence letting

W) = 5 m(BE) + 3 M(BD)),

A - ;2™ (B(W)) is Borel for each k. Fixing U, the £® are uniformly bounded
and converge point-wise to f*, hence f'™(B())—f*(B(A)) weakly. Thus
A — FAB(W) is a limit of Borel functions, and is itself Borel.

THEOREM 2.8. &, is a Borel subset of F.

Proof. Choose A — U(A) and A — E(A) as in Lemmas 2.6 and 2.7. Let d be
a metric for the weak topology on £, ;. If e o/, and 0 € xky(E(N)), then given
¢ > 0, there exist finitely many unitaries ¥;€ U and non-negative reals ¢; with
Zt;=1 and

d(Xt;V;EQ)V}F,0) < e.

As multiplication is strongly continuous on bounded sets, and the adjoint operation
is strongly continuous on the unitaries, we may choose non-negative rationals
r; with Xr; = 1 and

d( ZriUi(QI)E(QI)Ui(QI)*sO) <e.
Letting

Ay = {We o, infd( Xr,UWEQ)U(A)*,0) = 0},

the inf being taken over all such finite rational convex sums, A, is Borel, and
consists of those A e/, for which 0 € ky(E(N)). Similarly the set A, of e o,
with 0 € ky(I — E(N)) is Borel. From Lemma 2.5,
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F fin =(U'ofn)u [F,— (A VADTU{S,},

n<o

and #;, is Borel.

3. Coupling and the index spaces. If x is a vector in §, and WeZ,, let
[UAx] e WA be the projection on the smallest linear space containing x, invariant
under A. If Ve F,, let 194 be the normal trace on A with () =1. If
e Fy, N F iy and x is a nonzero vector in the underlying Hilbert space,
([ W x])/ra([Ax]) does not depend on x, and is known as the coupling
C(A) of A. Two algebraically isomorphic algebras in F/;, N &, are spatially
isomorphic if and only if they have the same coupling (see [2, Chapter III, §6.4]).

LEMMA 3.1. Ifxe$,, W— [Ax] is a Borel map of &, into ,,.
Proof. If E€ 8, is a projection and ye$,,

”(I—E)y” = inf{ Hy—z]|:zeE$5,,}.

This is due to the fact that the closest vector in E$), to y is Ey (see [11, §11]).
Let A() be Borel choice functions on «,, weakly dense in U, for each U, and
B;() be the finite rational combinations of the A,(). The strong closure of the
B) is linear, hence weakly closed, and contains 9. Thus the By () are
strongly dense in U, and for y€$),,

| - [AxDy|

=inf{] y — B{W)x}.
Thus
U [Uxly -y = [y - |a - [AxDy |

is Borel, and the lemma follows.

Lemma 3.2. If A— AW e W, is a Borel choice function on %, then
N — t9(A(N)) is also Borel.

Proof. It suffices to prove that the function is Borel on %, N.</,. From
Lemma 2.6, we may let A — U (A) be Borel with U(W) strongly dense in the
unitaries of A. Let d be a metric for the weak topology on &, ;. Fixing U,
Ta(A(M)I is the unique element in ky(A(A)NT, [2, p. 272]. Thus given a closed
subset F of the complex plane, if tq(A(N) e F, then for any &> 0 there exist
non-negative rationals r; with £r; =1 and

da( ZriUi(QI)A(QI)Ui(QI)*’FI) Se

Conversely if for each integer j there is a finite rational convex sum B; satisfying
the above inequality for ¢ = 1/j, let B; be a weakly convergent subsequence.
We have ta(A(W)I = lim B;, € FI. Letting T(A) = tu(4(N)),
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T™!(F) = {%: infd( Xr,UAWMULW*, FI) = 0},

the inf taken over all finite convex rational sums, hence T~ (F), and T, are Borel.

THEOREM 3.3. The coupling function A - C(A) on F ;,, N F ;, is Borel.

Proof. Let x, be a fixed nonzero vector in §,. As W — W' is Borel, we have
from the above lemmas that

A - C(A) = ([ A'x, ) (Ux,])
is Borel on &, NF [, NN,
From Corollary 2.3, Borel sets in F and &F separate points. We recall that
a Borel space is countably separated if there exists a countable family of Borel
sets, or equivalently, complex-valued Borel functions, separating points. As Z is
standard, should & or & be countably separated, it would be analytic [18, p. 141].

THEOREM 3.4. & is countably separated if and only if Z is countably sep-
arated.

Proof. Let n; and n, be the quotient maps of & onto_ Z and f/; respectively,
and define a by « 0 7, = =, . o is Borel, as if B is Borel in#, 7y Mo~ '(B)) = n; 1(B)
is Borel in #. Extend coupling to & by letting C(A) =0 for A¢ F ;, NF .
C is Borel (Theorems 2.8 and 3.3), and constant on spatial equivalence clas-
ses, hence it defines a Borel function ¢ on Z. Similarly the commutant
operation ’ defines a Borel isomorphism on &, which we again indicate by ’.
Let #,,; be the infinite factors.

Suppose there exist Borel functions f;, i = 1,2, -+, separating points in & . Then
we claim the functions f;oa, fioao’, and € together separate points in Z.
As two factors with infinite commutants are spatially 1somorph1c if and only
if they are algebralcally isomorphic, the f; o a separate points in F, s 1t follows
that the f;o X o’ separate points in F inf - ¢ together with the f; o a separate points
in# fin D F! fin- The f; 0 a separate F 7in from Z, iy » hence all points are separated.

Let T be the Borel set {NeF, NF}i,: cU) = 1} U[F ., N Fip], and
T = 7,(T). a is a one-to-one Borel map of T onto_ &. We shall prove that « is a
Borel isomorphism on 7. It will follow that if Z is countably separated, then
so is Z.

If B is a subset of &, let B° and B be the saturations of B with respect to spatial
and algebraic equivalence, respectively. Using the notation of §2, if B is Borel

= U¢.(G, x (BN o£,))

and

B* = 97'(8(B))

are analytic. If D is a Borel subset of 7T,
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731 (D)) = (7 '(D))’
and _ .
n; (F —«D)) = n; (T - D))

= (n; (T -D)*

are disjoint analytic sets. As their union is the standard space Z, both must be
Borel (see [13, §35, III]), hence a(D) is Borel in &.

4. Direct integral theory. We begin with a brief summary of the constructive
theory in order to introduce our terminology. Details and omitted proofs may
be found in [2, Chapter II].

As suggested in [7, pp. 83-84] and [19, p. 634], one may regard a ﬁeld of objects
over a Borel space as a cross-section in an appropriate ‘‘bundle’’. We shall instead
use ‘‘coherences’’ to map fields into bundles with constant fiber. (We essentially
follow [17].) It is then unnecessary to introduce the bundle terminology.

By a measure p on a Borel space (Z,%), we mean a real, non-negative, finite,
countably additive function on &. If x:Z - §, is weakly Borel, let x(u) be the
class of weakly Borel functions of Z into §),, equal to x u-almost everywhere. Let
L2 () =L? (Z,%,u) be the weakly Borel functions x : Z — ), with

[ 150 Pauo) < eo.

L2(w) is a linear space with Hilbert pseudo-norm | x| =[ []x(0)|*du(®]"?,
and null space the functions equal to 0 u-almost everywhere. Let L2 (u) = I2(Z,%,11)
be the quotient Hilbert space.

If A:Z — &, is a uniformly bounded, weakly Borel function, define 4 on L?(y)
by (A(x))(§) = A(Q)x({). A preserves null functions, and induces a map A(u) on
L2(p) with || A(u) || = ess.sup | AQ) || If A:Z — o, is Borel, let () = [ A(C)du(l)
be all operators of the form A(u), where A:Z — £, is a uniformly boundéd weakly
Borel function with A({) e A(¢) for all {. A(u) is a von Neumann algebra with
Ap)" = A'(p).

Let Ho = L, = &, = {0}. As it will be necessary to cons1der four vanetles of
fields, we introduce the ““fibers’’:

H = {50a51a ""500}’
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where we regard the last three unions as disjoint. Let 5# have the discrete Borel
structure, $), and £, have, the structures generated by the weak (or, equivalently,
strong) structures on the §, and £, and &, have the structure generated by those
on the «/,.

If $:Z—># is Borel and Z,={{:H) =9}, define H(w) = [HOdu(©)
to be X2, L2(u,), where p, is the restriction of u to Z,. § (1) consists of all
sequences x(u) = (x(u,)), where x: Z - §, is Borel with x({)€$, for {€Z, and

Ix@ = £ [ 15012am0 = [ 15020 < eo.

Similarly, if A:Z - &, is Borel, and Z, = {¢: AQ) e ,}, we define
Ap) = [ WEOAuQ) to be X7_, A(u,). Assuming the Z, for § and U coincide,
A(w) is defined on $H(u). It consists of all sequences A(u) = (A(y,)), where A : Z - 8,
is uniformly bounded and Borel, and A({) € A({) for all .

If Z is a set, a field of Hilbert spaces $ on Z is a map{— H({) of Z into a
collection of separable Hilbert spaces. Letting Z, = {{ : dim$({) = n} a coherence
y for § is a map { — y({), where ({) is an isometry of $({) onto ), for {eZ,.
A vector field x in §) is a map { — x({) e H({), an operator field A on § is a map
{-> A eHQ), and a field of von Neumann algebras A on § is a map
- W) e H(H()). If Z has a Borel structure and y is a coherence for §), we say
these fields are y-Borel when

$'O = vDHO,
X0 = wOx,
AQ) = yOAO™,

W) = yOAMO™,

are Borel maps of Z into &, §,, L,, and &,, respectively. As §) is y-Borel if and
only if the sets Z, are Borel, the coherence is irrelevant, and we say §) is Borel
if the latter is true. If u is a measure on Z, we write [7 §(0)du(¢) and If"A()du()
for [ $7(Odu() and [ W(du(L), respectively.

Let I be a finite or countable set. For each sequence m = (m,); . ; of non-negative
integers, let o,, be an isometry of X§,, onto Hy,.. If (§',7,) are Borel coherent
fields (i.e., each §' is Borel and has coherence 7,), and ¢ is such that dim $'(()=m;,
define for (x)e L)

(ZrD (%) = ouri(Dx)-

Then ( X8, Xv,) is a Borel coherent field. If ¥ are y,-Borel, then XL, is Ly,
Borel, and

Iy

@ TAQdUQO = T f " A OAu.
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Without going into details (see the proof of Lemma 4.5), we remark that the
underlying isometry is defined by

() = (37 (W)

where x; is a sequence of y;-Borel vector fields with 2 f “ X; ||2du < o0,

Let 7, , be a fixed isometry of §,, ® $, onto H,,,, for m,n = 0 (we let 0 - oo = 0).
If (9,7) and (R,0) are Borel coherent fields, and { is such that dim$({) = m,
dim &() = n, let () ® 5({) be the unique linear isometry of $(¢) ® K() onto
Hn ® 9, satistying for ueH((), ve K, YO @) (u ® v) = y(£) (1) ® 3(0) (v).
Let y® 6(0) = 7,0 () ® 8(0)). Then (H® K, y ® ) is a Borel coherent field.
If A and B are y and 5-Borel respectively, A @ B is y @ 5-Borel. If B°(() =B,
for all {,

y®od Y
@ f A ®BE)u(Q) = f A () ® Bo.

Let $, underlie B,, v; be arbitrary vectors in §,, and y,({) = ()" '(v;). The
spatial isometry of (2) is the closure of the map

Zx® )W - ZxI(w®v;,

where the sums are finite, and the x; are y-Borel vector fields with | || X; “2 dpu< o
If AQ) = L, (the complex numbers) for all ¢, it follows that

3 f Bodu() = L) @ Bo,

where L (u) acts on L*(u) by multiplication.

Suppose that Z, and Z, are Borel spaces with measure u, and p, respectively.
A measure isomorphism (T,N,N,) of Z, and Z, is a Borel isomorphism T of
Z,— N, onto Z, — N,, where N; are Borel in Z;, p(N;) =0, such that the p,-
null sets in Z, — N, are the images of the u,-null setsin Z, — N, .

LeMMA 4.1. Say thatZ;,i = 1,2 are standard Borel spaces with Borel coherent
fields (9;, v:), yi~Borel fields U;, and measures ;. If there is a measure isomor-
phism (T,N,,N,) of Z, and Z, with W,({,) = U,(T())) for all {eZ,— N,,
then ["U;(C)du () = [ Wn(C,)dps(L)).

We say a family of vectors {x,} spans a topological vector space X if the linear

space generated by the x, is dense in X. Rephrasing some of the results in [2,
Chapter II], we have

LeEMMA 4.2. Suppose that ($),7) is a Borel coherent field on a Borel space Z.
Given a measure p on Z, say g; are bounded Borel functions with g(u) spanning
L®(p) in the weak* topology. If x; is a sequence of uniformly bounded y-Borel
vector fields in § with x,{) spanning () for all {, then the vectors g;x}(u)
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span '(w). If W is a y-Borel field of von Neumann algebras on Z, and A, is
a sequence of uniformly bounded y-Borel operator fields in U, with A((),
generating (L), the operators Al(u), together with the g(w)I, generate W (u).

Proof. Let x be a y-Borel field in § with x”(u)e$H’(w), and x(u) L gx’(w)
for all i, j. Then

0 = ¥() - gk

-3 f (0) - gOxUOdm(0)

2 [ 10 %000

I

[JEGRIGIGTTG

for all i implies x({) - x;({) = 0 a.e. It follows that x({) = 0 a.e., hence x(u) = 0.
Let B be the von Neumann algebra generated by the A}(u) and g,(u)I. It suffices
to prove that B’ = A'(w)’. If B'eB’, B’ commutes with the g(u)l. From the
decomposition theory, it follows that there is a uniformly bounded y-Borel oper-
ator field {— C() e X(H()) with B’ = C*(u). As B’ commutes with A,(n), C({)
commutes with 4,({) a.e., hence C({) e A(()’ a.e., and B’ € A'(u) = A(w)’.

If Z is a Borel space, let M(Z) be the measures on Z, together with the Borel
structure defined by the functions p— [ fdu, with f a bounded Borel function
on Z. If Z is standard, let Z have a compact metrizable topology generating its
structure, and let €(Z) be the continuous functions. M(Z) is Borel isomorphic
to the positive cone of €(Z)* with the weak* topology, and thus is standard.

LeMMA 4.3. Say that Z is standard, and $ : Z — 3# is Borel. Then p— H(u)
is a Borel field on M(Z), and there exists a coherence y(u) for $(u) with the
following properties:

) If x:Z—$, is a uniformly bounded Borel field in §, pu— x(u) is a y-
Borel field in p— H(n), uniformly bounded on M(Z),.

2) If A:Z— 2, is a uniformly bounded Borel field on 9, p— A(y) is a
uniformly bounded y-Borel field on p— H(u).

3) If W:Z - st is a Borel field on $, p— W(w) is a y-Borel field in u— H(u).

Proof. Let Z have a compact metrizable topology generating its structure, and
let €(Z) be the continuous functions on Z. Choose g; uniformly dense in €(Z).
Then for each ue M(Z), the g(p) span L” (u) in the weak* topology. Let
€n, 5 €,,, -+ be an orthonormal basis for §),, n =1, and define x,{({) =e,; for
leZ, x,()=0 elsewhere. From Lemma 4.2, the vectors g;x,;(1) span H(u).
Furthermore, for any combination of subscripts,
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{ f g&&du itn=n’, j=j’,
)] U= X (1) * 8i Xy (W) = 1
L0 otherwise,

is Borel on M(Z). Let v,({) be an enumeration of the fields g,({)x,;({). A simul-
taneous orthonormalization procedure (see [2, p. 139]) on the v (1), pe M(Z),
yields vector fields

) wi(h) = l<25kh,'f(u)v,,(u)

where hﬁ(u) is a Borel scalar function on M(Z), and the w,(n), k < dim $(w) form
an orthonormal basis for H(u), w(u) =0 for k> dim$H(x). From (5) and (4),
u- ” wi() ||2 is Borel, hence the set M,, of u with dim$(u) = m is Borel, and

u—9H(w) is Borel. If pe M,,, define p(u): H() = H.. by
YWy = % O * Wil -

A vector field pu — y(u) will be y-Borel if and only if y(u) - w,(u) is Borel for all k,
hence from (5), if and only if y(u) - g;x,;(1) are all Borel.
Let x, A, and U be as described above. Since

u—x(p) - gixnj(#) =X x(0) enjg-i(g)dﬂ(C)

n Z,

is Borel, p— x(u) is y-Borel, and if |x(0)| = K, |x(u)| £ Ku(Z)""*. Turning
to 4, if |AQ)| £ L, | A(w)| < L. To show that p— A’(y) is Borel, it suffices
to prove that on M,,

B A (Wem: " ny = AQWwiH) - wi)

is Borel. This follows from (5) as

u - A(ﬂ)gixnj(#) : gi'xnj'(ﬂ)
- f (AQ)er; - €0 )8HOEADAD)

is Borel.

From [5], we may select uniformly bounded Borel fields A;({) in A({) generating
A({) at each {. From Lemma 4.2, the fields A%(u) and g,(u)I generate A(y) at
each p, hence u— W (p) is a Borel map of M(Z) into &, (see discussion at the
end of §3 in [5]).

Let R be an equivalence relation on a Borel space X, and © be the quotient map
of X onto the set of equivalence classes X/R. Providing X/R with the quotient
structure, we say that R is smooth if X/R is countably separated. If u is a measure
on X, define the quotient measure v on X/R by wW(T) = u(n~*(T)). We have
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included the following version of the decomposition theorem for u (see [1],
[217, [9], [20]) as it gives partial results for non smooth relations.

LEMMA 4.4. Suppose that R is an equivalence relation on a standard Borel
space Z, . is a measure on Z, and v is the quotient measure on Z|R. Then there
exists a Borel map &— p, of Z|R into M(Z), such that if f is a bounded Borel
function on Z, and h is a v-integrable function on Z|R, then

©) f ho (0 Qdu(C) = f he) f FOdrdOE).

If R is smooth, each u; may be chosen concentrated in ().

Proof. If Z is countably or uncountably infinite, it is Borel isomorphic to the
one-point compactification of the integers, or to the Cantor set, respectively.
Thus we may let Z have a zero-dimensional, compact, metrizable topology. Let
¥ be the algebra of sets generated by a countable basis of compact open sets.
T is countable, and any decomposition of a set in ¥ into non empty disjoint sets
in X must be finite. It follows that any finitely additive, non-negative function on
is a measure, and as X generates the Borel structure on Z, extends uniquely to a
measure on Z (see [10, p. 54]).

For each Borel set S in 2, C —» u(SNn~(C)) is absolutely continuous with
respect to v, hence there is a non-negative Borel function gg on Z/R with

) us N7 () = [ goane).
C
If S and S’ are disjoint sets in X,
p(SVS)Na™HC) =S Nz~ (C) + u(S’ Nz ~'(C)),
hence
| 505 @0 = [ [es® + g5 @1an®
for all Borel C, and
gsus (&) = gs(8) + gs5(8)
for all v-almost all &. If S =Z in (7),

WC) = fc AE)dV(E),

hence g;(£) =1 v-almost everywhere. Letting the gg be zero on a Borel v-null set,
we may assume S — g5(£) is finitely additive, and extends to a measure p; € M(Z), .
The family of Borel sets T in Z for which ¢ — u.(T) is Borel and
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®) WT 077D = [ i

for Borel C in Z/R, is monotonic and contains X. Thus from [10, p. 27], the
family consists of all Borel sets in Z. If f and h are Borel characteristic functions,
&— [ fdue is Borel, and (6) is true. Linearity implies the same for simple f and h,
i.e., finite linear combinations of Borel characteristic functions. If f and h are
as described in the lemma, choose simple f, and h, with f, —f, h, — h point-
wise, and | f,,| =< | f I, lh,,| =< |h| As f is bounded, it is pg-integrable, and
[ fudue— § fdug. Thus &— [ fdu, is Borel, and as f was arbitrary, &— p,
is Borel. As & — [ | f|du, is bounded, |h(¢)| | |f|dus is a v-integrable function
dominating the h,(&) | fadue . Similarly, |h on({)f (C)l is u-integrable and dom-
inates h, o n({) f (¢). Taking limits, we obtain (6).
If D is Borel in Z/R, we have from (8)

f OO = WD A C) = f = (D)dn(o).
C C

Thus

© pe(m ™ (D)) = xp(&)

v-almost everywhere. If A is a countable separating algebra of sets in Z/R, let N
be Borel with v(N) = 0 and (9) valid for DeA and £¢ N. If £¢ N, choose
D,2D,2 -+ in A with nDi= {£}. Then pg(n~'(D,))=1implies that p(z~'(¢))=1,
i.e., i, is concentrated in 7~ 1(&). Letting U =0 for £ e N, we are done.

LemMA 4.5 ([16, THEOREM 2.117]). Say that Z is standard Borel space with
a Borel field W: Z — o,. If R is an equivalence relation on Z, and p is a measure
onZ,letp={ uedv() be a decomposition of the type described in Lemma 4.4.
Then there is a spatial isomorphism

B
f Q) = f N(pg)dv(E)

where B(£) = y(ug), y a coherence for p— $(u) as described in Lemma 4.3.

Proof. Let $:Z — s be the underlying field of Hilbert spaces for U. § is
Borel as Z, = {{ : A() e, } is Borel. We must define an isometry

U $) - f $P)dv(E).

Let B be the uniformly bounded Borelfields x : Z — §), in ), and for each A € M(Z),
let B(A) be the corresponding subspace of $(A). From Lemma 4.3, if xeB,
A— x(4) is a uniformly bounded y-Borel field in $(1) on M(Z),. Thus & — x(u,)
is uniformly bounded and B-Borel in $(u;), and
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*(uP () e f $P(u)dv(d).
We have

| xGo) | = f 1 B x| dwce)
= [ It J2ave

- f f 1%0) [PdueQdv()

f %@ [Pdu0)

| =Gy [

Defining U on B(u) by U(x(w)) = x(1;)*(v), U is an isometry.

As in the proof of Lemma 4.3, we may select uniformly bounded Borel functions
g: on Z which span L*(2) for all A€ M(Z). The functions hy(&) = [ g/({)du{) are
bounded and Borel on Z/R. They span L*(v), as if he L!(v) and h L h; for all i,

0= f hhdy = f ho n(OEQdu),

i.e., hon =0 p-almost everywhere, and h =0 v-almost everywhere. If h is a
uniformly bounded Borel function on Z/R, we assert that the class ho n(u,)
is that of the constant h(¢) for v-almost all €. If C is Borel in Z/R, letting the
h of (6) be y¢, and then ych,

[ [ ror0aman@ae = [ wo [ e,
c (o
hence there is a Borel set N in Z/R with w(N) =0 and
[ mom0a0an® = [ Mo
for all £¢N. As the g; span L®(uy), ho n(() = h(¢) for p-almostall {, £¢ N.
Again from the proof of Lemma 4.3, we may choose uniformly bounded Borel

vector fields v; in § with v;(4) spanning $(4) for all A€ M(Z). From Lemma 4.2,
the vectors

hi)v (e’ () = U(h; 0 2o, ()

span | Sf)"(yg)dv(f). As the v;(u) span H(u), B() and its image are dense, and U
extends to the desired isometry.
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If A is a uniformly bounded Borel field in U, we have from Lemma 4.2 that
& — A(u,) is a uniformly bounded p-Borel field in A(y,), and

B
AQO) € f M(ue)dr(®).

If x is in B, (4x) () = A(D)x(0) is another field in B,
UAmx(w) = U(4x)(n)
[(4x) ()T ()
(B Aux(u]()
= [A®m) x(1)"10)
= [A@W)’0)Ix(u) ),
hence UA(W)U ™! = A1)’ (v). As
U(h; 0 n(mwx(w)) = h()x(u)’(v),

Uh; o n(w)IU™! = h()I.

Letting By({) be an enumeration of the fields f,({)I and 4;({) described in the
proof of Lemma 4.3, the B,(4) generate (1) for each Ae M(Z). From Lemma 4.2,
the Bk(,ug)"(v), together with the operators h(v)I, generate [* W(u)dv(&). As
these are the images of the B,(u) and the h;on(u)l, respectively, U defines a
spatial isomorphism of [W({)du(0) onto [# A(u.)dv(é).

5. Central decompositions. If 9 is a von Neumann algebra on a separable
Hilbert space, a central decomposition (Z, <, u, &) of U is a standard Borel space
(Z,%) with a measure p and a Borel field § : Z » % with

o= f FOdu().

Such a decomposition always exists, and if (Z,, %o, o> o) is another such de-
composition, there is a measure isomorphism (7, N, Ny) of Z and Z, (see §4)
with F(0) = Fo(T()) for all {eZ — N. Letting n, bethe quotient map of F
onto £, 7,0 § and 7m0 Fomapyu and g, respectively, onto null-set equivalent
measures fi and i, on %. We say that U is centrally smooth if there is a Borel set
Pc % with u(P)=0 and F—P countably separated. Enlarging P by a Borel
null-set, we may assume & — P is standard (see [18, Theorem 6.1]), hence we call
such measures standard.

If Z is a Borel space, let My(Z) be the continuous measures on Z, i.c., those
measures for which all one-point sets have zero mass. For cardinals m with
1=m= o==y,, let M,(Z) be the measures totally concentrated in m points.
Given an arbitrary measure p, there exist unique measures u° and u®, with
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p=p®+ u®, where u° is continuous, and u?is discrete, i.e., totally concentrated
in points.
If pe M(Z), define

|u] =sup{|u({h]: Lez}.
LemmA 5.1. If Z is countably separated , then p— || u " is Borel on M(Z).

Proof. Choose a sequence of Borel sets S, separating Z. Let SP=S§,,
Sl =2Z-S;, S(&) = Z, and for any sequence i,, ---,i, of zeros and ones, let

S(iI’ Tt in) = S;I N r\Sni"'
If pe M(Z), define
||u“,,=max;1(S(i1,~-~,i,,)), i, i, =0,1.

| 1], is a decreasing sequence, hence its limit exists. As p— || |, is Borel, it will
suffice to prove that for all ue M(Z), ] u ” = lim |] u ||,l .

If S is Borel, define the measure u|S by (yl SY(T)=ulSNT). If
lim || u I,, =0 > 0, define a sequence jg,j;, -+ as follows. Let j, = . Suppose

that j,, ---,j, have been defined with
(10) lim ".uls(.ll,"]r) “n = 0.

As the sequences

an = ” #l S(jh "'9jra0) "n—l s
b, = " lul S35 sdr 1) "n-l
are decreasing, and
" 1 | S(jl’ ""jr) ”n = max {an, bn}a

lim | x| S(jy,++jp) |- must coincide with either lima, or limb,. This provides
us with j,,, satisfying (10). As the sets S; separate Z, ﬂ, S(jy,--+,Jj,) has at most
one point. On the other hand,

M(S(Jl’ "'9jr)) P " U ' S(jb "'»jr) ”n 20;

hence the intersection must contain a point { with p({{}) = 8. We conclude that
| ]| 2tim| 1|, The converse inequality is trivial.

LeMMA 5.2. If Z is countably separated, the sets M, (Z) are Borel in M(Z),
and the maps pu— pu and p— * are Borel.

Proof. If 6 > 0 and pe M(Z), there are at most finitely many { with u({¢}) = 6.
Thus there always exist { € Z with u({{}) = | 1 |. We call such { maximal p-atoms.
Define S(i,,--,i,) as in the proof of Lemma 5.1. For each ue M(Z), define
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io(w) = . Suppose that iy(p),---,i,(1) have been defined with S(i,(w),---,i, (1)
containing a maximal p-atom. Let i,, (1) =0 or 1 be the least integer with
S@,(W), -+, i+ (1) containing a maximal u-atom. Define

(11) p®=limp| SG, (), -+, i),

where limit is taken in the sense of convergence of the corresponding integrals
of each bounded Borel function. u“ is the ‘‘part’” of u concentrated in some
maximal p-atom. It will suffice to show that u— u®is Borel. For then, letting

c(w)=p— w1 and ¢4 (1) = cy(c(w),
My(2) = {pic,(w) =p},
U M@ = {piep =0} (n<w),

ksn
% Mk(Z) {ﬂhm C,,(Il) = 0}:

1

A

1

1A

ue = limc,(p).

Ifn=0, u-> ,ul S(i,(w),-+,i (1)) = u is Borel. Suppose that we have proved
p > | S(iy(w), -+, 1,(w)) is Borel. Then the maps

w1 SGy(), -+ i), ) = 1| SG (W), -+, 1 (W) NS, j=0,1,

are Borel. From Lemma 5.1,

g = || 1] = || 1] SGi(w)s -+, 1), 0) |
is Borel. Letting h(0) = 1 and h(f) = O for real ¢ # 0,

p=> | SGy(), -5 11 i s 1 (1))
= h(g(W)u| SG1 (), -+ ia(1),0) + [1 — h(g()]u| SG1(w), -+, in(w), 1)

is Borel. From (11) it follows that u — u“ is Borel.

Let By = L*([0,1],v) where v is Lebesque measure. If 1 < m < o0 = N, let
B, = L (I, v,), where J, are the first m integers, and v,, is the measure with
V()= 2 ~. The B,, are von Neumann algebras when they are represented on the
corresponding L2-spaces. If u is a standard continuous or discrete measure acting
on a Borel space Z, L (Z, u) represented on L*(Z, p) is spatially isomorphic to one
of these algebras.

THEOREM 5.3. If W is a centrally smooth von Neumann algebra, there exists
a Borel subset W of #, a Borel map B : W —» F with n,0 B(¢) = &, and standard
measures v,, on W for which

9”0 = g B(Ed(E) ® P

The measures v,, with m > 0 may be chosen disjoint.
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Proof. Let (Z,¥ ,u,‘f«;) be a central decomposition for U, and /& be the induced
measure on Z. As A is standard, we may choose a Borel set W< Z with
;4(.97 W) =0, and W standard in the relative structure. Decreasing W by a
Borel null set, we may let B: W —»F be a Borel cross-section for 7, (see [18,
Theorem 6.3]). Letting Z,, be the 7, 0§ inverse image of W, the Z, quotientstructure
must correspond to the relative structure on W, as the latter is countably separated
(see the proof of [18, Theorem 5.1]). From Lemmas 4.4 and 4.5, we have a Borel
map & — g, of W into M(Z,), with p, concentrated in 77 *(£) and

/]
ux [(Fwdne.
As Fue) = Fup) @3}(/12), we have from Lemma 4.1 and (1)
ﬂc pd
(12) u [ §upa©© [ 56,

where B°(¢) = yp(u5) and P(E) =y(ud). Let v, be the restriction of £ to
Wo = {€: uf # 0} and for m 2 1, let v,, be the restriction of /i to {&: u e M,(Z,)}.
Then from Lemma 4.1 and (3),

Fup) =B @ Po
for vo-almost all £, and form = 1,

Fu) = B©) ® B

for v,-almost all £. The theorem follows from (12) and (2).

It is readily verified that the measure classes of the v,, are uniquely determined
by U, and that any such system of standard measures arises in this manner from
a centrally smooth von Neumann algebra. The latter is in contrast with the group
representation situation, in which ‘‘noncanonical’’ standard measures can occur

(see [18, p. 164]).

6. Global structure. Let 9 be a von Neumann algebra on a Hilbert space $),
3 the Boolean algebra of central projections in A. We say E, F € 3 are spatially
equivalent, Ex F, if UE and AF are spatially isomorphic (a corresponding
theory may be formulated using algebraic isomorphisms). Letting M() be the
operators T on § with TUAT* = A and T*AT < A, we have E = F if and only
if there is a partial isometry U € M(2) with U*U = E and UU* = F. 3, together
with the equivalence =, may be thought of as a global analogue of the lattice
of all projections in U with the usual equivalence. More precisely, (3, 2) is a
dimension lattice in the sense of Loomis [14], and we may examine all of the
concepts normally associated with such a lattice.

Projections E, F € 3 are globally disjoint if there do not exist E,, F, € 3 with
O#E,<E, 0#F, <F and E,=F,. E is globally central if E and I — E
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are globally disjoint. We let 3¢ be the collection of such projections. If E€ 34
and F~ E, FLE.

LEMMA 6.1. 3, consists of the central projections left fixed by the spatial
automorphisms of U.

Proof. If E is globally central, and V induces a spatial automorphism of A,
then V*EV = E and VEV* = E imply V*EV =E. If E is not globally central
choose a nonzero partial isometry Ue M(WN) with U*U <E, UU*<I-E.
Then the unitary ¥V = U + U* + [I — (U*U + UU*)] induces a spatial auto-
morphism of U that does not leave E fixed.

If E€ 3, we let G(E) be the minimal projection in 3, with E < G(E). We say A
is a global factor if 3 = {0,1}, and W is globally multiplicity freeif 36 =3. A
is of global type I if there is a projection Ee3 with G(E)=1I and E globally
multiplicity free. % is globally finite if E€ 3 and E = I imply E = I. U is globally
semi-finite if there is a projection Ee€3 with G(E) =1 and UE finite. A is of
global type 11 if U is globally semi-finite, and there does not exist Ee 3 with
E # 0 and UE of global type 1. Finally, U is of global type III if there does not
exist Ee 3 with E # 0 and UE globally semi-finite.

It is a simple exercise to check that the centrally smooth global factors are
those of the form F ® P,,, & a factor, and that such an algebra has global type I
if m 2 1, and global type III if m = 0. Thus a global factor (or in fact, any von
Neumann algebra) of global type 11 would not be centrally smooth. The existence
of such an algebra would imply that & and F are nonsmooth, and the existence
of uncountably many nonalgebraically isomorphic factors would follow. We are
currently examining the von Neumann algebras associated with the regular rep-
resentations of countable discrete groups. We remark that it is not difficult to
prove that if such a group has all of its automorphism classes (other than that
of the identity) infinite, then the corresponding algebra is a global factor. The
rationals under addition form such a group.

We have been unable to give a global characterization for the centrally smooth
von Neumann algebras. In particular, we do not know if the analogue of
Guichardet’s theorem for multiplicity free representations [8] is true. Specifically,
is any globally multiplicity free von Neumann algebra on a separable Hilbert
space centrally smooth?
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