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1. Introduction.

1.1. Let Tbe a 1-1 transformation of a measure space LY, m); we assume T

measurability-preserving, but not necessarily measure-preserving. For each

n = 1,2,"-, the Radon-Nikodym derivative co„ix) is determined (almost everywhere)

so that §Aeû„ix) dmix) = mCT'A) for every measurable set ^4cl. The main

theorem of this paper (Theorem 3, 5.1) is that, if miX) is finite, we may discard a

fixed null set from X in such a way that, for all remaining points x, the set of n's

for which (ù„ix) = a has a well-defined relative density in the set of n's for which

co„ix) = ß, whenever 0 z% ß z% a. We also show (Theorem 4, 5.2) that this relative

density has some useful properties provided T is incompressible. If we were

willing to let the discarded null set depend on a and ß (or, what comes to the

same thing, to restrict attention to only countably many a's and ß's), the theorem

would be relatively straightforward. The need for obtaining a single "bad" null

set is responsible for most of the complications of the proof; but it also makes the

relative density much more useful. The author hopes to use it in a later paper, to

obtain conditions for the existence of an invariant measure, and to construct one

when one exists.

The main theorems are deduced from two others (Theorems 1 and 2, 2.1 and

4.1) which may also be of interest. We assume more about T(that it is measure-

preserving), and obtain conclusions about the relative frequencies of «'s for which

fCTnx) = oc, f being a positive and summable function (the hypothesis actually

employed is a little weaker than this). We also include some examples (3.5, 5.3)

to show that the hypotheses in our theorems cannot be omitted.

Both Theorems 1 and 3 are easily reduced to the case in which T is incompres-

sible, and for the greater part of the paper we work with incompressible trans-

formations. The general idea of the proof of Theorem 1 is to apply the Halmos-

Hopf ergodic theorem, not to/itself, but to a suitably "smooth" modification g

off (or rather, for technical convenience, of 1 //). Our construction of g requires

severe restrictions on X, but has the effect that, once we obtain the desired re-

lations for rational <x and ß, we can infer them for all a and ß. Finally the re-
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strictions on X ate removed one at a time, in §3, using standard techniques. Once

the existence of the relative density has been established (Theorem 1), its properties

(Theorem 2) follow less laboriously, via ergodic theory; and the deduction of

Theorems 3 and 4 is straightforward. We remark that, while the proof of Theorem 1

could be greatly simplified by assuming that Tis ergodic, this would not help with

Theorem 3, even if we restrict it to ergodic T; for Theorem 3 is obtained by

applying  Theorem   1   to  a  nonergodic  transformation.

1.2. Notation. We suppose throughout that (X, m) is a measure space, the

measure m being countably additive, o"-finite, nonnegative and complete (subsets

of null sets are measurable). T is a 1-1 map of X onto X such that both Tand

T~1 preserve measurability and null sets (but not necessarily the measure). A set

£ cz X is "invariant" if £ = TE. Clearly every null set £ is contained in the

invariant null set U{T'£|i = 0, ± 1, ± 2, •••}. These expressions also exemplify

a notation-simplifying device we shall often use: the omission of brackets in

expressions like T'E, mE, etc.

Throughout the paper,  we make the convention that 0/0 = 0.

The characteristic function of a set £ is denoted by X(E) or XE; its value at x is

X(E; x). The cardinal number of £ is £j. The empty set is 0; the set of positive

integers is Jf, and the symbol n always denotes a positive integer. If Aczjf

(and neJf), An denotes the set {j\jeA, j = n}. If A <= B c JT, we define the

"relative density of A in B", written d(A,B), to be the limit as n->co (if it exists)

of dn(A,B) = \A„\ /|B„|. (Thus d(0,0) = 0, because of our convention about

0/0.) In particular, if A(x) = {n|con(x) = a} and B(x) = {n\con(x) — /?}, where

xeX and 0 = ß^ot(<co), we write d(A(x), B(x)) (if it exists) as d(cc,ß; x).

Again, if / is a real-valued function on X, and A(f,x) = {n\fTnx = ot}, B(f,x)

= {n\fT"x = ß}, we write dn(A(f,x), B(f,x)) as Dn(ot,ß;x), and its limit

d(A(f,x), B(f,x)) as D(ot,ß;x)(2).

1.3. Measurability. A subset £ of the product X X Y of two measure spaces

will be called "fully measurable" if

(i) £ is measurable in X x Y,

(ii) the section x = constant of £ (that is, {y | (x, y) e £}) is measurable in

Y for each xeX,

(¡ii) the sections y = constant of £ are measurable in X for all y e Y. Similarly, a

function fon X xYis "fully measurable" iff is measurable and also/(x,j?) is

measurable in y for each fixed x, and in x for each fixed y. These notions extend

to products of more than two factors ; we require measurability when any subset

of the variables is fixed, as a function of the remaining variables.

Given a measurable set E cz X x Y, we can always remove a null set from £ so

that the remaining set Ey is fully measurable. For there is a null set NyCzX outside

(2) Of course D(oi, ß; x) depends also on /; but as we consider only one / at a time we

need not incorporate this dependence into the notation.
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which the x-section of £ is measurable, and similarly there is a null set N2c=Y

outside which the y-section is measurable; we remove £ n {(ATt x Y) U (X x JV2)}.

By applying this to each of the sets {(x,y)|/(x,y) < p} for p rational, we see:

given a measurable function f on X x Y, we can alter f on a null set so that it

becomes fully measurable. We shall make frequent use of this later.

Except in 3.1 below, where nonmeasurable sets may occur, all sets and functions

arising will be measurable. Usually the verifications of measurability are routine

arguments and so omitted. The following results will be useful in dealing with

less routine situations. In all of them, / is an extended-real measurable function

on the measure space iX, m), and A is a fixed measurable subset of X.

(1) If Biy) = {x |/(x) >fiy)}, for each yeY, then miA n £(y)) is a measurable

function of y.

For each a = 0 we must prove that the set Cx= {y\yeX, miA n Biy)) > a}

is measurable. For each rational number p, write Lp = {x | x e X, fix) < p},

Up = {x | x e X, fix) > p}. It is easy to verify that Ca = \J{LP \ miA n Up) > a),

a countable union of measurable sets.

(2) If D(y) = {x \fix) ^/(y)}, for each yeY, then miA n D(y)) is a measurable

function of y.

For we can write A as the union of pairwise disjoint sets A„ in e Jf), each

measurable and of finite measure, and have m(/ln£)(y))= Z"=i{m(^4„)

— miAn CiBiy))}, a sum of measurable functions, by (1).

A similar argument now shows :

(3) If £(y) = {x |/(x) =/(y)}, then miA n £(y)) is a measurable function of y.

2. Relative densities for functions.

2.1. In this section we begin the proof of:

Theorem 1. Suppose Tis measure-preserving, and fis a positive measurable

real function on X such that, for every a > 0, m{x|/(x) ¿z a} < oo. Then there

exists an invariant null set N such that, whenever xeX — N andO íí/?^a(<oo),

then Di<x,ß;x) exists.

The proof begins by establishing the theorem in a special case.

Lemma 1. Theorem 1 is true if Tis incompressible and X is a linear interval

iperhaps infinite) with Lebesgue measure.

2.2. Proof of Lemma 1. Since X is now "a-normal" in the sense of [4],

we can apply [4, Theorem 6] to express X as a union of pairwise disjoint

measurable invariant sets,

X = N0v[J{Zn\ne^},

where N0 is null and where (Z„, m) is isometric (that is, isomorphic in a measure-

preserving way) to a product (X„,v„) x (Y"„, pf) of tr-normal measure spaces, in

such a way that (i) each "fibre" (x„ x Y„, p„) ix„eX„) is invariant under T¡(or,
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more accurately, under the transformation which corresponds to T under the

isomorphism between Z„ and X„ x Y„; we still denote this by T), and (ii) T is

ergodic and measure-preserving on it. It will evidently suffice to prove the theorem

for each Z„, so we may replace X by X„ x Y„.

Now, as shown in [4, Theorem 6], there are only three possibilities for (Y„,pn):

(a) It consists of a finite number of points, permuted by T.

on Xn x Y„, and the assertion of Theorem 1 is trivial.

Here Tis periodic all xneXn.

(b) It consists of points p¡, i = 0, ± 1, ± 2, •••, and T(x„, p¡) = (xn, pi + l) for

Because T is incompressible, this case cannot arise here.

(c) The final possibility is that (Y„, p„)is isometric to a linear interval (perhaps

infinite) with Lebesgue measure.

Since (Xn,vn) is c-finite, we can express it as a countable union of pairwise

disjoint measurable sets Unj with v„(UnJ) < oo ; and it will suffice to prove the

theorem for each Unj x Yn.

Thus it is enough to prove the Lemma under the further assumptions:

(1) (X, m) = (U,v) x (Y,p), where v(U) < oo ; (Y,p) is a linear interval of the

form [0, a), where 0 < a — oo, with Lebesgue measure ; each u x Y is invariant

under T, and T restricted to (u x Y, p) is ergodic and measure-preserving.

2.3. The given function/, of Theorem 1, is now a function of the two variables

ue(U), ye(Y). For each y^Owe write

R(y) = {(u,y)\f(u,y) > y} =r1(y,co),

S(y) = {(u,y)\f(u,y)^y}=r1[y,co).

By hypothesis on /, all these sets are measurable and (except perhaps for y = 0)

of finite measure. As shown in 1.3, we may alter/on an (invariant) null set (which

does not alter the assertion of Theorem 1) and make it fully measurable. The

reasoning in 1.3 also shows that we may here arrange that all the sets (u x Y) n R(y),

{u x Y) n S(y) ate not only measurable but also of finite p-measure if y > 0.

We introduce the following notation. If £ is any subset of U x Y meeting the

fibre m x Y in a measurable set, then Eu = {y\(u,y)eE] (so that « x £„

= (uxY)n £), and p„(£) = p(£„).

Now we define real-valued functions h, H, k on X by:

h(u,y)   = puR(f(u,y)) = p{z\f(u,z)>f(u,y)},

H(u,y) = puS(f(u,y)) = p{z\f(u,z)=f(u,y)},

and

k(u,y)   = p{z\0 = z=y,f(u,z)=f(u,y)}.

These functions are measurable, from 1.3(1)—(3), and in fact fully measurable.

We observe that k is continuous in y, for fixed u. Clearly also
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(1) 0^k(u,y) = H(u,y)-h(u,y).

Now define

(2) giu, y) = h(u, y) + k(u, y) + 1 ¡f(u, y),

a fully measurable finite positive function. We shall prove that, for each real

number a and for each ueU,

(3) p{y|yeY,g(U,y) = a}=0.

Throughout the proof of (3), a and u are fixed. The first step is to show

(4) iffiu,y) <fiu,z) then g(u,y) > g(u,z).

For we have Hiu,z) g hiu,y), and therefore, from (1) and (2),

giu, z) è H(u, z) + 1 ¡fiu, z) < h(u, y) 4-1 ¡fiu, y) = giu, y).

It follows that the values of g determine those off, and we may find a positive

real number ß such that

(5) if giu,y) = a, then/(u,y) = ß.

Write A = {y | y e Y, giu, y) = a}, B = {y | y e Y, fiu, y) = ß}; thus (5) asserts

AezzB. We must prove pL4) = 0.

Write A = puR(ß) + 1 /i?. We observe that, if ye A, then ß = f(u, y) and therefore

Riß)« - {z|/(«,z) >/(",y)}> giving A = A(ii,y) 4- l//(u,y). Thus

(6) if ye A, then g(u, y) = X + k(u, y).

Now let yy, y2 be any distinct members of A, say with y y < y2. Then

giu,yf) = ^ = giu,yf) and f(u,yf) = ß=f(u,yf). It follows from (6) that
^("»yi) = fc(M»y2). From the definition of k, we now have

p([0,y1]nB) = p([0,y2]OB),

both finite, and therefore p([yi,y2] OB) = 0. A fortiori, A meets every interval

[yi,y2], where y1; y2eA, in a null set. Hence A itself is null, and (3) is proved.

2.4. We next derive some further properties of g.

(1) If giu, z)^ giu, y), then

°^f^zj-fih)-8{u'z)-g(u'y)-

The first inequality comes from 2.3 (4). In proving the second, we may assume

f(u,z) <f(u,y). Then H(u,y) ^ h(u,z), and the desired inequality follows from

2.3 (1) and (2).

As a sort of converse to 2.3 (5), we have:
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(2) Given ueU and ß > 0, there exists y — 0 such that/(w, y) — ß if and only if

g(u, y) ^ y. This also holds when ß = 0, if we allow y to be infinite.

We define y as follows. If f(u,y)< ß for all yeY, put y = 0. Otherwise,

y = sup {g(u,y) \f(u,y) = ß}. This is finite if ß > 0, because 2.3(2) shows that if

f(x,y) = ß then g{u,y)='H{u,y) + llßgipJS{ß) + llß, a (finite) constant. If

f(u,y) = ß, the definition of y ensures g(u,y) = y. Conversely, suppose g(u,y) z% y.

Then (since y — g(u,y) > 0) there must be y's for which f(u,y) — ß, and hence

there is a sequence {yn\nejV} such that f(u,yn) = ß, g(u,yy)g, g(u,y2)^ •••,

and limn^ œg(u,y„) = y. If g(u,y) < y, it follows that g(u,y) < g(u,yn) for some

n; by 2.3(4) it follows that/(«,y) ~-f(u,y„) = ß, as required. In the remaining

case, g(u,y) = y, it follows from 2.4(1) that lim,,.,^ 1 ¡f(u,y„) = 1 ¡f(u,y) > 0, and

hence that f(u,y) = limn^mf(u,y„) — ß, completing the proof.

Now define

(3) G(«)-{<«.*) | l(ii. ?)*«}.

Thus, in accordance with our previous notation, puG(oi) = p{y | g(u,y) z% a}. Given

ueU and a — 0 (and finite), we prove

(4) mG(a) < oo and p„G(a) < oo.

Suppose first a > 0.  If g(u,y)i%oi, then f(u,y) = l¡ot from  2.3(2);  thus

G(a) cz S(l ¡ct), of finite p- and pu-measure. If a = 0, the result follows a fortiori.

Finally, a result which will be very useful later:

(5) For each fixed ueU, p„G(a) is a continuous function of a.

For it is monotone, and 2.3(3) shows it has no jumps.

2.5. For each u e Í7 we define

g0(u) = sup {t |puG(0 = 0},   N* = {(u,y) |g(u,y) g g0(u)}.

Then g0 is easily seen to be measurable, so that JV* is fully measurable. Moreover,,

for each u we have

(1) p„7V* = 0.

For we can take a sequence tx < t2 < ■•• converging to g0(u), and then have

iv„*= Ü {y I «(«.y) = O u {y I «(«.y) - *<>(«)} ;
n = l

the last of these sets is null, by 2.3(3), and the others are null because t„ < g0(u).

It follows that mN* = 0. We enlarge N* to an invariant null set Ñ and assert:

(2) If (w, y) e X — Ñ, and t is any real number such that puG(t) = 0, then

T.r=oï.(G(t);V(u,y)) = 0.
For  if  not,   we   have   some   T'(u,y)eG(t),   where   (u,y)eX — Ñ.   Then

g(T(u, y))z%t^ g0(u), giving T'(u, y) e N* and therefore l(u, y)eÑ,a contradiction.
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Next we show that (after enlarging A7 to a possibly larger invariant null set)

we also have, for all (u,y)eX — Ñ:

(3) If í is a real number such that puG(t) > 0, then

Z   xiGit);TÏu,y))= co.
¡ = o

For, since T restricted to u x Y is ergodic, it follows that (3) holds for fixed u

and / and for almost all y. Now, fixing merely t, we see that the set of («,y) for

which (3) fails, being measurable and meeting each u x Y in a null set, is null.

Thus (3) holds for almost all (t/,y) and for all rational t; but, from 2.4 (5), it then

follows for all t.

Now suppose 0 z^ p z%er < co . We apply the Hopf-Halmos ergodic theorem to

the incompressible transformation T on X = U x Y, and to the functions

XGip), XGier). A convenient form of the theorem for our purpose is given in [5,

Lemma 7.2]. Both of these characteristic functions are nonnegative and summable

(from 2.4 (4)). We must also check that, in the notation of [5],

QixGip)) <= QixGier)),

where ß(X(£)) = U.°°=-ooTí{(M,y)|X(£; (u,y)) * 0} = \J " _œ t'E; and this fol-

lows because Gip) c: Gier). Thus the theorem gives the existence of a null set

Nip, d) such that, on writing

(4) L(oc-uy)       ^{xiGÍP);T'(u,y))\0z%i<n}
(4) L„(p,<7,«,y) - s {x(G(a).r¡(u^))(0^-<n}.

we have

(5) L„ip,er; u,y) converges to a (finite) limit Lip, er; u,y) as « -» oo , whenever

{u,y)eUxY-N(j>,&).
Now, from (2) and (3), the denominator in (5) (almost everywhere) either tends

to oo or is always 0 (in which case our convention makes L„ip,cr; u,y) = 0).

Hence the limit Lip,er; u,y), or L{u,y) for short, is invariant (except on a null

set); and by enlarging Nip,er) to an invariant null set we may arrange that Liu,y)

is invariant everywhere on U x Y— Nip,er). But Tis ergodic on each u x Y, so

that for almost all y (depending on u) L{u,y) must be a constant, which we denote

by Lip, a, u), or Lfu) for short. We show that

(6) L(ti) = pI1G(p)/puG(f7).

In fact, if pfiier) > 0, Halmos's formulation of the ergodic theorem applies to

the restriction of T to u X Y, for XG(rj) is invariantly positive on u x Y. Hence

[2, p. 160] we have »

XiGip);u,y) dpJy) =        L(w, y)x(G(fj) ;u,y) dp„iy) ;
Juxy JuxY
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that is, puG(p) = L(u)puG(a), giving (6). If, however, puG(o-)=0, we have

L„(u,y) = 0/0 = 0 for almost all y (depending on u), and hence L(u) = 0, so that

(6) still holds.

From (6), the subset of U x Y on which L(u,y) # L(u) is measurable; and,

since it meets each u x Yin a null set, it is therefore null. So, by a further enlarge-

ment of N(p, a) to an invariant null set, we have :

(7) For all (u,y)eU x Y-N(p,a),

lim Ln(p,o; u,y) = L(p,a; u,y) = p„G(p)/puG(<r).
n-*co

Note that if p(Y) is finite, then so is m(U x Y), and we can allow p and/or a

to be oo in the foregoing; for XG(o) will still be summable.

2.6. We write N for the union of all the discarded invariant null sets Ñ and

N(p,cr) for rational p and a (0 ^ p ^ a), counting oo as "rational" if p(Y) is

finite. Of course N is itself an invariant null set. Our immediate object is to show :

(1) If (u,y) e U x 7- N, and if 0 g y g <5 = oo, then limn^œL„(y,o; u,y)

exists and equals puG(y)lpuG(S)(3).

We first deal with the case in which puG(S) = 0. Here 2.5(2) shows that the

denominator of Ln(y,ô; u,y) is also 0, and (1) holds trivially. In what follows we

assume p„G(<5) > 0, and hence ô > 0.

From 2.5(3), the denominator of L„(y,<5; u,y) is now never 0. Thus if y = <5,

finite or infinite, (1) holds trivially, so we may assume y < Ô.

Suppose first S < oo. The case in which y = 0 is again trivial (we have G(0) = 0

and the numerator of L„(0, ô ; u, y) is 0), so we may assume y > 0 and take rational

numbers px, Oy, p2, a2 such that 0 < px < y < ax < p2 < ô < a2. Further, from

2.4(5), we may suppose p2 so close to ö that puG(p2) > 0. (Here w is fixed.) Then

Ln(py,a2; u,y) g L„(y,<5; u,y) = Ln(ax,p2; u,y),

so that 2.5(7) gives

/A,G(Pi)/paG(o-2) Ú   liminf Ln(y,ô;u,y)
n-»oo

=   Urn sup L„(y, <5 ;u,y)
n-»oo

=   rluG(Oy)lpuG(p2).

We make p1; a y -» y and p2, a2 -» ö and again use the continuity of puG (2.4(5));

and (1) follows.

Now suppose ô = oo. Let i be any integer greater than y ; then the above argu-

ment gives

(3) Here, if p. Y is infinite, puG(co) = 00. We adopt the convention that A/oo means 0 if A

is finite, 1 if X = oo.
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0 zi lim sup L„iy, co;u,y)z% lim Ln(y, i ; u, y) = puG(y) ¡puG(i).
n-»oo n-»oo

But gis everywhere positive, so \Jfi(i) = X and lim*_ ̂ „GO") = pY. Thus if

pT=co, we obtain lim„_a0L,1(y, oo; u,y) = 0 = puG(y)/puG(co), as required.

Finally, if pY is finite, we pick a rational number er > y, large enough for

«uG(er)>0. The previous results give lim„_00L„(y,<7; u,y) = puG(y)¡puG(er), and

the construction of N (see the end of 2.5 and the beginning of 2.6) gives

limn^mL„ia, oo; u,y) = puG(er) ¡puG( oo).  Multiplying, we obtain

lim L„(y, oo ; u, y) = pfiiy) ¡pfii oo ),
ft->00

as required.

2.7. We can now easily conclude the proof of Lemma 1. The ratio we have to

investigate is

Djaß-uy)=  ^{xiSi^riu,y))\lèi = n}
un(*,p,u,y)      WmyKu;y)^lúiúny

where 0 :g/? ;g a < oo, and where we assume (u,y)eU x Y—N. Keeping u

(and y) fixed, we apply 2.4 (2) to obtain y — 0 (possibly infinite) such that

f(u,z) — a if and only if g(u,z) ^ y, and similarly <5 ̂ 0 such that f(u,z) _ ß if

and only if g(u,z) _ <5. The construction used to prove 2.4(2) shows that here

y z% <5. Because T'(w,y)eu x Tfor each i, we have Tl(u,y)eS(o>) if and only if

T'(u, y) e G(y). That is, the numerator of Dn(a,ß; u,y) is just

Z   KiGiy);T\u,y)).
i = l

Similar considerations apply to the denominator, so that D„i<x,ß;u,y) is just

Ln(y,ô; T(u,y)), and by 2.6 (1) it converges to the (finite) limit puG(y) /puG(ô) as

«-> oo.

3. Proof of Theorem 1.

3.1. Let S be the rr-field of measurable sets of (X, m), and 31 the family of null

sets; we have assumed m complete, so 51 c $8.

Lemma 2. Theorem 1 is true if(i) Tis incompressible, (ii) X has a separating

sequence which generates the measure algebra 93/91, and (iii) 93/91 has no atoms.

By the construction in [3, p. 335], there is an isometry (a measure-preserving

point-isomorphism) of (X, m) onto a subset Z of a linear interval L (finite or

infinite), where Z is possibly nonmeasurable but of full outer measure in L, and

has the relative measure induced by Lebesgue outer measure in L(4).To save notation,

(4) The result quoted here, though not explicitly stated in [3], is implicit in the proof of

[3, Theorem 1]. It is assumed in [3] that m(X) = l,but the extension to the cr-finite case is

immediate.
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we suppose X = Z and that the isometry is the identity. We show that the situation

in Z can be imitated in L, by standard technique, and the conclusion will follow

from applying Lemma 1 to L.

The measure algebra 23 /9Î of Z ( = X) is isometric to the measure algebra

23* ¡yi* of L (the measure class of A cz L corresponding to the measure class of

A O Z). Thus T induces an isomorphism of 23* /5l*. Because L is an interval,

this isomorphism is induced by a point-isomorphism T* of L [3, Theorem 3](s).

That is, there is a 1-1 measure-preserving map T* of L onto L such that, for each

measurable A cz L, T(A O Z) = Z n T*^4 modulo null sets (of Z, and so of L).

We first show that T and T* | Z agree almost everywhere. To see this, consider

the intervals C„¡ = Lr\\iln, (i + l)/n), where neJf and i = 0, ±1, ±2, ••■ ; let

Nni denote the symmetric difference of the sets Z n T*Cni and T(Z n Cni). Then

each A^j is a null subset of Z; hence so is the union of all of them, which we denote

by TV1, and hence so also is N2 = T"1^1 UJV1. We show

(1) if zeZ - N2, then Tz = T*z and T~xz = T*~lz.

For each ne^V there is a well-defined integer j=j(n,z) such that zeCnj.

Then Tze P)„T(Z nCnJ). But Tz^TV1 (else zeTV2), so Tze f]nT*CnjnZ.

However (because T* is 1-1) Ç)nT*Cn} consists of the single point T*z; thus

Tz = T*z. Again, if w = T~lz, we have Tw^TV1, so by the previous argument

Tw = T*w; that is, z = T*w, or T*_1z = w= T~lz.

Let N* = U{T*'TV21 i = 0, ±1, ±2, •••}, a null subset of L which is invariant

under T*. We define a new transformation T of L by:

(a) if teL-N*, Tt = T*t;

(b) T\N* is an arbitrary permutation of TV*.

Clearly T has all the properties which we required of T*, and from (1) it has the

further property

(2) if zeZ-N* then Tz = Tz and T_1z = T~xz. Also we have:

(3) TV* is invariant under 7*, and TV* n Z is invariant under T.

The first part of this assertion is immediate from the definitions of TV* and T*,

and the second follows from the first, because of (2).

Now we are given a positive measurable function f on Z such that mS(oi) < oo

for every a > 0, where (as before) S(oi) = {z | zeZ, f(z) = a}. For each real a we

take a measurable subset 5'*(a) of L so that Z O <S"*(a) =5(a); when a g 0 we take

5*(a) = L. Define S(a) = Q{S*(p) | p rational, p<a}; thus S(0) = L, and

ct> ß implies £(a) c SíjS). It is easy to yerify that Z O ^(a) = S(ot). We define a

function /on L by :

/(í) = sup{a|í6S(a)}      (íeL),

and again easily verify that {t\f(t)'—Oi}=S(ot). It follows that /is measurable,

and f(z) =f(z) for all zeZ. Hence 0 < /(t) < co for almost all t e L. Moreover,

(5) Again in, [3] it is assumed that m(L) = 1, but the result follows for arbitrary intervals.



1966] RADON-NIKODYM MEASURABLE TRANSFORMATIONS 239

if a > 0, meas{í|/(í) = a} < oo , because this measure is the same as the (outer)

measure of its intersection with Z, which is mS(ct), finite by hypothesis.

Thus we may apply Lemma 1 to the measure space L, the transformation T

(which is clearly incompressible) and the function /. There is an invariant null set

TV cz L such that, if t e L— TV and 0 — ß = ot, then the relative density of

{n|/(f"i)^a}   in    {n\f(T°t) = ß}

exists. Thus the relative density of {n |/(T"z) = a] in {n |/(T"z) 2: ß) exists when

z e Z — (TV U TV*), that is, for almost all z e Z — whenever 0 — ß—^tx.

3.2. Lemma 3. Theorem 1 is true if (i) T is incompressible and (ii)23/9i has

no atoms.

Because m is c-finite and there are no atoms, we can find, for each n e JÍ, a

covering <€n of X by measurable sets CnJ, j e jV, each of which has positive measure

less than 1/n. Write ^ = \Jfên, and let J5" denote the finitely additive field of

sets generated by all the sets T'C, T'R(p), i = 0, ±1, ± 2,•••, where Ce'ß, p is

rational, and (as before) R(p) = {x \f(x) > p}. Let ¿¿> be the o--field generated by J5".

We observe that S¿ also contains all the sets T'R(a) where a is real; for

K(«) = \J{R(p)\p rational, p > a}. Also (1) 3>ßi has no atoms; for if De9

and mD > 0, then for large enough n and some j we have 0 < m(D n C„f) < mD,

and clearly D n Cnj e 2.

For each xeX, define

7r(x)= p|{F|xeFe#"}.

Thus xen(x)eSi (because J^ is countable), and m(7i(x)) = 0 (because ^c#).

It is also easily seen that if n(x) i= n(y) then n(x) r\ n(y) = 0 ; in fact, n(x) is the

equivalence class of x under an obvious equivalence relation.

Next we prove, by "Borel induction", that

(2) ifxeDe®, n(x)czD.

For let S be the family of all subsets E of X such that ti(x) cz E for all xe£.

Clearly !F c ê, and one readily verifies that S is a Borel field. Thus 2 c S, as

required.

Applying (2) to X — D, we have

(3) if x i D 6 Qi, ti(x) C\T> = 0.

Another consequence of (2) is

(4) ifDe£>,D=\J{Tz(x)\xeD}.

It is easily seen that F e !F if and only if TF e !F, and therefore

(5) n(Tx) = Tk(x).
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And since each R(p) is in ^, we have

(6) / is constant on each n(x).

Let X' denote the set {n(x)\xeX}, and let n' denote the natural map of X

onto X'; that is, n'(x) = n(x) (but regarded as an element of X' rather than as a

subset of X). We extend »' in the usual way to a map from subsets of X to subsets

of X'; that is, n'(E) = {n(x)\xeE} (so that the usual notation makes

ti(£)= \Jn'(E)). Let 23' be the family {n'(D)\De®}, clearly a Borel field of

subsets of X'; from (4), n' provides a 1-1 correspondence between S and 23'.

We define a countably additive tr-finite complete measure m' on X' by: m'(B')

= m(n' -1B') (B'e23'), and a transformation T' on X' by

T'(Tr'x) = ti(Tx)       (xeX);

by (5) this is well defined, and we have

(7) T' = 7i'T7t'_1,

showing that T' is 1-1, onto and measure-preserving. It is easily seen that T is

incompressible. Also the other hypotheses of Lemma 2 are satisfied: the measure

algebra of X' has no atoms, from (1), and is generated by the separating sequence

formed by the (countable) family of sets n'F,Fe &. We use (6) to define a function

/' on X' by: f'(nx) =f(x); this is positive and finite, and we have

(8) S'(ce) = {x' |x' eX', f'(x') = a} = n'S(ot),

so that/' is measurable and m'S'(ct) < oo if a > 0. Thus, by Lemma 2, the relative

density of {n |/'(T'V) = a} in {n|/'(T'V) = ß} exists whenever x'eX' -N'

and 0 g ß — oc, TV' being an invariant null set. But this implies at once the cor-

responding statement about /, T and X (we take TV to be the null set

7i'~1N'), and Lemma 3 is proved.

3.3. Lemma 4.    Theorem 1 is true if T is incompressible.

It is enough to show that the atoms of 23 /5ft can be eliminated, so that Lemma 3

applies. Because m is «r-finite, there are only countably many atoms ay,a2,---;

their supremum corresponds to a measurable set Xy cz X, which modulo null sets

must be invariant under T. Thus we may (by a routine juggling with null sets)

assume that Xy is invariant. Lemma 3 now applies to X — Xy, showing that the

desired limit exists for almost all x e X — Xy. We have only to prove that it exists

for almost all xeXy, and it suffices to prove this for almost all xeAy, where Ay

corresponds to the atom ay. Consider the sets TlAy, i = 0, ± 1, ± 2, ••• ; they

must all be "atomic" also, so every two of them are (modulo null sets) either

equal or disjoint. Because Tis incompressible, they cannot all be disjoint, so some

two are equal ; and it follows that there are (modulo null sets) only finitely many
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different sets T'Ay, say p. Again,/must be constant (almost everywhere) on each

atomic set T'Ay. Hence, except for a fixed null set of x's in Ay, the sequences

arising in the definition of D(x,ß; x) are constant (that is, independent of x) and

periodic (with period p), so the limit exists as required.

3.4. Lemma 5.   Theorem 1 is true without restriction.

Here Tmay be compressible. We can write X = Xy\J X2 where Xy, X2 are

disjoint and invariant, where T\ X2 is incompressible, and where T\ Xy is purely

dissipative: that is, there is a measurable set A such that (except for a null set)

xi = \J{T'A\i = 0, ± '• ±2>-"}> and the sets T'A are pairwise disjoint(6).

The assertion of Theorem 1, that D(a,ß; x) exists (for 0 z% ß z% a, and for almost

all xeX, independent of a and ß), follows for almost all xeX2, by Lemma 4.

We have only to show D(ot,ß;x) exists for almost all xeXy.

For each measurable subset B of Xy, and for each aeA, write

00

9(B,a) =    Z   X(B;T'a).
¡ = -00

Then

(1) mB =   f 0(B,a)dm(a).

For, since X(B; T'a) = X(T~'B,a), the integral here is Z¡ jAx(T''B; a)dm(a)

= £;«.(T~\B C\A)   =Ti¡m(Br>TA) (since   Tis  measure-preserving) = mB.

We apply (1) to the set Bj = {x\xe Xy,f(x) _ 1 ¡j}, f being the function of the

theorem, and / an arbitrary positive integer. By hypothesis, mBj < oo. Thus (1)

shows that 6(Bj,a) is finite almost everywhere on A, say for a e A — N} where N}

is null. Let A7 denote the invariant null set {J{T'Nj\ i - 0, ± 1, ±2,---,jeJr}.

We show:

(2) if x 6 Xy - N and y > 0, {« |/(T"x) = y} is finite.

For we have x = Tpa for some aeA and some integer p. Taking ; > 1 ¡y, we

have a$Nj, so 8(Bj,a) is finite; and (2) follows.

Now suppose 0-ßz^oi and xeXy — N; we must show that lim„_œDB(a,j5; x)

exists. If ß > 0, (2) shows that both the numerator and the denominator of

Dn(a,ß;x) are ultimately constant. If 0 =/? < a, the numerator is ultimately

constant while the denominator tends to oo ; and if a = ß, numerator and deno-

minator are equal. Thus in all cases the limit exists, trivially.

3.5. Examples. Since the proof of Theorem 1 has consisted of steady gener-

alization from special cases, it is natural to ask whether the process of generali-

zation can be continued further. It is not hard to see that we may replace "/is

(6) See, for example, 15, 8.2].
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positive" by "/is nonnegative". On the other hand, we cannot omit the hypothesis

that m{x \f(x) = a} be finite for each a > 0, nor may the hypothesis that T be

measure-preserving be weakened to that of measurability (of T and T-1).

This is shown by the following examples.

Example 1. Theorem 1 does not remain true without the hypothesis that,

for each a > 0, m{x \f(x) = a} < oo, even if T is ergodic and measure-preserving

(and so incompressible).

We take (X, m) to be (say) the real line with Lebesgue measure, and Tto be an

arbitrary ergodic measure-preserving transformation of X. Then T admits no

finite invariant measure equivalent to m, so by [1, Theorem 2] there exists a

measurable set WcX, of positive measure, which is "weakly wandering";

that is, there exist positive integers p(l) < p(2) < ••• such that the sets W, TpU)W

(j e JT) are all pairwise disjoint. Take an infinite subset # of Jf for which the

asymptotic density d(J~,Jf) does not exist. Put A = \J{TpU)W\jeJr}, B

= \J{TpU)W\jef}, and define f=l+XA + XB; clearly / is measurable,

positive, and bounded. But, whenever xe W, D(5¡2, 3/2; x) fails to exist, since

{n \f(T"x) = 5 ¡2} = {n | n = p(j) for some ; e/}

and

{n \f(Tnx) = 312} = {n \ n = p(j) for some ; e Jf),

so that the existence of 0(5/2, 3/2; x) would entail that of d(ß,*V).

Example 2. Theorem 1 does not remain true without the hypothesis that Tbe

measure-preserving, even ifTis ergodic (and measurability-preserving) and mX

is finite.

We merely modify the preceding example by replacing m by an equivalent

finite measure.

4. Properties of the relative density D(ot,ß; x).

4.1. As in Theorem 1, let T be a 1-1 measure-preserving transformation of

{X, m) onto (X, m), and let / be a positive real measurable function on X such

that, for each a > 0, m{x \f(x) = a} < oo. Theorem 1 asserts that D(a,ß;x)

exists for all x e X — TV, where TV is a fixed invariant null set and ot, ß are arbitrary

subject to 0 ;£ ß :£ a. In this section we derive further properties of D(cc,ß; x) on

the assumption that T is incompressible, as will, of course, be the case whenever mX

is finite. (It would be interesting to know what the situation is in general.)

4.2. Theorem 2. Assume the hypotheses of Theorem 1, and suppose further

that T is incompressible. Then

(i)  D(ot,ß;x) is fully measurable (for 0|]5gix and xeX — N);

(ii) Defining F(x) = lim sup„_x/(Tnx:) (xeX), we have that F is measurable,

invariant under T, and almost everywhere positive;

(iiï)There is an invariant null set TV* c X such that, for all xeX — TV* and
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for all at,ß such that 0 < /? = a < F(x), we have D(oc,ß; x) > 0;

(iv)D(ot,/?; x) is invariant under T(for xeX — N* and 0 S ß ^ <*), and each

of the sets {« |/T"(x) = a} is either infinite or empty.

To prove (i) (for which the incompressibility of T is not required), we show

first that, for fixed a and ß, D(ct,ß; x) is a measurable function of x. Thislfollows

from the fact that D(a,ß; x) = lim„_00Dn(a,jS; x)

where

DJbx,ß;x) = i   /(5(a); T'x)   / Î   xiSiß); T'x),
í=i V ¡=1

5(a) denoting {x |/(x) ¿z a} as before, a ratio of measurable functions since

X(5(a); T'x) = x(T~'S(a); x) is measurable.

Next, suppose ß is fixed; we prove D(a,ß; x) is a measurable function of (x,a).

The preceding reasoning shows that it is enough to prove that the set

{(x,a)|/(T«x)^a}

is measurable in (x,a). But this is just the ordinate set of the graph of fCT1),

measurable by Fubini's theorem. The other cases are similar.

4.3. For the proof of (ii) and (iii) we need the following (essentially known)

lemma:

Lemma 6.   For any measurable set 5, write

JOS) = H   U T-(i+%       (i,j = 0,1,2,.»»).
i       i

Then ÇT being incompressible) /(5) is an invariant set which contains S except

for a null set, and is imodulo null sets) the smallest such set.

It is easily verified that .1(5) is invariant. Now, if we put

J,= \J  T(-'+J>5,
1

we have T~1J¡ = J¡+1 ezz J¡; hence, because T is incompressible, J¡ — J¡+1 is null.

But J0 — IiS)= \JiiJ¡ — J¡+i) and is therefore also null. And trivially J0 r>5.

Hence J(5) does contain 5 except for a null set. If, finally, £ is any invariant set

which contains 5 except for a null set, £ contains (almost all of) J0 and hence 7(5).

4.4. Now we deduce the assertion (ii) of Theorem 2. It is clear that £ is measurable

and invariant. Now put 5„ = 5(1/«) = {x|/(x) = 1/«} (« = 1,2, •••); because

fix) > 0 everywhere, each x of X is in some 5„. By Lemma 6, almost every x is in

some J(5„). But if x e 7(5n), we readily verify that £(x) = lim supr_ œfCTTx) ̂  1/n > 0.

Thus £(x) > 0 almost everywhere.

4.5. In proving the assertion (iii) of Theorem 2, we first consider fixed real

a, ß such that 0 < ß g a. Let A = {x | £(x) > a} ; A is invariant, because £ is.
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We apply the Halmos-Hopf ergodic theorem [2] to the measure space (4, m), the

transformation T\ A, and the two functions X(Sa n A), X(Sß n A) (where Sot, as

before, denotes {x \f(x) = a}). Both these functions are summable, because

m(Sß) < oo by hypothesis, and invariantly positive, since for each xeA we have

f(T'x) > a > 0 for some i. Thus [2, Theorem 5] applies. In the first instance this

merely says again that D(oc,ß; x) exists almost everywhere on A. But, as remarked

in [2, p. 160], we also have that D(ot,ß; x) is invariant on A, and that, for every

invariant measurable set £ c A for which (EX(Sß r\A)dm < oc, we have

(1) f X(Satr\A) dm=[ X(Sß r\A)D(a,ß;) dm.
Je Je

Now take £ = {x | x e A, D(cc, ß;x) = 0}; this is an invariant subset of A, and of

course  (EX(SßC\A)dm = m(Sß) < oo. So (1) gives

(2) m{Er\Sx) = 0.

Now consider the set I(Sa), in the notation of Lemma 6 (4.3). It is easily seen

that A cz f(5a) ; thus, from (2), I(Sot) — £ is an invariant set which (modulo null

sets) contains 5a. But (Lemma 6) I(Sa) is (modulo null sets) the smallest such set.

Hence £ is null, and D(a.,ß; x) > 0 almost everywhere on A.

We now let a, ß vary. For each pair of rational numbers ot,ß such that 0 < ß = ot,

the foregoing gives an invariant null set £; the union of these is an invariant null

set TV* such that, whenever x e X — TV* and a, ß ate rational numbers satisfying

0 < ß — a < F(x), then D(oc,ß; x) > 0. But here the restriction to rational numbers

can be removed. For, given x e X — TV* and arbitrary a, ß such that 0 < ß=a < F(x),

we take rational numbers p,a such that 0 < a < ß and cc < p < F(x). A trivial

computation gives D(a,ß; x) — D(p,a; x) > 0.

4.6. To complete the proof of Theorem 2, we first construct a suitable invariant

null set TV*(7). First, define

Ny = {x\f(x)>F(x)}.

Then Nt is null. For if not, a familiar argument gives a measurable subset M ofNy,

of positive measure, on which f(x) > p > F(x) for some fixed (rational) p. By

Lemma 6 (4.3), m(I(M) nM) = mM > 0, so we may take yeI(M) C\M. From

the definition of I(M), we have T"y e M for arbitrarily large values of n; for each

such n, f(T"y) > p, and therefore F(y) = p. But F(y) < p, since y e M, giving a

contradiction.

Next, write £ = {x |/(x) = F(x)}, N2 = E — 1(E). From Lemma 6, TV2 is null.

Finally, by Theorem 1, there is a null set TV3 such that D(ot,ß; x) exists for all

CO Here N* is not necessarily the same as in (iii); of course, both null sets can be replaced

by their union.
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xeX - N3 and for all a, ß such that 0 = ß z% a. We define N*

= {J{T'iNytJN2 uJV3)|i = 0, ± 1, ± 2,-.»}, an invariant null set, and show

first that it satisfies the second of the two assertions in Theorem 2(iv).

Given x e X - N* and ß = 0, write @(f, x) = {« | « e Jf, f(T"x) ^ J?} ; we must

show that 3S(f,x) is either infinite or empty. Now, if ß < F(x) = limsupn_00/(rnx),

âS(fx) is clearly infinite. If ß > F(x), then £%(f,x) = 0 since otherwise, for some «,

we have f(T"x) > F(x) = F(T"x), giving T"xeNy, which contradicts x$N*.

Finally, if ß = F(x), we distinguish two cases. If x e 1(E), then T"x e £ for arbitrarily

large values of «; that is, f(T"x) = F(T"x) = F(x) = ß for infinitely many n's, and

aä(f,x) is infinite. If however x £/(£), we show that 3t(f,x) = 0. For otherwise

we have, for some «, f(T"x)^.ß = F(x). Since T"x$Ny, we must have

f(T"x) = F(x) = F(T"x); thus T"xeE. Because 1(E) is invariant, this proves

T"xeE — 1(E) = N2, and therefore xeN*, a contradiction. Thus the assertion

is proved.

Now suppose xeX — N* and 0 _ J? ̂  a. Then D(ot,ß;x) exists and equals

lim„_ „ | s/n(f x) | /1 ajj, x) |, where stJJ, x) = {; \f(TJx) = a, 1 = j ^ «}, and an

is defined similarly. Now | s/n(fx) \ and | si„(f, Tx) | differ by at most 1, and the

same is true of 13Sn(f,x) | and 13S„(f, Tx) \. Hence if âS(f,x) is infinite, D(ot,ß; x)

= D(<x,ß; Tx). In the only other case, 3S(J, x) is empty, and our convention 0/0 = 0

gives D(<x,ß; x) = 0 = D(<x,ß; Tx). Thus D(ot,ß; x) is invariant under TonX — N*,

and the proof is complete.

5. The Radon-Nikodym derivatives.

5.1. In the remainder of this paper, we drop the requirement that Tbe measure-

preserving, but require instead that mX be finite.

Theorem 3. Let T be a measurable transformation of a measure space

(X,m), and suppose mX < co. Then there is an invariant null set N such that,

whenever xeX — N and 0 ^ ß ^ a, the relative density di<x,ß; x) (o/ the n's for

which coB(x) ̂  a in those for which (onix) ^ ß) exists.

As in [5, §3], we form the measure-theoretic product space iX*,m*) = iX,m)

x ( Y, p), where Tis the linear interval (0,oo) with Lebesgue measure p, and consider

the transformation T* of X* given by

T*(x,y) = (Tx,yMx))(8).

As proved in [5, Theorem 1], T* is a measure-preserving transformation of X*.

Defining/i*(x, y) =ll/y, we observe that, for each a>0,

m*{(x,y)|/*(x,y) = a} = m*{(x,y)|y = 1/a} = mLY)/a < co .

(8) In [5], Y was taken to be the half-closed interval [0,co). The exclusion of 0 does not

aflect'anything in [5], and is convenient here.
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Thus Theorem 1 applies to X*, T* and/*, giving an invariant null set TV* cz X*

such that, for all (x, y) e X* — TV*, and for all real a, ß such that 0 — ß g a,

D(<x,ß; x,y) exists. All that remains is to translate this into a statement about X

and T.

First, let si = {n \ co„(x) ja a}, J = {n \ con(x) = /?}. Now, as shown in [5, 3.1(2)],

T*n(x,y) = (Tnx,y¡con(x)).   Thus  f*(T*"(x,y)) = con(x)¡y, and  it  follows that

sé = {n \f*(T*»(x,y)) = a/y},       a = {n \f*(T*n(x,y)) = ß/y}.

Hence

(1) d(ot,ß; x) = D(xjy,ßly; x,y) whenever either exists.

Next, let TV = {x|xeX, TV* is not null}, where TV* = {y\(x,y)eN*}. By

Fubini's theorem, TV is null; and TV is invariant under T(because TV* is invariant

under T*). Given xeX — N and real numbers a,/? such that 0 = ß—^oc, pick

y e Y— TV* (which is certainly not empty); then D(a/y,ßly; x,y) exists, and (1)

shows that d(ot,ß;x) exists, as required.

5.2. Theorem 4. Let T be a measurable transformation of a measure space

(X,m), and suppose that mX < oo and that Tis incompressible. Then:

(i)    d(ot,ß; x) is fully measurable (for 0 g ß ^ a and x e X — TV);

(ii) Defining X(x) = lim sup„_^„(x), we have that k is measurable, invariant

under T, and almost everywhere positive (here xeX);

(iii) There is an invariant null set TV' cz X such that, for all xelX — TV' and

for all a,ß such that 0 < ß g a < l(x), we have d(ot,ß; x) > 0.

(iv) Ifx e X - TV' and 0 rg ß ^ a (< oo ), then d(otco(x), ßco(x); x) = d(a,ß; Tx),

and each of the sets {n | con(x) = a} is either infinite or empty.

The proof of (i) is essentially the same as that of Theorem 2(i) of (4.2), and

again does not require the incompressibility of T.

The nontrivial part of the assertion (ii) is that X(x) > 0 a.e. This follows from

[5, Theorem 4], but can also be deduced from Theorem 2 as follows. Using the

notation of 5.1, we put F*(x,y) = limsup„_oo/*(T*"(x,>>)) = limsup„_Kco„(x)ly

= X(x)jy; then Theorem 2(ii) gives that F*(x,y) > 0 almost everywhere, giving (ii).

To prove (iii), we again apply Theorem 2 to the space X*, transformation T*

and function/* used to prove Theorem 3. There is a null set TV* c X* such that,

whenever (x,y)eX* — TV* and 0 < ß ^ a < l(x), we have D(<x¡y, ß/y;x,y)> 0;

that is (5.1(1)), d(a,ß;x)>0. We merely arrange that TV' will include {x|TV*

is not null} ; then, for each x e X — TV' we can pick a suitable y (as in the proof of

Theorem 3), and the result follows.

Finally, on applying Theorem 2(iv) to X*, T* and/*, we have that

(1) if (x,y)eX* - TV* and y = 0, then {n |/*T*"(x,}0 = y} is either infinite or

empty,
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(2) if (x,y) e X* - N* and 0 = <5 ̂ y, then

D(y,ó;x,y) = D(y,<5;T*(x,y)).

We define N' as before; then if xeX — N' we can choose y so that

ix,y)eX*-N*.

In (1), put y = a. ¡y ; we obtain that {« | cu„(x) — a} is infinite or empty. In (2), put

y = aa>(x)/y, o = ßa>ix)ly; then (in view of 5.1(1)) it follows that

i/(aco(x), ßa>ix) ; x) = t/(a, ß ; Tx),

as required.

5.3. We remark that Theorems 3 and 4 can be generalized so as to include

Theorems 1 and 2, at least in the case for which m(X) is finite. In fact, given a

positive function / on X, we can replace /*, in the proofs of Theorems 3 and 4,

by the function f(x) ¡y. The arguments go through, provided / is summable, and

give the existence and properties of the relative densities of sets of integers of the

form {« |/T"(x)ttj„(x) = «}• However, this gain in generality would be illusory,

as the resulting theorems also follow on applying Theorems 3 and 4 to X with a

new measure M given by M(A) = ¡A f(x) dm(x).

Another, perhaps more useful modification could be made as follows. Instead

of considering relative densities of sets of the form {« |/(T"x) ^ a} or

{«|cü„(x) — a}, we could replace "— a" throughout by "> a", in all four theorems.

The proofs would apply almost unchanged.

Two further modifications can be made in Theorems 1 and 2; both involve

weakening the hypothesis that / is everywhere positive. In the first place, we may

relax this to requiring only that f(x) _ 0 (x e X). (We still require the finiteness

assumption, that m{x |/(x) ^ a} < oo for all a > 0.) In fact, the proofs of Theorems

1 and 2 can be adapted to this more general situation, though with some com-

plications; and the conclusions of Theorems 1 and 2 apply unchanged, except of

course for the assertion (in Theorem 2 (ii)) that £(x) > 0 a.e. In the second place,

we may drop all requirements of positivity on/, and also on a and ß, at the expense

of strengthening the finiteness requirement, which we now require to hold for all

real a. Again, the conclusions of Theorems 1 and 2 continue to hold ; of course,

we replace (for example) "O^/JiSa" by "/? ;£ a", and in Theorem 2(ii) we

replace the conclusion that £(x) > 0 a.e. by "£(x) > — oo a.e." To see this, we

have only to apply Theorems 1 and 2 to the function erix).

Finally, we observe that the hypothesis in Theorem 3 that m(X) < oo cannot

be omitted, even if T is required to be incompressible. This can be seen from

Example 1, 3.5, as follows. Using the same X, Tand/as in Example 1, we replace

the measure m by the measure p defined by:

KA) = £ fix) dm(x).
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It is easily verified that co„(x) =f(Tnx)Jf(x), whence it follows that, whenever

xeW, d(5¡2, 3/2; x) fails to exist. Of course, if Tis allowed to be compressible,

the construction of a counterexample is easier; and in fact (cf. [5, 8.6]) we can

arrange that, on a set of positive measure, the co„'s are arbitrarily prescribed

positive measurable functions.
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