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Introduction. In this paper singular quadratic functional« of n dependent

variables are systematically studied. Necessary and sufficient conditions for the

existence of a minimum are given, generalizing the results of Morse and

Leighton [6]. The study of principal quadratic functionals of n dependent

variables is undertaken. A necessary condition is proved and sufficient conditions

are obtained for certain cases. Finally, an oscillation theorem is given for systems

of second-order linear differential equations.

We shall make the usual conventions regarding notation. A repeated subscript

indicates summation. Wc shall use the symbol (*) to indicate the transpose of a

matrix or vector. In general capital letters indicate matrices, and we shall employ

the notation A = || a¡¡ | for aimatrix when necessary. The determinant of a matrix

A will be written det A. The notation | a | will be reserved to indicate the absolute

value of a number a.

I. The functional. Let

f(x,y,y') - y*'(x)R(x)y'(x) + 2y*'(x)Q(x)y(x)

(1.1)
+ y*(x)P(x)y(x),

where R(x), Q'(x), and P(x) ate symmetric matrices continuous in the real variable

x on [a, oo), and R(x) is positive definite for any fixed x on [a, oo). We consider

the functional

(1.2) J(y)\ba =  f f(x,y,y')dx   (a £ 6 < oo).
J a

Integrals employed  throughout are Lebesgue integrals  and  their extensions.
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Following Morse and Leighton [6] we call the vector function

y*(x) = (yy(x),-,yn(x))

^4-admissible on [a, co) if,

1. y(x) is continuous on the interval [a, co), y(a) = 0, and limx^00y(x) = 0;

2. y(x) is absolutely continuous and each term in the sum y*'(x)y'(x) is

Lebesgue integrable on each closed subinterval of [a, co).

Observe that the segment [a, co) of the x-axis is yl-admissible and that on

this segment J = 0. We seek conditions under which

(1.3) lim  inf f f(x,y,y')dx = 0.
x = 00 Ja

If (1.3) holds for a given class of curves, we say that [a, oo) affords a minimum

limit to J among curves of the given class.

II. Conjugate points. We seek an analogue of the Jacobi necessary condition.

The Euler equations and the Jacobi equations associated with the functional

(1.2) take the form

(2.1) [R(x)y\x) + Qix)yix)Y - [Qix)y'ix) + P(.x)]Xx) = 0.

We can now define the first conjugate point of x = oo first given by Morse

and Leighton [6] for « = 1 and extended by Chellevold [1] for n = n. If there

does not exist a point a on (a, co) such that a is conjugate to a in the ordinary

sense (cf. Morse [5, p. 9]), then we say that the first conjugate point of x = oo

does not exist on [a, co). Otherwise, there exist a and c on (a, oo), c < a, such

that a is the first conjugate point (in the ordinary sense) to c. It is well known

that c is a continuous nondecreasing function of a. Thus, lima = 00c(a) exists, finite

or infinite. The first conjugate point of x = co is then defined as this limit.

Equation (2.1) can be written in matrix form as

(EE) [Rix) Y'ix)-] ' + [Q\x) - Pix) Y(x)] = 0,

where a solution matrix of (EE) has column vectors which are solutions of (2.1).

It is easily verified using the symmetry of Pix), that if F= Y(x) and Z = Z'x)

are two solution matrices of (EE), then

(2.3) Y*RZ'-Y*'RZ = C,

where C is a constant matrix.

If in (2.3), we set Z =Y, and the constant matrix C is the zero matrix, that is

to say,

(2.4) Y*RY' = Y*'RY,

we follow Hartman [2] and call Y a prepared solution.
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We assume that there exists a prepared solution Y(x) of (EE) which is non-

singular on some interval [x0, oo), a < x0 < co. Hence the matrix function

Jxc

(2.5) (Y*RY)~ldx
Jx0

can be formed. We shall employ the terminology introduced by Leighton [3]

and extended by Hartman [2] and call a solution Y= Y(x) of (EE) a principal

solution if all the characteristic roots of (2.5) are unbounded. However, we shall

call a solution Y= Y(x) of (EE) an antiprincipal solution if all the characteristic

roots of (2.5) are bounded (Hartman [2] calls such a solution nonprincipal).

Theorems 1, 2, and 3 stated below are due to Hartman. They play an important

role in the variational theory we employ. Equivalent theorems were proved by

Morse and Leighton for the case n = 1.

We assume for Theorems 1, 2, and 3 that there exists a prepared solution

Y(x) of (EE) which is nonsingular on some interval [x0, co).

Theorem 1.    There exist antiprincipal prepared solutions of (EE).

Hartman shows that if Y(x) is a prepared solution of (EE) such that detF(x) ¥= 0

on [x0, oo), then

U(x) = Y(x) f (y*(x)R(x)y(x))-Vxl

is an antiprincipal prepared solution.

Theorem 2.    There  exist principal  prepared  solutions  of (EE).

It is shown that if U(x) is an antiprincipal prepared solution then,

/•OO

x)=U(x)       [U*(x)R(x)U(x)']-1dx

is a principal prepared solution.

Theorem 3. The prepared solutions W(x) and Z(x) of (EE) are principal

if and only if there exists a constant matrix A such that

Z(x) = W(x)A       (det A * 0).

We proceed with the proof of the following theorem.

Theorem 2.1. // the interval (a, co] does not contain a conjugate point of

x = oo, there then exists a prepared solution Y(x) such that detYYx)#0 on

(a, oo).

The solution U(x) such that U(a) = 0 and U'(a) = I is such a solution.

We come now to an important lemma.
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Lemma 2.1. If the largest zero of detlT(x) is c, where W(x) is a principal

prepared solution of (EE), then for every antiprincipal prepared solution U(x),

det U(x) vanishes on [c, oo).

Suppose det U(x) # 0 on [c, co). Then, by Theorems 2 and 3, we can write

r» oo

W(x)=U(x)  i   (U*(x)R(x)U(x))~xdxA,

where det^4#0, and x = c. The matrix $f(U*RU)~xdx is positive definite,

and det 17(c) ̂ 0; hence detFT(c)#0. From this contradiction we infer the

truth of the lemma.

We note that the concept of a prepared solution of (EE) is the same as the

concept of a family of conjugate solutions of (2.1) (cf. Morse [5, pp. 46^17]).

This enables us to restate Morse's separation theorem in the following form:

Theorem 4. The number of zeros of the determinant of a prepared matrix

solution of (EE) on a given interval (open or closeel) differs from that of any

other prepared matrix solution by at most n.

We can now prove the following result.

Theorem 2.2. // W(x) is a principal prepared solution of (EE), then the

largest zero of det W(x) and the point conjugate to x = oo coincide, if either

one exists.

We suppose that the largest zero of det W(x) is x = c. Then by definition of

the first conjugate point of x = oo and by Theorem 4, the conjugate point a cannot

be greater than c. If a < c, by Theorem 2.1 there exists a prepared solution V(x)

such that det V(x) ^ 0 on (a, co). Then by Theorem 1, we can write an antiprincipal

solution U(x) as

(2.5) Uix)=V(x)  \l +  f  iV*ix)Rix)Vix)y1dx 1      (a < x0 < c).

Lemma 2.1 and equation (2.5) imply that detfTx) vanishes on [c, oo). From

this contradiction, we infer that a = c.

If the first conjugate point of x = oo exists and equals a, then from the same

arguments as before we conclude that a is also the largest zero of det Wix).

We next establish the analogue of the Jacobi necessary condition for the function-

al (1.2).

Theorem 2.3. If [a, oo) affords a minimum limit to J among A-admissible

curves, the interval (a, oo] does not contain a point conjugate to x = oo.

Assume that x = a is the conjugate point of x = oo and a> a. Then by defi-

nition of the conjugate point, there exists a solution _v(x) which vanishes at x.
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and x2, where a < xt < x2 < co. But from the nonsingular theory there cannot

exist a point conjugate to x = xL on (xl5x3) where x3 > x2.

111. The Hubert integral. Suppose there is no point conjugate to x = oo on

(a, oo]. Then by Theorem 2.1 there exists a solution, U(x), of (EE) such that

Via) = 0,       U'(a) = I,

and such that dett/(x) does not vanish on (a, oo). The family of extremals

(3.1) y = U(x)ß       (ß a constant vector)

will form a Mayer field in the region S of the (x,y) space for which a < x < oo.

The slope vector p(x, y) of the field at the point (x, y) is given by the equation

(3.2) p(x,y)=U'(x)U-1(x)y,

where p(x,y) is a column vector whose ith component is p¡(x,y).

The Hubert integral corresponding to the field (3.1) is a line integral of the form

(3.3) H = j \J{x, y, p) - PifPi(x, y, p)] dx +fPldyt,

where pi = pi(x,y).

The problem due to the apparent singularity of the Hubert integral at the

point (a, 0) can be resolved in the same manner as Morse and Leighton [6] by

transforming (3.3) from (x,y) = (x,yy,---,yn) space into (x,ß) = (x,ßy,---,ßn)

space using the one-to-one transformation on S given by (3.1). We summarize

these findings in the following statement.

Let S* be the point set union of S and the point (a,0) in the xy-space. Let g

be a curve on a bounded subset of S* of the form

x = x(t), y* = y*(t) = (yy(t),-,yn(t))      (r, £ t á h),

where x(t) and y¡(t) are absolutely continuous. If g lies on S, the Hilbert integral

exists and depends only on the endpoints of g. If g terminates at the point (a,0),

H still exists and depends only on its first endpoint provided

U-\x(t))y(t) = ß(t)

is bounded as t tends to tt.

An extension of the Weierstrass formula. Let y(x) be an /4-admissible curve

and U(x) a solution such that

17(a) = 0,       U'(a) = I.

Set
S[y(x),a] = y*(x)[R(x)U'(x)U'1(x) + Q(x)]y(x).
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We call S[y(x),d\ the singularity function belonging to x = a and we call

S(x) = R(x)U'(x)U ~\x) + Q(x)

the singularity matrix belonging to x = a.

It is readily verified that the Weierstrass ¿-function for J is

ELx, y, X, p) = ip- X)*R(x) (ji-X).

We come to the following extension of the Weierstrass formula.

Theorem 3.1.   If there is no point conjugate to x = oo on (a, oo], if y(x) is

A-admissible on [a, oo) and of class C neighboring x = a, then

(3.1)      J(jO|*= J"  E[x,yix),y'ix),pix,yix))-\dx + S[yib),a\ a < b < oo,

where p = pix,y) is the slope vector (3.2).

In view of the continuity of y\x) in the neighborhood of x = a, the Hubert

integral // exists when taken along y = _y(x) from x = a to x = b. Let this be

denoted by //j,|„. We are thus led to the Weierstrass formula

y\a 'J(y) r« = f
where the arguments are those of (3.1). We shall show that

(3.2) H, \ba = S[yib),al

Let y denote the curve y = v(x) and let y, (/ = 1, •••, n) denote the straight lines in

the ix,y) space, y, = ib,yyib),---,y,-yib),y, 0,---,0). Consider the curve T

beginning at(b,0,---,0) and continuing along yt untily,^ intersects y2 at the point

ib,y lib),0,---,0) and then continuing along each y, in a similar manner until

finally y„ is traversed and stops at the point (b,yyib), ■•-,y„ib)). Taking the Hubert

integral along the closed curve by following F from (b,0) to (£»,y(b)), the curve

y = yix) from (b,y(b)) to (a,0), and the x-axis from x = a to x = b, we find that

y = v(e)

v = 0     ~H>

x = b = 0.

x = e(3.3) Hr

Using the definition of the Hubert integral we find

Hr = £ 2[Rib)pib,y) + Qib)y-]*dy= ̂  2y*S*ib)dy,

where dy is understood to mean a (column) vector whose ith component is dy¡.

It is readily seen using the preparedness of 17(x) and the symmetry of ß(x), that

S*(x) = Six) and hence that
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Hr =   Í  2y*S(b)dy.

For the rest of this proof we drop the summation convention and sum only over

the indices indicated. We have then

(3.4) f   2y*S(b)dy = í   f   2ykSkj(b)dyj
Jyj k = l   Jyj

since dy{ = 0 if i # j and y¡ = 0 if i > j. Integrating the right side of (3.4) gives

(3.5) f   2y*S(b)dy = S   2yk(b)yj(b) + y)(b)Sn(b).

Using (3.5) we see that

f  2y*S(b)dy= Z    f   2y* S(b)dy = y*(b)S(b)y(b),
Jr j = l   Jyj

so that

(3.6) Hr = y*(b)S(b)y(b) = S[y(b), a}.

It follows from (3.3) and (3.6) that (3.2) is true, and the theorem is proved.

IV. The singularity condition. We can now prove the following necessary

condition.

Theorem 4.1.   If [a, co) affords a minimum limit to J, then

(4.1) liminfS[y(x),a]^0
X = CO

for each A-admissible curve for which
ix

(4.2) lim inf J(y) |    < co.
x = oo -a

Having established Theorem 3.1, the proof of Theorem 4.1 proceeds in the same

way as the proof due to Morse and Leighton [6] for n = 1.

The condition of Theorem 4.1 that (4.1) holds for each ^4-admissible curve for

which (4.2) holds will be called the singularity condition belonging to [a, co).

V. Sufficient conditions. We come to the following theorem.

Theorem 5.1. // (a, co] does not contain the conjugate point of x = co and

if the singularity condition belonging to [a, oo) is satisfied, then [a, oo) affords J

a minimum limit among A-admissible curves.

Using the extension of the Hubert integral found in Chapter IV and using (3.1)

the proof follows in the same fashion as that found in [6] where n = 1.
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VI. Principal quadratic functionals.     Functional  (1.1)  in  which   Q(x) = 0

will be called principal quadratic functionals. In this case, equation (1.1) becomes

(6.1) MX, y,y') = j;*'(x)R(x) v'(x) + j;*(x)P(x)Xx),

and then equation (1.2) becomes

(6.2) Joiy)\ba= jjoix,y,y')dx.

These functionals were studied systematically first by Leighton [3], and later by

Leighton and Martin [4].

We shall first prove a necessary condition.

Theorem 6.1. If the interval [a, oo) affords an A-minimum limit to J0

then for any i, I = i z%n, the functional

Jiiz) =       [//¡(*)z'2(x) - Puix)z2ixy]dx ii not summed)

is afforded an A-minimum limit by [a, oo).

We see that Jfz) = J0iy), where y = iyy,---,y„) is defined so that y} = 0 if

j ,¿ i and y, = z and the theorem follows immediately.

We are now prepared to prove a basic theorem.

Theorem 6.2.   If the interval [a, co) affords an A-minimum limit to J0 and if

Pix) is positive definite for large x, the matrix J"*P(x)ifx is bounded.

Suppose the contrary. Since P(x) is positive definite for large x, there then

exists a diagonal element, JaPuix)dx ii not summed), which is unbounded;

that is,

(6.3) lim        p,fx)dx = oo       (i not summed).

But  by  Theorem  6.1,  the  functional

Ji = £I[rii(x)z'2(x)-pif(x)z2(x)]dx

is afforded an ^-minimum limit by [a, oo). It follows from a result due to Leighton

and Martin [4, p. 104] that ¡xap,,dx is bounded.   From this contradiction, we

conclude that the theorem is true.

In order to give sufficient conditions we require the following lemmas.

Lemma 6.1. If Aix)= \a,f(x)\ is a positive definite matrix for large x and

§*A{x)dx is bounded, then
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lim   I    max | a¡y(x) | í/x
•la       i,j

< oo.

One can prove the lemma easily by showing that max;j| a,/x) | is equal to some

diagonal element of A(x) when A(x) is positive definite.

Lemma 6.2. // U(x) is a bounded solution matrix of (EE), and if

lim  J"*max¡?J| p¡¡(x) | dx < co, then R(x)U'(x) is bounded.

Let R(x) = I ru(x) |, U(x) = \\ uu(x) \\, and P(x) = || p,/*) ||. Then, from (EE),

we see that

rik(x)u'kj(x) = rik(a)u'kj(a) - j   Pik(t)ukJ(t)dt

for any i,j = l,2,---,n. Setting u(x) = max;j|if j(x)\ and p(x) = max,- ,j|p;j(x)[,

we have that

| rik(x)u'kj(x) | = | rik(a)u'kJ(a) | + n2 J   p(t)u(t)dt.

Since u(x) is positive and bounded and since j¡¡p(t)dt is bounded, we see that

j*p(t)u(t)dt is bounded. The lemma now follows from the last inequality.

Lemma 6.3. If Q(x) = | q¡j(x) | is a positive definite matrix for a = x < oo,

and ¡aQitidt is bounded, and if A(x) = || a;j-(x) | is a bounded matrix, then

(aA*(t)Q(t)A(t)dt is bounded.

Let  q(x) = maxij\qij(x)\  and  a(x) = maXij\a¡j(x)\.  Then,

(6.4) I  i  aki(t)qkh(t)ahj(t)dt    ^n2 |   q(x)a2(x)dx.
'Ja Ja

Since   ¡aQ-Wdt is bounded from Lemma 6.1 and a2(x) is also bounded, the

right-hand side of (6.4) is bounded, and the lemma follows.

Lemma 6.4. // the interval [a, oo] does not contain a point conjugate to

x = oo, then the matrix solution V(x) of (EE) such that

(6.5) F(a) = 0,    V'(a) = I,

is antiprincipal.

Since V(x) is a prepared solution of (EE) which is nonsingular on [a, oo),

there exists an antiprincipal solution U(x) that is nonsingular on [b, oo) for some b.

Furthermore, we can write the principal solution W(x) in the form

/»  00

(l/*R[/)-1W(x)=U(x)      ([/*RLO-1í/x       (x>b).
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It can be readily seen by using (6.5) that F(x) can be written as

(6.6) V(x) = Uix)W*ia)Ria) - Wix)U*(a)R(d),

or

(6.7) Vix) = U(x)
Ç> 00

W*ia) -       (L7*/<L7)"1dxl7*(a) Ria)   ix = b).

Set

A(x) = W*ia) -   I   (t7*ÄÜ)-1dxt/*(c3)lÄ(a);

then lim Aix)=W*ia)Ria), and det[W*(a)R(a)] # 0; hence, /4_1(x) is nonsingular

for large x, and lim^_1(x) = R~iia)W*~1ia). In particular, ^4_1(x) is bounded.

But

f (V*RV)~1dx = i  A~\U*RUytA*~1dx

is bounded by Lemma 6.3. The theorem follows, then, from the definition of

an antiprincipal solution  matrix.

Theorem 6.3. // the interval [a, co] does not contain a point conjugate to

x = co, if j"*P(x)dx is bounded, and if V(x) is a solution matrix of (EE) such

that V(d) = 0, V'(a) = I, and R(x)V'(x) is bounded, then J is afforded an A-

minimum limit by [a, co).

If S(x) = R(x)V'(x)V~1(x), then

Six) = Sib)- f  S(í)R_1(í)S(í)áí-  f  Pit)dt       ib>a),
Jb Jb

and using the symmetry of S(x) we have

Six) = -  f XRit)V'it) [V*(f)Rit)Vity]-'V*'(í)-R(í)dt
(6.8) 'h

Pit)dt + Sib).
[

By Lemma 6.4, the integral f*b[V*it)Rit)Vit)']~1dt is bounded. Therefore,

by Lemma 6.3, the first integral in (6.8) is bounded, and hence S(x) is bounded.

It follows that the singularity condition is satisfied. Theorem 6.3 now follows from

Theorem 5.1.

One should notice that Theorem 6.3 does not require that the matrix P(x) be

positive definite for large x.
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We state without proof a theorem due to Morse and Leighton when n = 1.

The proof in n dimensions is precisely analogous.

Theorem 5. If [b, oo) affords J an A-minimum limit for any b> a, then J

has an A-minimum limit on [a, oo).

We come to an important theorem.

Theorem 6.4. // the interval (a, oo] does not contain a point conjugate to

x = oo, if P(x) is positive definite for large x, and if $*P(x)dx and j^R~1(x)dx

are bounded, then J0 possesses an A-minimum limit.

We shall first show that the hypothesis of the theorem implies that any solution

matrix   U(x) = || u0(x) ||   of  (EE)   is   bounded.

This is easy to see by transforming (2.1) with of course Q(x) = 0, into the 2n

system of first-order equations

(6.9) u' = A(x)u,

where ^(x) is the 2n by 2« matrix

/o R-^xy

\P(x) 0     /

and u*(x) = (yl,---,yn,rlky'k,---,rnky'k). Since j^P(x)dx and JxaR-1(x)dx are

bounded, then in view of Lemma 6.1, J^max^liij/x^iix is bounded where

A(x) = [|ay(x)|. It is well known that if ramax;,j|a¡j(x)|a*x is bounded, then

all solutions of (6.9) are bounded and hence any solution matrix U(x) of (EE) is

bounded. From Lemma 6.2 we have that R(x)U'(x) is bounded, and from Theorem

6.3 J0 is afforded an ^4-minimum limit by [b, co) for any b > a. Theorem 6.4

then follows from Theorem 5.

We actually have proved, in view of Lemma 6.1, a stronger result that Theorem

6.4. We may state this result as follows.

Theorem 6.5. // the interval (a, oo] does not contain a point conjugate to

x = oo, lim j*maXij\pij(x)\ dx < co, and if the matrices j*P(x)dx and

f*R~l(x)dx are both bounded, then J0 possesses an A-minimum limit.

The proof is the same as that of Theorem 6.4 and is valid since Theorem 6.3

and Lemma 6.2 do not require that P(x) be positive definite.

Suppose now that the interval (a, co] does not contain a point conjugate to

x = oo, P(x) is positive definite for large x, $*P(x)dx is bounded, and that all

characteristic roots of f*R-1(x)dx ate unbounded. In this case, Reid [7] has

pointed out that using the proof of a theorem due to Sternburg [8], one can

prove    that    there    exists    a    solution    matrix    U(x)    of   (EE)    such that

hmiR(x)U'(x)U~1(x) = 0.
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Using this same proof one can show that if S(x) is the singularity matrix, then

lim S(x) = 0. The singularity condition is then obviously satisfied, and hence

under these conditions Theorem 5.1 leads to the conclusion that J0 has an A-

minimum limit. We summarize these remarks in the following theorem.

Theorem 6.6. If the interval (a, co] does not contain a point conjugate to

x = co, if P(x) is positive definite for large x, if j*P(x)dx is bounded, and if all

characteristic roots of j'*R~x(x)dx are unbounded, then J0 possesses an A-

minimum limit.

We shall indicate at the end of the next section how this theorem can be proved

in another way.

VII. An oscillation theorem. In this section we shall consider the differential

equation

(7.1) [R(x)y'J' + Pix)y = 0,

where R(x) and P(x) are continuous positive definite (real) matrices on [a, oo),

and y is a (column) vector with n components. We will state sufficient conditions

that (7.1) be oscillatory. Wc say that (7.1) is oscillatory if the conjugate point to

x = co is infinite.

Equation (7.1) can be written in matrix form as

(7.2) [R(x)Y'(x)]' + P(x)7(x) = 0,

where the solution matrix Y(x) has for its columns the solution vectors of (7.1).

We shall say that (7.2) is oscillatory if there exists a prepared (cf. p. 61) solution

matrix Y(x) of (7.2), where det Y(x) # 0, such that det Y(x) has arbitrarily large

zeros. It is known (cf. [8, p. 314]) that (7.1) is oscillatory if and only if (7.2) is

oscillatory.

We continue by defining z(x, x0) as the solution matrix of (7.2) such that

(7.3) z(x0,x0) = I and zx(xQ,x0) = 0.

We then define the first zero, if it exists, of det z(x, x0) less than x = x0 to be the

focal point of the hyperplane x = x0. If detz(x,x0) ^ 0 for x < x0, we say that

the focal point of the hyperplane x = x0 does not exist. The /cth focal point of

the hyperplane x = x0 will be defined, if it exists, to be the fcth zero of detz(x,x0)

less than x = x0.

We shall now give a representation of z(x,x0) that is more useful for our pur-

poses. To this end, let V(x) and W(x) be the two solution matrices of (7.2) that

satisfy the conditions

(7.4) V(b) = W'ib) = 0, Rib)V'ib) = WQ>) = I(b * x0).

Recall that any two solution matrices of (7.2) must satisfy (2.3) for some constant

matrix C. Using (2.3) and (7.4), we see that
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(7.5) V*'RW-V*RW = 1,

and that

(7.6) V*'RV-V*RV = W*'RW- W*RW = 0.

Using (7.5) and (7.6), we can write

(77) (    V*'R ~V*\(W V)   »  ('       °)
K    } \-W*'R W*J\RW       RV'j        \0       I),

where the matrices are the obvious (2rc)-square block matrices. We then rewrite

(7.7) as

/   W V\(    V*'R -V*\    _  II       0\

y'J \RW       RV')\-W*'R W* J  "  \0       I).

In particular, (7.8) yields

(7.9) WV*'R-VW*'R = I,

and

(7.10) W'V*'-V'W*' = 0.

We finally have from (7.3), (7.9), and (7.10) that

(7.11) z(x,x0) = W(x)V*'(x0)R(x0) - V(x)W*'(x0)R(x0).

We continue with two lemmas (cf. [3, p. 257]).

Lemma 7.1. // the kth focal point a of the hyperplane x = x0 exists, and if

P(x0) is positive definite, then a(x) is a strictly increasing function in some

neighborhood of x = x0.

To prove the lemma, let V(x) and JF(x) be the two solution matrices of (7.2)

satisfying (7.4) where b # x0. An integration by parts indicates that

(7.12) Í   (V*'RV - V*PV)dx = V*RV |*.
J a

Since the left-hand member of (7.12) possesses a derivative, the right-hand member

does also, and

(7.13) -p (V*RV) = V*RV - V*PV.

It follows from (7.9) that

V~1W-W*'V*'~1 = (V*'RV)-1;
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or, in view of (7.10) and (7.6), that

(7.14) V~lW-V'xW = (V*RV'y\

Differentiating (7.14) and using (7.6), (7.9), (7.10), and (7.13), one can readily

verify that

(7.15) -j^ (V'-1W) = - (V'-lR~l)P(V'xR-1)*.

It follows from (7.15) that V'~XW is of class C except in the zeros of det V'(x).

By hypothesis, the first zero a of det z(x, x0) less than x = x0 exists. Thus, if

Vix) is such that detF'(x0) ¥= 0 and detFYa) ^ 0, we have from (7.11) that

det[K-1(a)W(a) - W*'ix0)V*'''xix0)'] = 0.

In view of (7.10), if*']/*'-1 is symmetric; accordingly, we have

(7.16) det[V'1ia)Wia) - V'~l(x0)W'ixoy] = 0.

It follows from (7.16) that there exists a constant vector c ^ 0 such that

(7.17) [V~lia)Wia) - V'-'ixJW'ixfflc = 0,

and

(7.18) c*[V~\a)Wia) - F'_1(x0)lf '(*0)]c = 0.

We wish to solve equation (7.18) for a using the implicit-function theorem. Note

that it has already been established that the left-hand member of (7.18) is of

class C. If we set the left-hand member of (7.18) equal to/(a,x0) and use (7.17),

we have that

(7.19) -|£. (a,x0) = c*\~ V~1ia)Wia)]c =   - C*(F*(a)R(a)n«))_1c;
3a      ' [da

accordingly, ôfia,x0)/ôa is strictly negative since (F*(a)R(a)F(a))_1 is positive

definite, and c^0. Therefore, the implicit-function theorem applies to (7.18)

and affirms the existence of da¡dx0; consequently,

c*[± V-\a)Wia)]c  *L = c*[¿- V'-\x0)W'ix0)]c

= c*(F'-1(x0)R-1(x0))P(x0) iV'-iix0)R-1ix0))c.

The last equality above follows from (7.15). Thus,

(7.20) — = c*iV'~1ixo)R-1iXo))Pixo)iV'-1ix0)R-1ix0))*c

dx0 c*(F*(a)R(a)F(a))-1c
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Since P(x0) and R(a) ate positive definite and c # 0, it follows from (7.20) that

da/dx0>0 and that a(x0) is strictly increasing in a neighborhood of x = x0.

To complete the proof of the lemma, we must consider the possibility that

det V'(x0) = 0 or det V(a) = 0. We shall choose the point b which in (7.4) defines

V(x) in such a manner that this does not occur. Assume that a is the first focal

point of x = x0 and take b to be any point on the interval (a, x0). First notice that

det z(x, x0) does not vanish on (a, x0), and in particular, det z(b, x0) ^ 0. Now

det V'(x0) ^ 0 since otherwise there would exist a constant vector c =±0 such that

V'(x0)c = 0, that is, the vector solution y(x) = V(x)c is such that y'(x0) = 0 and

therefore by the uniqueness theorem y(x) = z(x,x0)cy for some constant vector

Cy # 0. But

z(b,x0)c = y(b) = V(b)c = 0;

accordingly, detz(ft,x0) = 0 which is not the case. Also, det V(a) ^ 0. Otherwise

we could choose a point b* on the interval (b, x0) and then the conjugate point

of b*, c(b*), would be on the interval (a, b*). This would imply that the determinant

of the solution matrix Vy(x), defined by Vfb*) = 0 and Vy'(b*) = I, would have

(n + 1) zeros on [c(b*),b*~\ which contradicts the fact that detz(x0,x) has no

zeros there. Furthermore, if a is the fcth focal point of x = x0, let x*be the (k — l)st

focal point, then we can choose b on the interval (a, x*) and proceed as before.

These last remarks conclude the proof of the lemma.

Lemma 7.2. If the interval (a, co] does not contain the point conjugate to

x = oo, if the matrix P(x) is positive definite for large x, and if V(x) is the

solution matrix of (7.3) such that V(a) = 0 and V'(a) = /, then det V'(x) does

not vanish for large x.

Suppose the lemma is false and that the zeros of det V'(x) are x = xt(i = 1,2, •■•),

where the sequence {x,}i = 1 is strictly increasing and limx¡ = oo. There exists a

nonzero constant vector c such that V'(xy)c = 0. By definition of the matrix

solution z(x,Xy) given by (7.3) and by the uniqueness of solutions, we must

have that V(x)c = z(x,Xy)cy for some nonzero constant vector ct. We then have

z(a,xt)cy = 0; thus, detz(a,xt) = 0. If a^(x,) is the fcth focal point of x = x,,

then we must have at(xt) = a. But from Lemma 7.1, we see that ak(x) is a strictly

increasing function on [x1; oo) for any k, and hence that a— ay(xy) <ay(x2).

Therefore, detz(x,x2) has at least one zero on (a,x2). But we can also show in a

similar manner as before that detz(a,x2) = 0. It follows that a2(x2) 2: a. Pro-

ceeding in this manner, we see that detz(x,x„ + 2) has at least (n + 1) zeros count-

ing multiplicity, on (a,x„+2). But this contradicts Theorem 4, since detF(x) does

not vanish on (a, oo) by Theorem 2.1. From this contradiction we infer the truth

of the lemma.

Theorem 7.1.    The system (7.1) of n equations is oscillatory if the limits of r
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characteristic roots of the matrix jxR (x)dx and the limits of s characteristic

roots of the matrix   jxP(x)dx exist and are positively infinite and r + s> n.

Suppose that the theorem is false and assume that (7.1) is not oscillatory; that

is, there is no point conjugate to x = co on some interval (a, oo), where a is chosen

so that a = a. From Lemma 7.2, it follows that the solution matrix V(x) of (EE),

such that F(a) = 0 and F'(a) = I, satisfies the condition

(7.21) detF'(x)#0       (x^b),

where b > a. Set S(x) = R(x)V'(x)V~l(x). Then from (EE), it is easy to see that

(7.22) S(x) = S(b)-(   S(x)R~l(x)S(x)dx - f   P(x)dx,
J b J b

and

(7.23) S~1(x) = S~1(b) + f   S-1(x)P(x)S~1(x)dx + f   R_1(x>/x,
Jb J b

where we recall from Theorem 2.1 that det V(x) # 0 on (a, oo). Accordingly, S(x)

is defined on [b, oo) and (7.21) is nonsingular on [b, co).

It is easy to see from the preparedness (cf. (2.4)) of V(x) that S(x) is symmetric,

so that the matrices fxS(x)R~i(x)S(x)dx and (xS~i(x)P(x)S~i(x) ate positive

definite. Using this fact and (7.22) and (7.23), it can readily be shown with the

aid of the Courant-Fischer min-max theorem that S(x) has s characteristic roots

whose limits are negatively infinite and S_1(x) has r characteristic roots whose

limits are positively infinite. But this contradicts the fact that r + s> n. From

this contradiction we infer the truth of the theorem.

We shall now give an example to indicate that the condition in Theorem 7.1

that r + s > n cannot be relaxed. We take n = 2, rx2 = pl2 =0,ryy = 1, r22 = e2x,

Pyy = ljx2lnx, p22 = e2x. This system consists of two independent equations.

One vector solution is y* = (lnx, e~x); and it is easy to see that this system is

not oscillatory. It is also easy to verify that, for this system, r = s = 1. So that

r + s = n, and (7.1) is not oscillatory.

In the case when all the characteristic roots of the matrix jxR~1(x)dx

have limits that are positively infinite, Reid has shown, using the proof of a

theorem due to Sternberg [8], that (7.1) is oscillatory if (xP(x)dx is unbounded.

This is the case in the terminology of Theorem 7.1 when r = n and 5 > 1. As

mentioned at the end of the last section, this proof can be utilized to show that

the singularity matrix S(x) satisfies:

lim S(x) = 0,

if the hypothesis of Theorem 6.6 holds. However, we have shown in the proof of

Theorem 7.1, that if r = n and (7.1) is not oscillatory, then limS(x) = 0. Thus,

we have indicated an alternate proof of Theorem 6.6.



76 E. C. TOMASTIK

References

1. J. O. Chcllevold, Conjugate points of singular quadratic functionals for n dependent variables,

Proc. Iowa Acad. Sei. 59 (1952), 331-337.

2. Philip Hartman, Self-adjoint, non-oscillatory systems of ordinary, second order, linear

differential equations, Duke Math. J. 24 (1957), 25-35.

3. Walter Leighton, Principal quadratic functionals, Trans. Amer. Math. Soc. 67 (1949),

253-274.

4. Walter Leighton and A. D. Martin, Quadratic functionals with a singular end point,

Trans. Amer. Math. Soc. 78 (1955), 98-128.

5. Marston Morse, 77;e calculus of variations in the large, Amer. Math. Soc. Colloq. Publ.

Vol. 18, Amer. Math. Soc, Providence, R. I., 1960.

6. Marston Morse,  and Walter Leighton, Singular  quadratic functionals, Trans. Amer.

Math. Soc. 40 (1936) 252-286.

7. W. T. Reid, Oscillation criteria for linear differential systems with complex coefficients,

Pacific J. Math. 6 (1956), 733-751.

8. R. L. Sternberg, Variational methods and non-oscillation theorems for systems of differentia!

equations, Duke Math. J. 19 (1952), 311-322.

Western Reserve University,

Cleveland, Ohio


