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Introduction. The primary concern of this paper is a generalization of the

concept of expected or average value. We shall find all the set functions which

resemble average values in certain ways and characterize in terms of an order

structure alone those which are indeed of the form

The main theorems are stated and proved in §6. The proofs depend on

Liapounoff's theorem, which says that the range of a vector valued measure

is convex (§1), on a version of dimension theory for signed measures (§2) and on

a generalization of the Radon-Nikodym theorem (§4).

1. Additive sets and Liapounoff's theorem.

1.1. Throughout this paper S shall stand for a complete, atom free Boolean

algebra. We shall write 1,0, V, A, <, -, and 1 for the unit and zero of S, join,

meet, inclusion, relative complementation and disjointness respectively. Thus

A 1 B means A ^ 1 — B. We shall write AS for the principal ideal of subelements

of A. Whenever OelçSwe shall set X' =X- {0}.

1.2. A nonempty subset 51 of S will be called an additive set if it is closed

under the formation of proper differences and arbitrary disjoint unions :

A,Be3I, A^B => A-Be3I,

33<=3T, B«[\Bp = 8aßBa =>  V»e«.

An additive set 31 always contains 0. If 31 has a greatest element that element is

called the unit of 31. If E e 31 then £31 = ES n 31 is an additive set with unit E.

Note that £31 is not {E A A|Ae3I}. 31 is said to be atom free if it contains a

proper subelement of each of its elements.
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1.3. Lemma. // 51 is closed under proper differences, finite disjoint unions

and arbitrary increasing unions then it is additive.

Proof. Use transfinite induction to show 31 is closed under arbitrary disjoint

unions.

1.4. The additive set 31 with unit A is a measure set if there is a positive, finite,

countably additive measure p on 31. Note that we require p(¿) < co and p(£) = 0

only when £ = 0. A measure set 31 can also support signed measures. A signed

measure will be called strictly signed if it assumes both positive and negative

values. If v is a strictly signed measure on 31 the set 3 of elements of v-measure

zero is an additive set. All the additive sets we shall encounter are related to this

simple example.

1.5. A chain is a linearly ordered set. Every chain comes equipped with its

natural interval topology. Every maximal chain in an atom free additive set 31

with unit is complete as a lattice and connected as a topological space. It follows

that when £ e 31 a maximal chain in £31 is maximal in EQ. If »X is a maximal

chain in 31' then (£ U {0} is one in 31.

1.6. We shall say that a function on 31 is continuous if it is continuous with

respect to the interval topologies of all the chains of 31. If v is a finitely additive

signed measure on 31 then it is a measure if and only if it is continuous. It follows

that maximal chains in an atom free measure set are arcs. The measure itself

restricted to such a chain is a homeomorphism onto a real interval. The range of a

positive measure on 31 is thus an interval.

1.7. We can now define the principal object of our attention. Let T be a chain.

A nonconstant continuous function ep from S' onto F is an averaging function

if A IB and </>(¿) # </>(B) imply <p(¿ V B) is strictly between <p(¿) and epiB) in

the ordering of F. When A J. B and epiA) = epiB) we demand epiA V B) = </>(¿).

1.8. Two averaging functions </>:S'-> Tand <p':<5' -* F' are isomorphic if there

is an order isomorphism hiT—*F' such that ep' = hoep. Thus the isomorphism

class of ep may depend on the order structure of F but does not depend on r itself.

1.9. The motivating example of an averaging function comes from measure

theory. If iX, p) is a finite, atom free measure space and v is a signed measure

absolutely continuous with respect to p then ep = v/p is an averaging function

on the measure algebra S of p. The phrases "ep = v/p" and "ep is a quotient of

measures" will always refer to this situation.

1.10. Our first theorem relates averaging functions and additive sets. For each

y e r let 3; = ep ~ \y), the y-level set of ep. As usual, 37=3^ {0}-

1.11 Theorem. 3y »s an additive set.

Proof. 3y is obviously closed under finite disjoint unions. If A < B in 3y and

£ — A $ 3y tnen <PiB) is strictly between y = epiA) and epiB — A) # y, contra-

dicting the assumption that Be3r The continuity of ep implies that 3> is closed
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under increasing unions so Lemma 1.3 shows 3y is an additive set. Note that

for each A e S', A^^A) is an additive set with unit A.

Our next task is to show that each 3r is atom free.

1.12. Lemma. Let 31 be an atom free additive subset of Q with unit A. Then

the range of cp f 31' is a connected subset ofT.

Proof. For each B e 31 choose a maximal chain (£ in 31 containing B. Then cp

restricted to (£' is a continuous function so </>(&') is a connected set (1.5) con-

taining both cp(B) and cp(A). The range of cp restricted to 31' is therefore a union

of connected sets which have the point cp(A) in common. Hence this range is

connected. |

1.13. Corollary. Lemma 1.12 applied to S itself shows T is connected.

1.14. Theorem. // 31 is an atom free additive subset of S then 31 Ciß? is

atom free.

Proof. 31 n3y is clearly an additive set. Suppose 0 # A e 31 n3r We must

find an A' < A in 31 such that cp(A') = y. Start by writing A as a nontrivial disjoint

union By D in 31. This is possible since 31 is atom free. We may assume

cp(B) £j cp(A) = y ;S cp(D) since cp averages. If either equality holds we are done,

so assume cp(B) < y < cp(D). Let (£ be a maximal chain in B3I. As C increases

in the connected set (£, cp(C) approaches cp(B) so there is a C e (£ with </>(C) < y

and C < B. Let £ = C V D< A. Since C 1 D, E is in 31. The range of cp restricted

to £31' contains cp(C), which is less than y = cp(A), and cp(D), which is greater.

Lemma 1.12 then implies there is an A' in £31' such that cp(A') = y.  |

1.15. Corollary. Theorem 1.14 applied to S itself shows each$y is atom free.

It follows from 1.5 that maximal chains in A^^ are maximal chains in AS.

1.16. Lemma. Let cplt---,cpn be averaging functions on S. Then the level sets

of the function cp = (kcpl,---,cp„y with values in Ty x ••■ xT„ are atom free

additive sets.

Proof. When <y> = (yt, ••■,y„> is in the range of cp then3<?> =3yi n ••• nSyn,

which is clearly an additive set. Induction shows it is atom free. |

Some corollaries of this lemma lead directly to a theorem of Liapounoff's [3].

The idea behind our proof is implicit in Halmos' [2]. However by making explicit

use of additive sets we are able to rest more of the proof on elementary topological

facts about chains and less on explicit measure theoretic constructions. Our

proof is more elementary than Dubin and Spanier's [1], which uses the Borsuk-

Ulam theorem, but the preliminary lemma we derive below is weaker than theirs.

1.17. Lemma (Simultaneous Proportionality). Suppose vu—,v„ are signed

measures on the atom free measure algebra S. Let v be the vector valued measure
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<Vi,-",v„>. For every A in (5 and real t between 0 and 1 there is a B < A such

that v(B) = ív(¿).

Proof. Choose some measure p on S which vanishes only at 0 and set ep = v/p.

Lemma 1.16 implies that the additive set A3<¡>iA) ¡s atom free. Choose a maximal

chain (£ in A3^,iAy Then 1.6 shows there is a B in & such that p(B)= íp(¿). Since

v(¿)/p(¿) = epiA) = ePiB) = v(B)/p(B)

it follows that v(B) = rv(¿). |

1.18. Corollary (Simultaneous Bisection). There is a B < A such that

v(B) = v(¿)/2. Note for future reference that in the construction in 1.18 both B

and A — B have this property.

The restriction in 1.17 that S be a measure algebra and the seemingly ad hoc

introduction of the positive measure p could be avoided were we willing to assume

the Hahn decomposition theorem and the resulting construction of the total

variation measures |v»|. Suppose the vector valued measure v has at least one

atom free component. Set p = | v, | + ••■ + | v„|. Since v; is absolutely continuous

with respect to p the argument in 1.17 applies when <3 is the measure algebra of p.

1.19. Theorem (Liapounoff). The range of the vector valued measure v on the

atom free measure algebra S is a convex subset of R". It is also closed, but we

shall not prove that.

Proof. Given A and £ in S and x between 0 and 1 we must find a C in S such

that v(C) = xv(¿) + (1 -x)v(E). Start by applying 1.17 to A - B with i = x

and to £ — A with t = 1 — x to produce D 5Í A — B and E z% B — A satisfying

v(D) = xv(¿ - £) and v(£) = (1 - x)v(£ - A).

Then set C = £*A/ (¿ A B) V £■ This union is disjoint, so

v(C)= v(£)4-v(¿lAB) + v(£)

= xv(¿ - E) + [x + (1 - x)] v(¿ A £) + (1 - x)v(£ - A)

= xv(¿) + (1 - x)v(E). |

As corollaries to Liapounoff's theorem we shall derive some new, useful results

on the uniqueness of signed measures.

1.20. Theorem. Suppose Vy and v2 are strictly signed measures such that for

A # 0, v2(¿) ^ 0 implies VyiA) < 0. Then the set I of positive numbers t such that

v2 ^ ivt is a closed interval.

Proof. / is clearly connected. If it is not empty it contains its supremum and

infimum provided these are not oo or 0 respectively. Consider the measure
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v = <V!,v2> with values in the plane. The hypotheses imply that the ranged of v

meets the open first and third quadrants but not the open fourth quadrant.

/ clearly contains just those t > 0 for which X lies above the line y = tx. It is

therefore bounded and bounded away from zero. The convex set X can be separated

from the fourth quadrant by such a line, so / is not empty. |

1.21. A convex subset X of R" has no interior if and only if it is contained in

a hyperplane. If X meets both the open half spaces into which a hyperplane P

separates R" then X has an empty interior if X O P has an empty interior relative

to P.

1.22. Theorem. Suppose py and p2 are atom free signed measures such

that for some a in the interior of the range of py, Py(A) = py(B) = a implies

p2(A) = p2(B). Then p2 = ßpy for some real ß.

Proof. Let X be the range of the vector measure </t1,u2>. X meets both open

half planes determined by the line x = a but meets that line in a single point.

X is therefore contained in a line (1.21). Since 0 e X that line is of the form y = ßx.

Then p2 = ßpy. |

1.23. Corollary. A probability measure p on S is completely determined

by knowledge of the elements o/S with measure one half. This fact is implicit in

Halmos' proof of Liapounoff's theorem. A strictly signed measure is determined

up to a scalar factor by knowledge of the additive set of elements of measure

zero.

In the next section we shall try to find constructive analogues of these passive

assertions.

2. Measures from equivalence relations. In this section we shall discuss how

a measure p on an additive set can be recovered from data about the partition

into classes of elements of equal measure which it defines. We have just seen that

complete knowledge of any single equivalence class suffices to determine p.

Nevertheless, in each of the two cases we consider we shall have to allow ourselves

more information. We use the entire partition to reconstruct a positive measure.

The zero equivalence class and a Hahn decomposition suffice for a strictly signed

measure. The underlying principle we exploit for positive measures is not new.

The idea stems historically from dimension theory; see, for example, [5]. Maha-

ram's work [4] is closest in spirit to ours.

The particular theorem we are about to prove has hypotheses easily verifiable

in the applications we wish to make. Some parts of it express new points of view

on old ideas. The model for the proof is the characterization of the unit interval

as the complete separable ordered local semigroup. Since the techniques are well

known we shall often just outline arguments. The results of this section are in-

dependent of Liapounoff's theorem though we shall use information about chains

in atom free additive sets.
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2.1. Theorem. Let 31 be an atom free additive set with unit 1 and = an

equivalence relation on 31 which satisfies

I. Additivity. If Ex J_£2, Fj J_F2, Ey=Fy and E2=F2 then Ey\JE2 = Fy\JF2.

II. Strong Comparability. Every maximal chain in 31 contains a represen-

tative of every = equivalence class.

III. Comparability. If A and B are in 31 then one of them is equivalent to a sub-

element of the other.

IV. Boundedness and Nontriviality. No A is equivalent to a subelement of

itself.
Then there is a unique measure p on 31 such that p(l) = 1 and A = B if and

onlyifpiA) = piB).

The conclusion of the theorem is unsurprising but the hypotheses seem weak.

We do not assume 31 is a measure set; we do not even know, a priori, that it

satisfies the countable chain condition. Neither do we assume = is countably

additive, or even continuous, except indirectly in II.

The following easy analogue of the Schroder-Bernstein theorem is critical in

the proof.

2.2. Lemma.

A   =. D

A       V
B   = C   is impossible.

Proof. Try to apply III to A and C. Because of the symmetry of the square it

suffices to show that A = E — C is impossible. But if there were such an £ then

D = A = E = C<D would contradict IV. |

Now let <5 :31 -* A be the natural map of 31 onto the set of = equivalence classes.

Let ¿(O) = 0 and ¿(1) = 1. Suppose (£ is a maximal chain in 31. It follows from

II and Lemma 2.2 that <5 { »X is bijective and that the order structure on A induced

by (5 I (£ is independent of G. A is therefore complete and connected in the interval

topology of this order structure.

The following lemma, whose routine proof we omit, allows us to define sub-

traction in A.

2.3. Lemma. B<A, F<E,A = E and B = F imply A- B = E-F.

When ß < a in A choose representatives £ < A in 31 and set a — ß = ¿(¿ — B).

For each fixed a the subtraction map ß —> a — ß is a continuous function of ß in

the segment of A below a. If a z% 1 — ß then a and ß have disjoint representatives

A and fl and a + ß is consistently defined as <5(¿ V B). Addition is a continuous,

monotonie function of each variable. It is associative and commutative where it is

defined because disjoint union enjoys these properties.
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The measure p on 31 which we seek must, by definition, factor through Ö and

map A isomorphically (as an ordered set with its additive structure) onto the

unit interval I. To simplify our notation we shall construct the inverse a of this

isomorphism. First we locate o"(2~"), then a for the dyadic rationalsD and then

extend by continuity.

Let o-(l) = ff(2°) = 0(1) = 1 in A. Then define a(2~") inductively. Suppose

o-(2_n+1) has been defined. Then the interval [0,o-(2_B+1)] in A is a connected set

on which the function a-+o(2~"+l) — a is monotonie, order reversing and con-

tinuous. There is therefore a unique o-(2_n) e A for which a(2~") + o(2~") = o(2~n+1).

2.4. Lemma.  o-(2~") -* 0 in A.

Proof. We know a(2 ~") is a decreasing sequence in the ordering of A. Let

a = inf o-(2~")- Suppose a > 0. Then find two disjoint members Ct and Dy in

a(l/2). Let G be a maximal chain containing Ct and 2) a maximal chain containing

Dy. Let Cn = o(2-")r\ti, On = (7(2"',)nî), C = a. D (T and D = anD. Then

0 < C < C„ and 0 < D < Dn for all n. Since Cy 1 Dy we know Cn J. D„ and CID.

Thus C V D < Cn V D„ for all n and these are disjoint unions Hence

ô(CVD)<ô(CnVDn)  - ô(Cn) + ô(Dn)

= a(2-") + ct(2~ )

= o-(2-n+1)

for all n. Therefore Ô(C y D) = <x. But since C < C V D, a. < 5(C V D), a contra-

diction, a must be 0 in A. |

Lemma 2.4 implies a(D) is dense in A. It is then easy to prove that a extends

uniquely to a continuous local semigroup isomorphism of I onto A. Since addition

is "countably additive" on / the measure p = a~1ô on 31 is countably additive

and satisfies the requirements of Theorem 2.1, which has therefore been proved. I

2.5. Corollary. A finitely additive probability measure on a complete, atom

free Boolean algebra is countably additive if it vanishes only at 0 and if every

maximal chain contains an element of measure x for every x between 0 and 1.

Later we shall need the following slight strengthening of the uniqueness as-

sertion of Theorem 2.1.

2.6. Lemma. Let py and p2 be measures on the additive set 31, which need

not have a unit. Suppose that Py(A) = 0 only when A = 0 and that pt(A) = pt(B)

if and only if p2(A) = p2(B). Then py is a positive multiple of p2.

Proof. For each A e 31 apply Theorem 2.1 on A3I. There u, = XAp2. The num-

bers XA are independent of A since given A and A' both A3I and A'3I will contain

elements of wt measure x when x is sufficiently small. |
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The rest of this section is devoted to reconstructing a strictly signed measure

on all of S from its Hahn decomposition and zero elements.

2.7. Theorem. Let 3 be an atom free additive subset of <3 and P0e£>. Set

N0 = 1 — P0, ^8 = PQQ and 9i = TV0S. Write TV and P for generic members

ofUl and \]$ respectively. If N V P^3 we sna^ sa)> tnat N balances P. Assume

% 3 and ty satisfy
r. 9tn3 = $n3 = {0}.
II'.  //TVe9l and Pe^S then one balances a subelement of the other.

111'. If TV balances P and G (Tj) is a maximal chain in ^3 (9Î) then there is a

Ce (£ (DeXO which balances TV (P).

Then there is a unique strictly signed measure v on (3 such that v(P0) = 1 and

v(¿) = 0 if and only if Ae3- It follows that TV0, P0 is a Hahn decomposition

for v.

Many of the statements in the proof outlined below have obvious analogues

obtained by interchanging ^3 and 91. We shall not always mention them or prove

them.

2.8. Call aPefî small if it is balanced by some TVe9l. The following lemma

shows that subelements of small elements are small and that either all of ^3 or

all of 91 is small.

2.9. Lemma. //TV balances P and Q^P then some subelement ofN balances Q.

Proof. We may assume Q<P. Apply II' to TV and Q. It suffices to show that

Of < Q cannot balance TV. But were this to occur, N \J P - N y Q' = P - Q' ^0

would be in ^S O3, contradicting/'. |

2.10. Define two small elements of ^3 to be equivalent, written =, if both are

balanced by the same TV in 9Î. ■ is clearly reflexive and symmetric. The next

lemma shows it is transitive.

2.11. Lemma.   IfNy balances Py and Py= P2 then Ny balances P2.

Proof. Choose an TV2 which balances both Pt and P2. If Ny 1 TV2 and Py ± P2

the result follows from the additivity of 3 and the observation

iNy V Pi) V (TV2 V Pf) = (iV2 V Pi) V (TV, V Pf).

Now suppose Ny 1 TV2 but Py /\P2 = B>0. Apply Lemma 2.9 to find elements

C¡<N¡ such that C¡lV£e3' ' = 1>2- The original argument then applies to

Ny — Cy, N2 - C2, Py — B and P2 - B, allowing us to deduce that TV«. - Cy

balances P2 - B. Since C2 V B is in 3, Ny V P2^3-

Finally, suppose C = Ny /\N2>0. Apply II' to B and C; assume this produces

a D < B which balances C. Then apply the preceding argument to Pi — D,P2 — D,

Ny-C and N2-C.^
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2.12. We wish to show = satisfies the hypotheses of Theorem 2.1. Verification

of II, III and IV is routine. The finite additivity is easy to check. Suppose P¡ = Q¡,

P2 = Q2, Py J_ P2, Qy ± Q2 and Py V P2 is small. Let N balance Py V P2 and

select Ny<N balancing Py (2.9). Then Nt balances Qt (2.11) and N2 = N - Ny

balances P2 and hence Q2. Therefore N = Ny\/ N2 balances öi V62 which is

thus equivalent to Py V P2-

Recall that all of ^ or 91 is small (2.8); assume the former. Then Theorem 2.1

applies to = on ^3; let v be the measure so constructed. Extend v to the small

elements of 91 by setting v(A) = — v(P) when N balances P. It is easy to see that

every N e 9t is a disjoint union of small elements and that the obvious extension

of v to all of 91 is consistent and defines a countably additive negative measure

on 91. Were v to assume the value — 00 it would do so on an entire maximal

chain, contradicting the fact that every maximal chain in 9t' contains a small

element. Finally, extend v to all of S by setting v(A) = v(A A Po) + V(A A N0).

The corresponding definition with a minus sign yields the positive measure | v |

on S, which shows S is a measure algebra.

3. When are v/p and v'/p' isomorphic? We begin this section with a technical

corollary of the simultaneous bisection argument in 1.18.

3.1. Lemma. Let v be a vector valued signed measure. If Ay,---,Ak are in S

there are mutually disjoint elements By,--,Bk such that Bj < A} and v(Bj)

= 2-kv(Aj) forj = l,-,k.

Proof. Let D ,,■•-, Dr be the atoms of the subalgebra of S generated by A „ • • •, Ak.

Then the elements Dm ate pairwise disjoint in S and r ^ 2k. Furthermore,

Aj= \/Dm<AjDm. Apply the Simultaneous Bisection Corollary 1.18 k times

inside each Dm to produce disjoint subelements El,,---,E2k each of which satisfies

v(Eim) = 2~kv(Dm). Then set B¡ = \¡Dm1kAfiJm. Note for later use that for each m

we may permute the upper indices of the elements EJm and construct different

elements Bj which work equally well.  I

3.2. Lemma. Suppose ALB and cp(A) ̂  <p(B). Let (£ be a maximal chain in

A3<hav Then the function g defined by g(C) = cp(C V B) is a homeomorphism

of (£ onto the interval [cp(A V B),cp(B)] in T.

Proof, g is continuous since cp is. g(0) = cp(B) and g(A) = cp(A V B). Since

the domain of g is connected, g will be a homeomorphism provided it is strictly

monotonie. But suppose Cy > C2 in £. Then Cy\J B = (C2\J B)\/ (Cy - C2).

Since cp(B) # cp(A) = cp(Cy) = cp(C2) = <p(Cy - C2) and cp averages, cp(Cy V B)

is nearer cp(B) than is cp(C2 V B). |

3.3. Definition. The ordered triple <Al5A2,B> of disjoint elements of Sis a test

set configuration if cp(Ay) = <p(A2) ̂ cp(B) and cp(Ay V B) = cp(A2 V B).
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determined modulo p up to a change of scale. No more could be hoped for from

the data.

It is easy to see why the qualitative data convey so much information. In order

to compute the average value of / on £ we must first perform the experiment

corresponding to the observable given by the characteristic function of £.

4. The Radon-Nikodym theorem. In this section we establish a lattice theoretic

version of the Radon-Nikodym theorem for an averaging function ep on a complete

Boolean algebra Q. We temporarily drop the assumption that S is atom free

and that c/>:S'-»r is onto in order to deduce the standard measure theoretic

version from ours when ep = v/p and F = R.

4.1. Definition. A map y-»£y from r to Q is a spectral family if

Ey increases with y,

Ey  =      A  Eß,
ß> y

\JEy =  1 and  AEv = 0.

It is clear that when S is a msasure algebra and T = R there is a one-to-one

correspondence between measurable functions / and spectral families given

by setting Ey =/"'((— 00,7]). When / = dv/dp Ey, is the largest element of Q

on every subelement of which ep is less than or equal to y. This is the clue to the

generalization of the Radon-Nikodym theorem which follows.

4.2. Lemma,   ep \ ES ^ y and ep \ FS ^ y imply ep [ (E V F)S = y.

Proof. Suppose Gz^Ey F. Then G = [G A £] V [G A (F - £)] is a disjoint

union. Since ep averages, </>(G) ̂ y. |

This lemma shows that the set 31,, of members E of Q such that ep { E<5' z^y

is an ideal and not just an additive set. Unfortunately the easy proof above rests

heavily on the Boolean properties of relative complementation and distributivity.

This obstructs the immediate extension of the results which follow to more general

orthocomplemented lattices.

4.3. Lemma. 3Iy is not empty. That is, ifyeF is not less than every member

ofT0 = range ep then there is an E in S such that ep \ EG' ^ y.

Proof. If y is the least member of r0 then any E for which </>(£) = y will do.

If y is not the least member of r0 choose an F in S for which ep(F) < y. Let

9JI = {G ̂  FJ ep(G) = y}. If 9JI is empty the lemma is proved by setting £ = F.

Otherwise let G be the join of a maximal chain G in 9JÎ. Clearly G is a maximal

member of 9JÏ and is not equal to F. Set E = F — G > 0; suppose D=E. Then

D IG so the maximality of G implies D V G is not in 9JÍ.  Since ep(D V G) is
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3.4. Lemma.  If ep = v/p and <¿i,¿2,£> is a test set configuration then

V(Ay)   =  v(A2),

P-iAi)  = PiA2)

and the quadruple

iepiAy), (/.(¿i V B); </>(¿i V B V Af), ep(B))

is harmonic in R.

Proof. Compute.

3.5. Lemma. Ifep = v/p and a<y<ß are in the range of ep then there is a test set

configuration <¿,,¿2,B> such that epiAy) = a, epiB) = ß and ep(ALyB\JAf) = y.

Proof. Apply Lemma 3.1 to the measure <v,p> to find disjoint elements A and

B for which ep(A) = a and ep(B) = ß. Then use Lemma 3.2 to replace either A or B

by a subelement of itself to guarantee that epiA y B) = y. Finally, apply the

Simultaneous Bisection Corollary 1.18 to <v,P> on A to produce disjoint halves

¿i and ¿2 of A. Then <¿,,¿2,B> is the configuration we seek. |

3.6. Theorem. Let h be an increasing function on the range T of ep = v/p.

Then h oep isa quotient of measures if and only if h is the restriction to Y of a

fractional linear transformation whose pole lies outside Y.

Proof. It is easy to check that such a fractional linear transformation works.

Conversely, suppose h o ep is a quotient of measures. If a < y < ß in Y choose

a test set configuration as in Lemma 3.5. It follows from Lemma 3.4 that </>(¿, V B)

is the harmonic conjugate of a with respect to the pair (p\y). But Lemma 3.4 also

implies that the test set configurations of h oep yield harmonic quadruples. There-

fore h preserves harmonic quadruples. Hence it is the restriction to Y of a fractional

linear transformation. |

This uniqueness theorem has an amusing statistical mechanical interpretation.

Select a state of a given statistical mechanical system, that is, choose an atom

free probability measure p on the phase space 9JÎ of the system. Also choose

an observable / e Ll(p). Perform experiments to compute the average value of /

on each subset of 2R when the system is in state p. The average value will be

undefined on p null sets. Suppose you have lost all but the qualitative data, the

partial ordering induced by the average value on the set of subsets of Sût with

positive p measure. Then both the state p and the observable / can be recovered

from this ordering, modulo the confusion of observable with state introduced

by the arbitrary fractional linear transformation in Theorem 3.6. The larger

the essential bounds of / the less the confusion. If you happen to have chosen

an / unbounded above and below then p is completely determined and / is
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between cp(D) and  cp(G) we can conclude that cp(G) ̂  y > cp(D V G) ¡£ cp(D).

Therefore cp f£S'<y. \

4.4. Lemma.   31,, is a principal ideal. Call its generator Er |

Proof. If y is below all of r0 in T set Ey = 0. If y is not below r0 then 31,, is not

empty. Let Ey = V \ '■> it clearly suffices to show £y s 3Ir We shall do this by

showing that the join £ of a maximal chain (£ in 3Iy must equal £y and lie in 3Ir

£ lies in 3Iy because cp is continuous and D ^ £ implies D = \/Ce(S D AC. But

if F e 3Iy Lemma 4.2 implies £ V F e 3Iy so £ V F ^ £. Thus £ = Er

4.5. It is clear that the map y -> Ey constructed in Theorem 4.4 is a spectral

family. We shall call it the Radon-Nikodym derivative (£ of cp. Note that

a < cp [ (Eß - £JS ^ ß. To see this suppose D^Eß- Ex. Clearly cp(D) ̂  ß.

But D ± Ex, so </>(D) > a lest 4.3 applied to cp \ DS contradict the maximality

of£«.

4.6. Theorem. Suppose v is a finite signed measure absolutely continuous

with respect to the finite measure p on (X, S). Then there is a function fe Ü(X,p)

such that for all Ae S, v(A) = \Afdp.

Proof, cp = v/p is an averaging function on the measure algebra S of p. The

range T0 of cp is included in R so Theorem 4.4 and the remarks in 4.5 apply.

Let / be the measurable function defined by the Radon-Nikodym derivative of cp.

Suppose AeS. For integers n > 0 and m set Am>„ = A A (F(m+n/2» — Eml2^).

Then for each n, the join A = \/mAm¡„ is disjoint. Let /„ be the function defined

on A by

fn(x) = v(Am>n) when x e Am>„.

Then /„ is well defined modulo p. Let us compute its integral with respect to p

over A. The following equalities are all true if any member converges.

p 00

f„dp =     S   <p(Am,„)p(Am¡„)
JA m — — oo

=   2 v(Am,„)
m

= v(y^")

- v(A).

Thus for ail n, fnBÜ(A,p¡) and $Afndp = v(A), independent of n. The definition

of/ shows \fn —f\ is almost everywhere less than 2~". It follows that /„ -*/ uni-
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formly almost everywhere,   so   f \A  is  in Lx(A,p)  and    (Afdp = lim (Af„dp

= v(A).  g

We return now to our study of averaging functions. Again we assume that <3 is

atom free and that ep:Q' ->• Y is onto. (X is the Radon-Nikodym derivative of ep.

4.7. The point spectrum A of ep is the set of those y in Y at which (£ is discon-

tinuous. That is, yeA when Fy = Ey— yß<yEß^ 0. Clearly ye A if and only

if there is an F # 0 such that ep p FS = y. If we constuct the Radon-Nikodym

derivative (£' of the averaging function </>:G' -» Y' where Y' is Y with the reverse

order then for all y, Eyy E'y=l and Ey f\E'y = Fy. When y e A we shall call Fy

the y-atom. It is not an atom of Q, which has none. If Y has a greatest or a least

element each is in A.

4.8. Theorem. If Q is a measure algebra then Y is homeomorphic to a real

interval.

Proof. The Radon-Nikodym derivative © is a chain in S. Embed it in a maximal

chain (X. The remark in 4.5 and an argument analogous to the proof of Lemma

3.2 imply that ep is a strictly increasing function from (X, which is an arc (1.6)

onto the part of Y below </>(l ). A similar argument applied to ©'finishes the proof. |

5. More general averaging functions. In this section we construct a large class

of averaging functions and gain new insight into the uniqueness theorem.

5.1. Let Q be an atom free measure algebra and F the vector space of finite

signed measures on S. Let C be the cone of nonnegative measures and V the set

of strictly signed measures. Suppose T is a linearly ordered set. Denote its greatest

and least elements (if any) by y* and y^ respectively. Let r0 = Y — {y*, y*}.

5.2. Theorem. Suppose F* and F^ are disjoint elements o/S, each less than 1,

and F* (F#) > 0 if y* iyf) exists. Suppose further that n:Y0-+ V is a function

such that for every AeQ', y-»7iy(¿) is nondecreasing and

nyiA) < 0 for all y if A z% F*,

7r..(¿) >  0 for all y if ¿ ^ F*,

nyiÄ) = 0 for exactly one ye Y0 otherwise.

Define ep=ePK:Q'^> Y by

'y* ifA^F*,

4>iA) = 1 V* if A = F*>

the solution y to íiy(¿) = 0 otherwise.

Then ep is a continuous averaging function.
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Proof. We shall check only a few sample cases in the argument showing cp

averages. Suppose that ALB and that each meets both 1 — F* and 1 — F*. If

cp(A) < cp(B) then

nHA)(A V B) = n*(A)(A) + n^(B)

= 7r^)(B)<0

since y -» ny(B) is nondecreasing and vanishes only at cp(B) > cp(A). Similarly,

n4>(B)(A V B) > 0. Thus cp(A V B), the zero of y -* 7ry(A V B), lies strictly between

cp(A) and </>(B).

If A g F», so that cp(A) = y » < cp(B), then 7t0(ll)(A V B) = nHB)(A) > 0. There-

fore the zero of y -» ny(A V B) occurs before cp(B) and y„ < $(A \J B) < cp(B).

To show 0 is continuous suppose (£ is a chain in S, C„ -» A in (£ and

a < $(A) < /?• Then ^„(A) < 0 < nfi(A). Since rca and nß ate measures each is

continuous on (£ so eventually nx(C„) < 0 < nß(Cn). Therefore eventually

cc<cP(Cn)<ß. |

5.3. Reparametrization of the curve y -» ;ry does not change the isomorphism

class of (/>, for if «:r'-> ris an order isomorphism then Theorem 5.2 applied to the

data F*, F, and n oh yields the averaging function h ~ 'o </>„.

5.4. There is another useful way to change n without altering cpn. If / is a positive

function on T such that for every A, y->f(y)ny(A) is still nondecreasing then

cpn = cpfr. Conversely, if cpn = cpn- then 1.23 shows n and n' ate related by such

an / In §7 we discuss the existence of such renormalizations in some special

cases.

5.5. Theorem. For each A in S the function y->7ry(A) is continuous.

Proof. Suppose y -> ny(A) is discontinous at ô. Note that whenever we write A

as a disjoint union Ay V ••• V A„ at least one of the functions y -* ny(A¡) is discon-

tinuous at 5. Furthermore if B.l A then y->7ty(AVB) is discontinuous at Ô.

The concluding remarks in 1.18 and 3.1 then show that when we use either of

these constructions to replace A by a subelement A' we can assume y-+^y(A')

is discontinuous at S.

Assume for definiteness that na(A) 2: 0. Since nô is strictly signed there is an N

for which n¿(N) < 0. Lemma 3.1 shows we may assume A 1 N. Apply 1.18 suf-

ficiently often to na on A to replace A by a subelement A' such that 0 5Í ns(A')

< —nô(N'). Now let p = supy<iny(A') and q = infy>ôny(A'). Then p<q and

p ^ ns(A') ;£ q. Finally, use 1.17 for some t near n¡(A')l — nô(N) to find an N' < N

such that p < — ns(N') < q and — n¡(N') ^ ^s(A'). Then 7ry(A' V A7') is some-

times positive and sometimes negative but never zero, a contradiction. |

5.6. Lemma. The span in V of the range of n meets C.

Proof. If a < ß in ro then na and nß satisfy the hypotheses of Theorem 1.20. |
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5.7. Let us examine a little more carefully the behavior of % near the (top) end

of T. Set

V*(¿) =   SUp 7Ty(¿) = Um  JTy(¿).

yeTo ft y*

Then v* is a finitely additive but not necessarily finite signed measure. The follow-

ing theorem shows that if it is finite and countably additive it is nonnegative. In §7

we shall see that these remarks are in a sense the best possible.

5.8. Theorem. There is no ve V such that v = nyfor all yer0.

Proof. Suppose v is such a measure. Whenever v(¿) < 0, 7ty(¿) < 0 for all y

so A z% F* (5.2). Fix some TV for which v(TV) < 0; then find a B L F* small enough

so that v(TV V B) < 0. Then Ny B^F*, a contradiction. |

5.9. If ep = v/p then ep = ep„ for the curve n given by ny = yp — v e V for all

y e r0. Here F* (F*) is the y* (y^-atom, if any (4.7). Let V2 be the two dimensional

span of v and p in V. C O V2 is either a sector or a ray. The lines-in

the figure illustrate each possibility. We can now suddenly see why projective

transformations occur in Theorem 3.6. Suppose we have already proved that

every averaging function is of the type constructed in Theorem 5.2. It follows

that if v/p is isomorphic to v'/p' then v, p and v', p' are just different bases for the

same subspace of V and one of the situations in the figure occurs : the relation

between the ranges-and— — • — is by projection from the origin.

5.10. Theorem. </>„ is isomorphic to a quotient of measures if and only if

the range of % is contained in a plane.

Proof. 5.3 and 5.4 show that the span of the range of n depends only on the

isomorphism class of ep„. We have just observed that % is a plane curve when

ep = v/p. Conversely, suppose 7t(r0) <=. v2. Lemma 5.6 shows V2 meets C. Lemma

5.8 shows 7t(r0) meets every line through the origin in V2 O V. We know 7t(r0)

meets each such line at most once by virtue of the hypotheses of Theorem 5.2.

Theorem 5.5 shows that all of 7r(r0) lies in one of the two components into which

Cu(-C) separates V n V2. Therefore one of the curves in the figure gives

an accurate picture of 7r(r0). In either case we can replace n by fn where / is

chosen so that fiy)ny lies on the line-. epn is isomorphic to epfK (5.4)

which is in turn isomorphic to a quotient of measures (5.9).

This answers the question "When is ep isomorphic to a quotient of measures?"

but the answer is unpleasant. In the next section we shall find a simple condition

which forces 7r(r0) to be a plane curve and thus come to a more satisfactory

answer.

6. Every averaging function is a curve of measures.

6.1. Let ep be an averaging function on S. We shall use Theorem 2.7 to construct

a function n for which ep = epn. It will follow that S is a measure algebra. Tempo-
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CriV

parameterized by y in yp — v

- parameterized by y in yp' — v'

CnV-

-CnF2

n(T0)

rarily fix yer0. Set P0 = £y - Fy (4.7), <ß„ = P0S, 9ty = (1 - £y)S and

Sy = (1 — Fy)S. Recall that 3y = 4>~l(?)• We wish to apply Theorem 2.7 to

3y O Sy and P0 on Sy. Hypothesis I' is clearly true.

6.2. Lemma. // P e <ßy and N e 9ly iften (/>(A V P) = y ¿/ and only if P is

balanced by some N' < N. Dually, N is balanced by a P' < P if and only if

cp(N V P) è y-
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Proof. Lemma 3.2 suffices to verify "only if" in the first assertion. Conversely,

when such an TV' exists </>(TV V P) è y since it is between epiN' y P) = y and

</>(TV — TV') > y. As a corollary we see that II' in 2.7 is true.  |

6.3. Lemma. P0 and 3y n Qy satisfy III'.

Proof. Suppose TV e 9ly balances P e tyy and (X is a maximal chain in '¡p,,. Since

Ey- Fy = P0 = P and 0(TV) > y Lemma 6.2 implies epiN y P0) ^ y. Then Lemma

3.2 applied to P0, TV and IX produces a Ce IX which balances TV. |

6.4. Let 7ty be the strictly signed measure on Sy constructed in Theorem 2.7

from the data P0 and 3y <"> ®y. Extend ny to all of S by setting 7ty(¿) = 0 whenever

AúFr

6.5. Theorem. S is a measure algebra and Y is homeomorphic to a real

interval.

Proof. The second assertion follows from the first (Theorem 4.8). We showed

in 6.4 that (1 — F^,(1))S is a measure algebra. If $(1) <£A we are done. In any case,

if y* < y < epil) then F¿(1)(5 ezz Sy. F¿(1)S and hence S itself is therefore a measure

algebra. |

6.6. Lemma. ?ry(¿) > 0 ( < 0) // and only if </>(¿) < y ( > y).

Proof. Write A as a disjoint union N y Zy P where TV e 9ly, Z z% Fy and

Pe%. Then 7ty(¿) = 7ty(TV) 4- 7ty(P) > 0 if and only if jty(P) > - 7ty(TV). The

definition of ny together with Lemma 6.2 show this happens just when -p(TV V P) <y.

Since epiZ) = y, </>(TV V P) < y if and only if epiN y Z y P) < y.   |

Next we fit the measures ny together.

6.7. Lemma. There is a positive real valued function f on Y0 such that for

every ¿eS the function y-»/(y)<ry(¿) is nondecreasing.

Proof. We shall arrange the construction so that /(</>( 1)) = 1. Note first that

whenever y <ó in Y0 Theorem 1.20 applies to ny and nô. When epfl) -g y set

Iy = {x:n^U)^ xny}. When $(1) - y set Iy = {x:x7ty *g ̂ (i)}- Each Iy is a closed

interval so their product X is compact. For each finite subset A= {yi,-",yB} of

r0 which contains epil) let /<(A) be the subset of X containing those functions /

for which

/(7i>y, = — ^ JT«ri) = ■- úfiy„)ny„.

When A has two elements K(A) = X. Induction on the cardinality of A shows

/C(A) is never empty. Any / in f"| /C(A) satisfies the conclusion of the theorem. |

Henceforth we shall assume n has been replaced by fn. We have proved

6.8. Theorem. Suppose </>:S'->r is an averaging function on a complete

atom free Boolean algebra S. Then <5 is a measure algebra. Let F*iF¿) be the
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y* (y^-atom of cp (if any) and n the function from T0 to V constructed above.

Then F*, F+ and n satisfy the hypotheses of Theorem 5.2 and cp = cpn.

6.9. We can now couple Theorems 5.10 and 6.8 to decide when cp = v/p.

Both the condition and the proof which follow are motivated by this observation :

if cp = v/p then on each 3r v is a constant multiple of p. Hence when restricted to

3y all the measures nó = ôp— v lie on a line.

6.10. We shall call the averaging function cp impartial if

Ay,A2, and B mutually disjoint,

cP(Ay) = cp(A2) # <P(B)

and

cP(Ay\jB) = cp(A2\jB)

imply

cp(Ay V C) = cP(A2 V C) for any C L Ay\J A2.

Note that this last equality is trivially true whenever cp(C) = cp(Ay). cp is impartial

if whenever (Ay,A2,B} forms a test set configuration (3.3), C L Ay\¡ A2 and

cp(C) # cp(Ay) it follows that <[Ay,A2,C} is also a test set configuration. Lemma

3.4 shows that every cp isomorphic to a quotient of measures is impartial.

6.11. Lemma. // y < ß < v. in T0 and cp is impartial then nß is a positive

multiple ofnx on 3r

Proof. Since both nx and nß are positive measures on 3y Lemma 2.6 shows

that it suffices to prove they determine the same equivalence relation on 3r We

shall show only that nß(E) = nß(F) implies njfi) = nx(F) when £, Fe$y; the

argument is almost symmetrical in a and ß. Choose some G in S such that

a < cp(G) = ô. Apply Lemma 3.1 to the vector valued measure v = (ny,nß,nx,nöy

and the elements £, F and G to find pairwise disjoint elements £', F' and G'

such that v(F') = v(Y)/8, Y = E,F,G. Then in particular 7ty(£') = 7ry(F') = 0

so £' and F' are still in 3r It clearly suffices to show nx(E') = nx(F') so we may

drop the primes and assume £, F and G disjoint from the start.

Now apply Corollary 1.18 sufficiently often to v and £, F to find subelements

£', F' in 3y such that </>(£' V G) > a and cp(F' V G) > a. This is possible since

cp is continuous. Again it suffices to prove nx(E') = nx(F') so drop the primes.

We now know

</>(£ V G) > a > ß > y = cp(E).

We may therefore use Lemma 3.2 twice for £ and G to find subelements Hx and

Hß of G for which cp(E\J Hx) = a. and cp(E\jHß) = ß. Since nß(F) = nß(E),

nß(F\J Hß) = nß(E\J Hß) = 0.   Therefore   </>(F V Hß) = ß = cp(E\J Hß).   But   we



310 E. D. BOLKER [August

also know </>(£) = cp(F) = y ¥= ß so the impartiality of cp  implies  cp(F V Ha)

= 4>(E V Hx) = a. Therefore 0 = nx(F V Hx) = nx(E V Hx) and thus nx(F)=nx(E). |

6.12. Theorem. An averaging function on a complete, atom free Boolean

algebra is isomorphic to a quotient of measures if and only if it is impartial.

Proof. We have already observed that impartiality is necessary if cp is to be

isomorphic to v/p. To prove it suffices we plan to use Theorem 5.10. We shall

show that if y < ß < a. in T0 then the measures ny, nß and nx ate dependent. Let

v be the vector measure <[ny,nß,nx}. Its range X is convex in R3and contains 0.

Suppose it has an empty interior. Then it is contained in a plane ex + by + az = 0

and the desired dependency cny + bnß + anx = 0 follows.

Thus it suffices to show the interior of X is empty. Since ny is strictly signed X

meets both the open half spaces defined by the plane Px=0. Thus it suffices to show

the interior of X n P in P is empty (1.21). But X n P is the range of v |"3r Lemma

6.11 shows this range is a line segment. |

7. Some examples.

7.1. Let / be the closed unit interval, I0 its interior, p Lebesgue measure

on I and S the measure algebra of p. Suppose g : I0 x Í 0 -> R and y -> g(x, y)

increases for each fixed x. Define the measure ny = n\ on S by

ny(A) =   j    g(x,y)dp(x).

Set

F* = {x:g(x,y)<0 for all y}

and

F*= {x:g(x,y)>0 for ally}.

Then F*, F* and y -* ny will often satisfy the hypotheses of Theorem 5.2.

7.2. For example, that will be so when g is the restriction to Z0 X /0 of a con-

tinuous function on / x J such that for all x, g(x, 0) < 0 < g(x, 1). Unfortunately

this continuity requirement is too strong for the examples we wish to study.

7.3.We shall exhibit a g for which y -» ny has no nonconstant renormalizations

in the sense of 5.4. Define g so that

g(x, x) = 0 when 0 < x < 1,

fg(x,2x) = 1 when 0 < x < 1/2,

Above the line y=2x and below the line y=x, y->g(x,y) is linear with slope x,

g(l - x, 1 - y) = - g(x,y), all x and y.

Elsewhere g is arbitrary subject to the restriction that it be continuous and,

for each x, an increasing function of y.
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One can then use the fact that gix, ■ ) is flat for small x to show that if / : Z0 -> R+

decreases between y and z then for x sufficiently small

/(z)^((0,x))</(yK((0,x)).

If y < z and /(v) </(z) a similar inequality is valid below the main diagonal

when x is near 1. Thus y-*ny can be renormalized only by constant functions /.

7.4. With this function g as a tool we can build a k for which y -* 7t*(¿) does

not strictly increase for every A. Suppose h satisfies the requirements outlined

in 7.2 and that h is constantly 1 on an open patch above y = x and below y = I — x.

Then we can find an A e S and y < zel0 such that 7t*(¿) = 7t*(¿) = piA). However,

y-*ny may be renormalizable so as to correct this. To guard against the pos-

sibility, define k by

tgC2x,y), 0<x^l/2,
kix,y) =

\hi2x-l,y),  1/2<x<1.

Then y -» nk is not renormalizable and does what we ask of it.

7.5. To illustrate the remarks in 5.7 we shall add a restriction on g. We require

that it be almost uniformly unbounded :

2                   2
gix, 1 — (1/n)) = n when — <x<l-,     n > 5.

Then y -* ny is still not renormalizable. The measure v* constructed in 5.7 is

identically + oo on ©'.

7.6. If we append a y*-atom by defining

tgC2x,y),     0<xz%ll2,
Kx,y) =

I-1, 1/2<x<1

then F* = (1/2,1) and v* is given by

v*(¿) -c+ 00, ifp(¿O(0,l/2))>0,

PÍA O (1/2,1)),    otherwise.

v* is countably additive and strictly signed but not even c-finite. Since no re-

normalization of y -* Tiy is possible this pathology is uncorrectable.
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