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In the following paper, we shall define a congruence relation among subsets

of a given locally compact uniform space X, and then demonstrate a method

for constructing a well-behaved congruence-invariant measure on X. In par-

ticular : if X is compact, then the measure of X will be 1. Another special case

will be of interest: if every two points of X have congruent neighborhoods, then

the measure will be nontrivial and its support will be X. Thus, the method will

yield Haar measure on a locally compact group.

In these respects, our construction is superior to that of Appert [1] : his measure

must be zero on any countable space. Although his procedures can te adjusted

to obviate that defect, they do not seem to lead to general proofs of nontriviality

in the cases mentioned above.

We shall employ the axiom of choice, and we shall not concern ourselves with

uniqueness theorems. The methods of Banach [2] and Loomis [3] are more

satisfactory in these respects. In compensation, however, we shall be able to

demonstrate the existence and nontriviality of our measure for spaces which do

not satisfy their conditions. Such is the case not only for most compact spaces,

but also for a significant class of our "homogeneous" spaces. (This will be dem-

onstrated in §6.)

Our constructions generalize easily to any uniform space, but the results seem

to have little content unless the space is at least locally totally-bounded. In the

interests of stripping down the arguments, I shall restrict my attention somewhat

further, and consider only locally compact spaces.

In the sequel, then, "X" will denote a fixed locally compact uniform space.

Its uniformities (entourages) will be denoted by "u", 'V, etc. We shall use the

following terminology:

If Y¥= 0 is a subset of X/'diam Y Su"

(U1) will mean V,6*.,     <y,v'>eu.

If Yand Z are subsets, "Y and Z are separated"

(      ' will mean  3u: V/,yVze,z<y,z> £u and <z,y> £u.
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An "outer measure" on X will mean the usual: a function T with domain the

subsets of X and range s [0, oo] such that T(0) = 0, T(Y) = T(Z) when Y çZ,

andr(ljíy,.)á ET r(y,).

An outer measure T is "Carathéodory" when

( "    ' Y and Z separated -> T( Y u Z) = T( Y) 4- T(Z).

A well-known theorem states that if A1 is a metric space and T is Carathéodory,

then every open set is measurable. In analogous fashion, one proves for any

uniform space X:

T Carathéodory: then every uniformly continuous

real-valued function on X is measurable.

Hence, for our locally compact X,

T Carathéodory; then every continuous real-valued

function   with   compact   support   is   measurable.

For every such function must be uniformly continuous (the proof, by con-

tradiction, is straightforward).

We now define a congruence relation among the subsets of X. We fix a uni-

form basis U.

"Yis weakly congruent toZ[Y ~ Z]" will mean:

(1.31) 3 a 1-1 map f of Y onto Z such that

KF VZ>, <y,y'yeu ~ </(y),/(y')> eu.

"y is  congruent  to  Z  [Y s¿ Z]"  will  mean:

(1.32) 3 a uniformity v such that v(Y) ~ v(Z) via some

map / such that f(Y) = Z.

One notes that if Y is open and congruent to Z, then Z is also open.

We now proceed to the construction of a congruence-invariant Carathéodory

outer measure on X. Some of the following choices and restrictions are arbitrary

and unnecessary so far as obtaining such a measure is concerned; they seem

natural, however.

We fix an open subset X0 # 0 of X with compact closure.

Definition 2.1.   If Y # 0 is a subset of X, and u ell, set

N(u,Y) = min{n: 3Py,--,Pn, open, with ys \JyPt and diamP.g «}

if any such finite covering of Y exists.

N(u, Y) =  oo otherwise.

Set N(u,0) = 0.

This covering function has the following obvious properties:
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a.    Y çZ-»N(u, Y) S N(u,Z),

(2.11) b.   N(u, Y(jZ)SN(u,Y)+N(u,Z).

c.   if Y and Z are separated by v0, then

VuS»0, N(u,Y UZ) = N(u,Y) + N(u,Z).

Since X0 # 0 has compact closure, 0 < N(u,X0) < co .

Definition 2.2.   Set t(u, Y) = N(u, Y) /lV(u, A"0).

The function tiu,Y) evidently has the same properties as does N(u,Y). In

addition, we note that, if Z Ç X0, then t(u,Z) S L

Now, for each ZçzX0, let 7Z be a replica of the unit interval [0,1]. Let

S = FI zsxo Iz De the (compact) Tychonoff product space.

For each u ell, we regard tu = <f(u,Z)> as a point of S. {tu} is then a directed

system of points in a compact space.

Choices 2.31. Choose any accumulation point t0 of this system.

2.32.   Choose any subsystem {r„J such that

VZ£l0, f(ua,Z)rr0(Z).

Construction 2.4. Extend the domain of the set-function t0 over all subsets

of X by defining

t0iY) = liminf   tiux,Y)
a

= lim gib {tiufi,Y)}.

The set function t0, thus extended, has the following properties :

a. Y<=Z-+t0iY)£t0iZ),

b. Y and Z separated  -> r0( Y u Z) ^ i0( Y) 4- r0(Z),

<■ •    '    c. Zy,-,Z„ezzX0;thent0([JnyZ)S^nyt0(Z),

d. to(0) = O;to(Xo) = l.

(Property c, above, is not generally valid for denumerably infinite sums and

unions within X0.)

We are now ready for our outer measure:

Definition 2.5.   Set Y(Y) = glb{ Zr*o(0|):0, open, Y S JJfO,}.

Theorem 2.51.   Y is an outer measure.

Standard Proof.   Note that ro(0) = O implies T(0) = O.

Theorem 2.52.   T ¿5 Carathéodory.

Proof. We are to show: Yand Z separated -»• T(YuZ) = Y(Y) + Y(Z). Let

u0 separate Yand Z. Find i>0 symmetrical with v%ezz u0. Let ^4 = ^_Jy interior

v0(y), B = \^z interior v0(z). Then A and B are evidently separated by v0.

Now, given s > 0, find {0,.} with Yu Z s (J0f and T(Yu Z) + £ ̂  Xío(0¡).
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Let Ai = A n0¡, Bi = BnO;. Then (2.41a) í0(0¡) = 10(A¡ u B¡)• But, since A¡

and B¡ ate separated, t0(A¡ u B¡) = t0(A¡) + t0(B¡) (2.41b). Finally, A¡ and B¡ are

open, y^ {JA¡, and Zç (JB¡. Then, by construction, 2Zto(A¡)^T(Y) and

2t0(o¡) = T(2). Since we may assume r(YuZ)<co (otherwise the proof is

trivial), we can put these facts together and get T(Y \j Z) + e ^ T(Y) + T(Z).

But e was arbitrary, q.e.d.

Lemma 2.531.   If Yx Y', then t0(Y) = t0(Y').

Proof. Find v0 and / as required by 1.32. Choose a0 such that u20 £ v0.

Consider any a > a0. Suppose N(ux, Y) = n < oo . Let Y £ ^J" P¡, P¡ open,

diamP¡f^ux. By the minimality of n, each P¡ must intersect Y; and since

diamP.íg »a, P¡Sux(Y). A fortiori, P¡Sv0(Y) and hence diamf(P¡) z% ux

(1.31).
Further, «.(P,) ç uf( Y) £ c0( y). Hence / maps «.(P,) 1-1 onto ««(/(P,)),

and PiXf(Pi) [cf. (1.32)]. Then/(P¡) must be open. Finally, Y' S \J"yf(Py). But
then A(wa, Y') is not infinite, and in fact is ^ n = N(ux, Y).

Reversing the roles of Yand Y', via/-1, we infer: Va > a0, N(ux, Y) = N(ux,Y'),

whether or not this quantity is finite. The lemma follows, by construction of r0.

Theorem 2.532.   If Y x Y', T(Y) = T(Y').

Proof. Let v0,f,(y.0 be as in 2.531. Let A = (JyeY interior uXo(y), A' = {JyeY'

interior uXo(y'). Then it is easily seen that A' =f(A) and Ax A' via /, since

uX0(A)^v0(Y).

Now, given 8>0, find {0¡} with Y S \Jf 0¡ and r(Y)4-£^ 2í0(0¡). Let
A¡ = An,0¡. Then í0(0¡) ̂  t0(A¡). Let A[ =/(^¡). Then A[x A¡ and t0(A¡) = t0(A¡)

via the preceding lemma. A¡ being open and xA\,A\ is also open and

Y' S \JA'¡. Hence 2i0(^)è r(Y'). Putting this together and recalling that e

was arbitrary, we infer T(Y) 2: r(Y'). Reversing the roles of Yand Y', we obtain

the reverse inequality, q.e.d.

Our T is thus a congruence-invariant Carathéodory outer measure. We come

now to a crucial theorem, which justifies the construction of {ux} [rather than

taking í0 =liminfu6ai(u, ) everywhere].

Theorem 3.1.   If Y^X0 and Y is compact, then

T(Y) = gib{t0(A): A open, Y<=A}.

Proof. It will be recalled that we assumed X0 to be open. Let y = the gib

of the theorem. r(Y) ^ y by construction of T.

Now, given s>0, find 0, with Y^U^O; and r(Y) + eà 21°r0(0i). Let

A¡ = X0 n0¡. Then í0(0¡) = t0(A¡) and r(Y) + s^ 2™r0(^i). Y being compact

and At open, let Y s Q; A¡. Let A = (Jï A¡. Then T(Y) + e = 2" í„(4) = *o(¿)
[N.B. (2.41c)] ^ y. But £ was arbitrary, q.e.d.
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Corollary 3.11.    Y compact çl0; then r(Y)^r0(Y).

Theorem 3.2.   If X is compact and X0 is taken =X, then

YiX) = l.

This is an immediate consequence of 2.5 and 3.11, since t0(X) = 1.

We list further theorems, the proofs of which are straightforward.

(3.31) VY,T(Y) = gib {Y(A):A open, Y ezz A}.

(3.311) If X is a metric space, Y is regular. Further: VY, 3 a Gs-set G such

that Y<=G, r(Y) = T(G).

(3.32) If t0(Y) < oo, then Y is totally bounded.

(3.321)   //T(Y)<oo, then Vu,  3v¡6Y: Y<= (J"«^,).
We turn now to the consideration of what we shall call "U-homogeneous"

spaces.

Definition 4.1. A uniform space X is U-homogeneous (given the uniform

basis U) when V^'J, {x} x {y} [see (1.32)].

As before, we shall continue to restrict our attention to locally compact spaces,

assuming X0 chosen, t0,{ux} and Y constructed.

Lemma 4.21. If X is U-homogeneous, then t0(0) > 0 for all open

Oçx, 0*0.

Proof. Suppose not : y0 6 00 and r0(00) = 0. Then, by the assumption of

homogeneity, we can find, for each y e X, an open set 0^, with y e 0y, to(0f) = 0

[see 2.531]. Now j?0 is compact. Find yu •••,>'„ with X0 £ [J"0},.. Let

Yt = X0 OO,,. Then X0 - {J't Yt. Hence [2.41c] 1 = f0(X0) S I" t0iY)S Zto(0„),

a contradiction, q.e.d.

Theorem 4.22. If X is U-homogeneous, then Y is nontrivial and its support

is X:

Vx,Vw,  3 a measurable icompact) neighborhood

C of x with  C e= u(x), 0 < Y(C) S 1.

Proof. Fix x0 e X0. Given any x and any u. Find v0,/, with v0(x0) ~ v0(x)

via /, f(x0) = x. Choose Vy eU with v\ S v0 O « and Vy(xf) s X0.

Let eb be a real-valued uniformly continuous function with eb(xf) = 1, ^ = 0

off interior Vy(x0). Let C0 = {y: eb(y) = 1/2}. C0 is a compact neighborhood of x0.

Since C0 S X0,r(C0) S t0(X0) = 1. Since C0 is a neighborhood of x0,r0(C0)>0

[4.21]. And since C0 is compact and çl0, Y(C0)^t0(C0) (3.11). Hence

0 < Y(C0) S 1 •

Let C =/(C0). C is then the required neighborhood of x. For C0 £ t>i(x0),

whence Vy(C0)^v2y(x0)ezzvQ(x0)--- hence v¡(C0) ~ vt(C) (recalling that t^ was

chosen eU), and C0x C.
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From the latter, we infer that T(C) = T(C0), so that 0 < T(C) ^ 1 ; also that

C is a compact neighborhood of x. We also have C £ tfi(x) £ u(x), as required.

Finally, the function cp' on X, defined by cj>'(y) = cpf'x(y) [y eu0(x)], cj)'(y) = 0

otherwise, is uniformly continuous; hence C = {y.cj)'(y) ^ 1/2} is measurable,

q.e.d.

Thus, in particular, T is outer Haar measure on any locally compact group

[see (1.23)].

5. Some remarks on generalizing the preceding work. Let X be any uniform

space, lo#0a totally bounded subset, U a given basis, and P = {P} any family

of subsets of X such that (1) for any u, a finite number of P of diam i% u cover

any totally bounded Yand (2) PeP, Px Q^QeP. (For instance, we could

take P = {closed sets}, {all subsets}, {U-spheres}, et al.)

Then the work of (2) above carries through, and we can obtain a Carathéodory

congruence-invariant outer measure on X, with all the properties of (3.31. etc.)

3.1 is amended to require Y compact and S interior X0-

6. We now examine our idea of U-homogeneity in the light of the work of

Banach [2] and Loomis [3].

Banach derives a nontrivial measure from an abstract congruence relation on

a locally compact [metric] space. In order to show that his measure is congruence-

invariant, he makes (among others) two assumptions, which can be considerably

weakened as follows: 3 a base £1 of open sets with compact closures, such that

ZeQ, Z' £ Z-> Z' eQ, satisfying also (Bl) if Zeil, then {Z':Z' s Z} covers X

and (B2) if Y £ X, Y' S Y, then 3e > 0: whenever Z„ e Cl, diamZ„ g e, Y £ (JZ„,

we can find Z'„ S Z„ with Y' £ (JZ¿. We shall call such a base a "Banach base".

One notes that if X is any [uniform] space whose topology is discrete, X is II-

homogeneous for any U, but also X has the Banach base Q = {{x} : x e X} with

respect to U-congruence.

Loomis considers uniform spaces X possessing a special sort of uniform basis 23.

The uniformities of 33 are symmetrical; Vue93, xeX, u(x) is totally bounded

and (LI) the minimum number of u-spheres needed to cover a u-sphere is in-

dependent of the center of the u-sphere. He imposes one other restriction which

we shall ignore, calling any such 23 a "Loomis basis".

We note now that any open subset of a locally compact group is a locally

compact ll-homogeneous space, as a subspace of the group, for any basis U.

One also observes that if X is a metric space and II is any basis, weak congruence

is equivalent to isometry and the congruence and weak congruence relations

are independent of any particular U selected.

For each n = 1, •••, let I„ be the open subset (n,n 4- 2"") of the real line. Let

X = [_)l„ ; consider X as a metric subspace of the real line. Obviously X cannot

possess a Banach base. A bit of straightforward calculation also shows that X

cannot possess a Loomis basis. It is clear that by constructing X with more care,
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we could make it totally bounded and, if we go into two dimensions, the connected

interior of a region in the plane with rectifiable boundary (construct, over a

rectangular base, a picket fence whose pickets dwindle in thickness and height).

We can also construct spaces which are not obvious open subspaces of

topological groups. For example, take X a well-disjointed union of randomly

skew dwindling open arcs of constant and equal curvature embedded in Euclidean

n-space, with the induced metric. So, as asserted earlier, a significant class of

locally compact U-homogeneous spaces is not amenable to the techniques of

Banach or Loomis. An essential feature of these spaces is that they are not uni-

formly G-homogeneous; clearly any uniformly U-homogeneous space has a

Banach base and a Loomis basis. One conjectures that a compact U-homogeneous

space should be uniformly U-homogeneous, although it does not seem so evident

that this could be proved without using the axiom of choice.
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