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BY
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1. Introduction. Let 3P denote the family of lower triangular matrices which

define regular sequence to sequence transformations and which have nonnegative

elements and nonzero elements on the leading diagonal; i.e. B = {bnk)e3P if and

only if bnk = 0(n = 0,l,-;k = 0,1, •••), Kk = 0(n< k), bn„ > 0 (n = 0,1, ••■) and

b„k-*0   (n-»oo, fc = 0,l,—),
n

lim     E bnk = 1.
n->co     k = Q

Let {A(r)} (r = 1,2, •••) be any sequence of infinite matrices. If A(r) = (ank(r))

(r = 1,2,--) and if {r„} is any sequence of positive integers, the matrix

A{r„} = (a„k(r„)), which has as its nth row the nth row of A(r„), is said to be

compounded from the sequence {A(rn)} or to be a compounded matrix.

The results set out in the following theorem concern some properties of com-

pounded matrices.

Theorem A. (i) If A(r)e0> (r = 1,2, ••■) then there is an increasing sequence

{Rn} of positive integers such that if 1 S r„ ^ Rn the compounded matrix A{r„}

is regular.

(ii) If A(r)e0> and A(r + 1) (A^))'1 e& (r = l,2,---), if {/„} and {r'„} are

sequences of positive integers such that A{r„] and A{r'„} are regular and if

r'„ ̂  r„for all sufficiently large values of n thenO A{r'„} Ç A{r„}.

(iii) If A(r)e0> and A(r) (A(r + 1))_1 e0> (r = 1,2,-), if \rn} and {r'„} are

sequences of positive integers such that A{rn} and A{r'n} are regular and if

r'„ ̂  r„for all sufficiently large values of n then A{r'„} Ç A{r„}.

Of these results (i)(2) and (ii) are due to Agnew ([1], Theorems 3.1 and 3.2

and the remarks in §5 ; cf. also the references given there) and (iii) may be obtained

by making simple changes in the arguments used to prove (ii).

Now suppose that A(r) e3? (r = 1,2, •••) that A(l) s A(2) Ç ••■ (this is certainly

Received by the editors August 5, 1963.

f1) Throughout this note we write A çBifj,-» s(A) implies s„ -*■ s (B), and A cz B if

A c B but there is a sequence {s„} such that s„ -> s (ß) but s„ +-> í (A). If A çz B and B^A

we write A = B.

(2) This result is stated in [1] under the additional hypothesis A(r + l)(A(r))~le¿P but

inspection of the proof shows that this condition is not in fact used.
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the case if A(r + 1) (¿(r))-1^) and that Airfç B (r = 1,2,—) where B is

some regular matrix. It is natural to inquire what relation exists, if any, between

B and a compounded matrix ^4{r„}. If A{r„) is regular an attractive conjecture

is that A{r„} s B. This can fail to happen in a rather spectacular way, as the

following example shows. For r = 1,2, — let Air) be the matrix which transforms

a sequence {s„} into the sequence {t„} where

t„ = r-1s„ + il-r-1)in + l)-1  2 sv.
v = 0

Then each Air) is a Mercerian matrix [5, p. 104] and is equivalent to convergence

so that trivially Ail) ç .4(2) £ ••• cz C(a), 0 < a S L If r„ = n the compounded

matrix A{r„) transforms {s„} into {t'„} where

i: = n-1s„ + (l-n-1)(n4-l)"1  î sv
v = 0

and so ^{r„} is regular. On the other hand if s„ -> sC(l) then (n 4-1)~l E" = 0s» -* s

and [5, p. 101] s„ — s = oin). It follows that n~1s„ = oCl) and hence that t'„ -> s

as n -> co. Consequently C(a) cz /l{r„} for 0 < a < 1.

In this example the condition A{r + 1) L4(r))-1 e^3 is not fulfilled, but, as we

shall see below (Theorem 4), even if it is there may still be a regular compounded

matrix A{r„) such that B ezz A{r„}.

Throughout the rest of this note we consider matrices compounded from

Cesaro matrices. We write(3)

(a4-l)(«4-2)-(a4-n)
(L3) £„(a) =-—}-

so that, for a > — 1, C(a), the Cesaro matrix of order a, is the lower triangular

matrix (a„t) where a„k = 8„_ft(a - l)/e„(a). If a„ > - 1 (n = 0,1, •••) then C{a„)

denotes the lower triangular compounded matrix (bnf.) where bnf. = 8„_,.(oi„ — l)/s„(a„).

It is well known and easily verified that if a„ = 0 (n = 0,1,—) then C{a„} is

regular if and only if a„ = oin) as n -> co.

Agnew [1, Theorem 6.1] has studied the relation between C{a„} (a„f—» co)

and Abel's method. Here we suppose that {oc„} is a monotone sequence converging

to a real number a and consider inclusion relations of the form C{a„} ezz C(a). We

show (for example) that if {a„} increases to a sufficiently rapidly then C{a„] = C(a),

and that otherwise C{a„) ezz Cía). In this latter case we show that for a certain

class of sequences {a„} the "gap" between C{a„} and C(a) may be filled by certain

well-known Nörlund matrices.

In addition to the matrices Cía) and {Ca„} defined above we require the lower

triangular matrices C(a,y) and Ci{a„},y) whose (n,k)th elements are given, for

(3) Certain identities involving the binomial coefficients e„ (a) which we use freely can be

found in [7, p. 77].
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0 = k = n by eB_k(a - l)sk(y)/en(cc + y) and en_k(a„ - l)ek(y)/sB{txa + y) respectively.

2. In this section we prove the following two theorems.

Theorem 1. 7/{aB} is a nondecreasing sequence converging to a real number

a ( > 0) then

(i)   C{a„} £ C(a),

(ii) C{a„} = C(a) if and only if {(a. — a„) logn} is bounded.

Theorem 2. 7/{a„} isa nonincreasing sequence converging to a real number

(x(^0)then

(i)  C(a)çC{a„},

(ii) C(a) = C{<x„} if (<*■„ — a) logn is bounded,

(iii) C(tx) cz C{ot„} if (a„ — a) log n -* oo as n -» oo.

We require two lemmas.

Lemma  1. 7/<xp 2: 0 (p = 0,!,•••) ana {a,,} is bounded

■■W = rx^i)(1 + 0(r))-
uniformly in n and p.

See [7, p. 77]. The proof given there is for constant sequences {a.„} but is easily

seen to cover the present case.

Lemma 2(4). If 0 ^ m = n, if 0 < a, ^ 1 (r=0,1, •••) and i/ either (i) {ar} is a

nondecreasing sequence, or (ii) {a,} and {r-1(l — ar)} (r _ l)are nonincreasing

sequences, then for any sequence {s„} there is an integer p such that Of^p^m and

m p

(en(an - 1))"l    £ e„_v(a„ - l)sv    = (sp(ap - 1))_ 1      E ep_v(txp - l)sv
v=0 v=0

Proof. The result is trivially true if m = n or m = 0 and we suppose that

0 < m < n. It is easily verified that for fixed m and n, en_v(an — l)(em_v(am — T))'1

is a nondecreasing function of v in the range 0 = v — m.

Consequently there is a nonincreasing sequence mym2,--- of positive integers

such that

S £„_v(a„ - l)sv
v=0

S 8„_v(a„-l)(£m_v(am-1)  1 em_v(am - l)s)v

^en(an-l)(em(am-l))" 2  fim-v(«m - l>v
v = 0

ge^-lX^c^-l))-1 2     EmK-v(«mk - !>v
v=0

(*) This lemma and its proof  are given in the case of constant sequences {ar}  by

Bosanquet [3, Lemma 7].
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Since the sequence {mk} is nonincreasing there is  an  integer p such that

mp+ ] = mp = p (say) and in this case we have OS P S ni and

2 e„_v(a„ - l)sv    S £„(<*„ - l)(e„(a» - 1))   'S ^-»(a, - IK
v = 0

which is the required result.

We also note that

(2.1) C{a„} = CÍ{a„-a],a)Cía).

Proof of Theorem 1. (i) We have to show that s„ —> sC{a„} implies s„ —> sC(a),

and since both C{a„} and Cía) are regular matrices it is sufficient to obtain the

result when s = 0. It is also clear, from Theorem A(ii) that we may suppose

a„ # a (n = 0,1,»»»). Consequently from (2.1) it is sufficient to show that t„-*0

C({a„ - a},a) implies t„ = o(l), or, writing r_i = 0, xv = ev_i(a)iv_i - ev(a)/v that

(2.2)

implies

(2.3)

2 £„-v(an - «K = 0(e„(a„))

(i„en(a) = )   2 x„ = o(e„(a)).
v = 0

Since (e„_v(a„ — a)) 1 is an increasing function of v in the range 0 S v S n we

have, using Lemma 2 (case (i) with a„ replaced by a„ — a — 1)

2. xv
v = 0

2 0:„_v(a„ - a))  ^„.„(a, - a)xv

^ 2   max
OSpSn

2 £„-v(an-a)xv
v = 0

£n(an - a)
^ 2   max    max

Ogpgr   O-ikgp  Ekiak~a-)
2 et_v(ai-a)x,

v = 0

= oin'"),

by (2.2) and Lemma 1, so that (2.3) holds.

To prove (ii) it is sufficient, in view of (2.1), to show that the matrix C({a„ — a}, a)

is regular if and only if (a — oc„)logn = 0(1). Now 2"=0£n-v(an ~ a — l)ev(a)

= sB(a„) and it is easily verified, using Lemma 1, that e„_v(an — a — l)ev(y)

•(en(aB))_1 = o(l) for v = 0,1, — . Hence C({a„ — a},a,) is regular if and only if

n n

2 |e„_v(an-a-l)|£v(a) = 2e„(a) -   I £„-v(a„ - a - l)fiv(a)
v=0 v=0

=  2£„(a) - £„(«„)

= 0(£n(a„))
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i.e., using Lemma 1, if and only if (a — a„)Iogn = 0(1).

Proof of Theorem 2. A straightforward calculation shows that C({a„ — a}, a)

is regular and (i) follows.

To prove (ii) we write ß„ = a,. — a and consider first the case when {/?„} and

{(1 — ß„)/n} ate decreasing sequences. In this case it follows from Lemma 2 that

if 0 < m < n

(e«(<*n))  1     2 8„_v(/iB-l)ev(a)sv

= max (ep(ap))
OSpim

£ tp-Aßp- IK OXp
v = 0

It follows [6,p. 75] that if s„ = o(l)C({/J„},a) then

h supen.k(ß„ - l)et(a)(sB(a„))   1 = o(l) as k -» oo.
nik

Now

.     ,n _n__n(n-l)---(n-fc + l)_./*_n
"-*^"      j " (A + n - 1)(A + n - 2) -. (J?„ + n - kf^"     1}

and it is easily verified that, since {(1 — ß„)/n} decreases, {(n — p)/(ß„ 4- n — p — 1)}

is a decreasing sequence foryn ^ k and p = 0,1, •■•, fc — 1. Moreover, since {/?„}

decreases, {£„(/?„ — 1 )(£„(«„)) _1} decreases. Consequently, for each fixed k,

{s„-k(ßn — l)(£„(oc„))-1} decreases for n ^ fc and so

sup £n-k(ßn - 1) h 0) (e»(a»)r ' = e*(a) («»(a*))- ' ■
n^k

Thus, in the special case being considered, if s„ = o(l)C({ß„}, a), then

skËk(a) (et(aA))_1 = o(l), i.e., by Lemma 1, st = o(kßk). In particular, if

a„ = a + 7C/log n for some positive 7C and all sufficiently large n, then

s„ = o(l)C ({/?„}, a) implies s„ = o(l), i.e., that C({ß„},oi) is equivalent to conver-

gence. Now if (a„ — a) log n = 0(1) we have <x„ ̂ a + K/log n for some positive

K and all sufficiently large n. It follows from Theorem A (iii) that C({aB — a}, a)

is equivalent to convergence and in view of (2.1) this proves (ii).

To obtain (iii) we note that C({a„ — a},a) is regular and that, since we may

assume without loss of generality that <x„ — <x < 1, £„_v(a„ — a — l)ev(a) increases

with v for 0 ^ v rg n so that, writing C({<x„ — a}, a) = (aBV) we have

!a„„+1— a„„|  = 2aBB — a„

= o(l)

-*nv+l        unv|    —   ^unn       "nO
v = 0"

as n -» oo by Lemma 1 since (a„ — a) log n -> oo. It follows [1(a), p. 130] that

C({a„ — a},a) evaluates some divergent sequence, and (iii) follows.
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3. Let rjfx,k)Qi,k, real n = 0,1, ■••) be defined by

563

(3.1) (1-x)-*-1   (l0S(1"X))*  =   lr„ih,k)x"      i\x\<l).

It is known that [7, p. 193]

(3.2)      r„ih,k) ~ -(log»)* (ft #-1,-2,-)

(ft =-1,-2,-).

Yih + 1)

(3.3)      r„ih,k) ~ ( - 1/-*(|*| - l)\kn\logn)k

Let p„(k) = r„( —l,fe), and let L(fc) denote the Nörlund matrix [5, p. 64]

generated by the sequence {p„(fc)}. If k ^ 0 we have p„(fc) ̂  0 (n = 1,2,-»») and

Po(fc) = 1. Moreover from (3.1) and (3.2)

and from (3.3)

2 p„(fc) = r(0,fc)~(logn)'
v = 0

pJM
Klogn)k-l

so that [5, p. 64] if k ^ 0, L(fc) is regular. The matrix L(l) generates the harmonic

means of M. Riesz and the matrices L(fc) may be regarded as iterates of L(l)

in the same sense that the matrices C(a) are iterates of C(l).

We prove next

Theorem 3. If a — 0 and a„ — a = fcloglogn/logn for sufficiently large values

of n, where k = 0, then C{a„} = L(fc) C (a).

We require some further lemmas.

Lemma   3(5). Suppose that 0 < p„ S K in = 0, l,--), where K is independent

of n, and that the sequence {q„} is defined by

<IoPo = h ?»Po4-»7n-iFi + "- + »7oFn = 0       (»-1,2,— ).

Suppose further that there is an integer N ( — 0) such that

(3.4) av  S 0,        v = N,

(3.5)

Then for any sequence {sv}

(3.6)

where H is independent ofn

2 qv = 0,        v = N.

Z p„-ySv
v = 0

i S H max
0<*<BI

S   Pt-v^y
> = 0

ÍOSmSn)

(>) This is an extension of some known results cf. [6, p. 43 and p. 128].
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Proof. Since the result is clearly true if m = n we suppose that 0 = m < n.

From the definition of the sequence {q„} we have

sv =   Z qv-, Z p,-,sr
r=0 f=0

v

=   Z qy-TtT       (say),
r = 0

for v=« 0,1, — .
Consequently

(3.7)

Z pB_vsv
v = 0

2   P„-v    Z   qv_rfr
v=0 r=0

m m — r

2   (,  I   Pn-r-Av
r=0       v = 0

Ifm<A7

^   max
OárSm

Z
r = 0

Z   P„-r-Av
v = 0

m     .   m-r

I      I p„_r_vgv     = 7<Z    I |gv|=7C        (say).
r=0  I  v=0 r = 0   v=0

If m > A7 we write

Z
r = 0

E   P„-r-v«v
v = 0

n-N

=  S S   Pn-r-Av

m m — r

+ Z Z   Pn-r-Av
r=m-^+l  v=0

Now ifO^r^m — TV and v > m — r we have v > A7 so that gv 5¡ 0 by (3.4) and

so for 0 < r < m — N

Z   P„-r-Ay =     Z   PB-r_vgv = 0.
v = 0 v = 0

Consequently if m > TV

r=0

m     m — r

2 P„-,-vgv \ =   Z Z p„_r_vgv + 2     S Z pn-r-Av
v = 0 I r = 0 v = 0 r=m-N+l    ! v = 0

m m — r N

=    Z Z p„-r_vgv 4- 27CA7 Z |qv|
r=0 v=0 v=0

=   Z p„-v Z g„_r + 2X'
v=0 r=0

^   Z p„_v  Z qy + 2K'     (by (3.5) since m > N)
v=0 r=0

= 1 4- 2K' = K"   (say).
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If we now choose H = maxiK',K") we have
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Z    P„-r-v»2v <77

and (3.6) follows from this and (3.7).

Lemma 4. If y — 0 and if{a„} satisfies either of the two conditions of Lemma 2

then C{a„) = Ci{a„},y).

Proof. The case y = 0 being trivial we suppose that y > 0. It follows from

Theorem A (iii) and known results [2, Theorem 8] that C({a„},y) £ C(l). Con-

sequently if s„ = o(l)C({a„},y) and we write t„= max0ává„ | Ep=0sP| we shall

have t„ = oin). Putting p„ = [n — t„] we have

Z £„_v(an-l)sv=    E+I=I+2     (say)
v = 0 v = 0       p„+l 1 2

where, since £„_v(aB — 1) is an increasing function of v for 0 S v S n

= 2e».-p„(aB - IKZ
i

= oin"")

by Lemma 1. By Lemma 2 we have since (fiv(y))-1 decreases as v increases

z
2

£   eB-v(<x» - l)ev(y)(ev(y)r1sv
v=p„+l

= (-•/,„+i(y))  '      max        Z en_v(a„-l)£v(y)sv

^ («,„+1(y))     max     max ffi'ff
Pn+lgPá" Ogfcáp   ettat — -U

= o(na")

by Lemma 1. Consequently sn = o(l) C {a„}.

Conversely if s„ = o(l) C {a„} then, by Lemma 2,

Z ek-Xak_y)eviy)sv
v = 0

Z eB_v(a„-l)£v(y)sv
v = 0

S 2e„iy)   max
OSpg«

Z   £B-v(«n - 1>,
v = 0

g Uto) max   max  £;(*"    2
OjSpgri   OgifcSp e*ta* — -U

Z   -.*-,(«*-iK
v = 0

= o(y+ÎJ),

and the result follows.
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Proof of Theorem 4. It is clearly sufficient after (2.1) and Lemma 4 to show

that L(k) = C{ß„} where ßn = <x„ — a = k loglogn/logn for n ^ 4 and the initial

values of ß„ ate chosen so that {(1 — ß„)/n} is decreasing. (Alteration of a finite

number of the values of /?„ clearly has no effect on the summability properties

ofc{/y.)
We first show that

(3.8) C{ßn}c=L(k).

Since both methods in (3.8) are regular it is sufficient to show that

(3.9)

implies

(3.10)

We abbreviate p„(k) to p„ for the rest of this proof. We then have, by Lemma 2,

ZeB_,(A-l)sy = o((logn)*)
v = 0

Z   pB_v(fc)sv = o((logn)*).
» = o

Z p„-ysy
v = 0

Z   p„-y£„-y(ß„ - 1)SV
v = 0

- o(np")     Z |p„-v-PB-v-i|H-Po
I v = 0

where p, = ps(e£ß„ - 1))"1. Now

Ps+l        Ps+l   s 4-1

so that, by (3.3) and a routine calculation

Using Lemma 1 and (3.3) we have

«Ï -°(f ) ■ I oÇ^)
= 0(1);

while, if we write

ts= i O0«*-)*"2 (-o(Q0*st~2) )
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and observe that (ejß, - 1)) "1 - ies+1iß„ -1))_1 = (£S(A)) " ' we have

= o ( z tfMßJ)-l + t„is„iß„-l))-%)

It follows that

= 0(1).

Z |ps-ps+i| = o(i).

Using this and (3.11) we obtain (3.10). To obtain the inclusion reverse to (3.8)

we suppose that s„ = o(l)L(/c). If q„ = qjfk) = r„( — 1, — k) then p0q0 = 1,

PoQn + PiQn-i + ■■■ + Pnq0 =0(» = 11)» Moreover by (3.2)

qn~-k ^^- and  Z qv = r„(0, - k) ~ (logn)"*.
n v = 0

Consequently {p„} and {<j„} satisfy the conditions of Lemma 3 and so we have

n ,      n

2w   £„_v(p„_1)Sv       =        2v   T„_vp„_vSv
v=0 ' i   v=0

ft

<   max
0<k<n

k C~

Z Pfc-A, Z |t„_v-t„_v_,| 4-t0
>=0 I      lv=0

= o(logn)*( Z|ts-ts+1|+t0)

where ts = esiß„ — l)/p ■ The required result now follows by arguments similar

to those used above.

A counterpart to Theorem 3 is :

Theorem 4. 7/ a>0 and a — a„ = fcloglogn/logn for sufficiently large

values ofn, where k^O, then L(fc) C{a„) = Cía).

The proof is similar to that of Theorem 3 and we omit the details.

We remark in conclusion that the form of Theorem 3 and 4 suggests that if

we write ß„ = | a — a„ \ and 77 for the Nörlund method generated by the sequence

{(n 4- l)ßn+t- nß") then C{a„) = 77C(a) or 77C{a„} = C(a) according as {<xj is

decreasing or increasing.



568 A. J. WHITE

References

1. R. P. Agnew, Inclusion relations among methods of summability compounded from given

matrix methods, Ark. Mat. 2 (1952), 361-374.
1(a).-, A simple sufficient condition that a method of summability be stronger than

convergence, Bull. Amer. Math. Soc. 52 (1946), 128-132.

2. D. Borwein, On some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958),
310-316.

3. L. S. Bosanquet, Note on convergence and summability factors III, Proc. London Math.

Soc. (2) 50 (1949), 482-496.

4. G. G. Lorentz, Direct theorems on methods of summability, Canad. J. Math. 1 (1949),

305-319.

5. G. H. Hardy, Divergent series, Oxford, at the Clarendon Press, 1949.

6. K. Zeller, Theorie der Limitierungsverfahren, Springer, Berlin, 1958.

7. A. Zygmund, Trigonometric series. I, 2nd. ed. Cambridge Univ. Press, New York, 1960.

University of Aberdeen,

Aberdeen, Scotland


