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1. Introduction. The ordinary Fredholm theory of Hubert spaces was general-

ized in [4] and [5] to apply to a wider range of problems in analysis. The ideal of

compact linear maps, which plays a fundamental role in the ordinary theory, was

replaced by a certain class of C*-algebras called i?-algebras in [4]. This generali-

zation is based on the Rellich criterion for compact linear maps of a Hubert space,

which states that a linear map is compact if and only if for every e > 0 there exists a

closed linear subspace of finite codimension such that the norm of the restriction

of the linear map to this subspace becomes smaller than «. The Ä-algebras in [4]

are defined by substituting for the collection of closed linear subspaces of finite

codimension in this criterion a collection of closed linear subspaces which is an

R-set.

The 7?-sets are subsets of the metric space of all closed linear subspaces of a

Hubert space, which satisfy a condition related to the metric. For the explicit

definition we refer to Chapter 4. Each 7?-set is contained in a uniquely determined

smallest maximal 7?-set. The algebraic objects attached to an 7?-set depend on this

maximal 7?-set only, and its structure is of crucial importance.

The path components of a maximal R-set are simply Grassmann manifolds

for a finite-dimensional Hubert space. In the following we present a general theory

of Grassmann and Stiefel manifolds associated with a maximal i?-set of a Hubert

space. This theory contains many important features of the ordinary theory of

Grassmann and Stiefel manifolds of a finite-dimensional Hubert space. Our

constructions and arguments are independent of the dimension, and the ordinary

theory for finite-dimensional Hubert spaces and its direct generalization to Hubert

spaces of arbitrary dimension appear as special cases.

We show that the path components of a maximal R-sct are Banach manifolds

and homogeneous spaces determined by the action of the group of continuous iso-

morphisms of the Hubert space onto itself which leave the maximal R-set invariant.

Furthermore, there is a natural fibre bundle structure.

Several other Banach manifolds are associated in a canonical way with a path

component of a maximal 7?-set. They are homogeneous spaces with a fibre bundle

structure and direct analogues of the ordinary Stiefel manifolds.

Finally, we investigate the maximal 7?-set of all closed linear subspaces of a
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Hubert space. This special case gives directly the ordinary theory of Grassmann

and Stiefel spaces for arbitrary not necessarily finite-dimensional Hubert spaces.

The result of [9], that the general linear group of an infinite-dimensional Hubert

space is contractible, implies the Grassmann and Stiefel spaces of an infinite-

dimensional Hubert space are universal classifying spaces for the general linear

group of certain Hubert spaces.

We tried to make this manuscript as self-contained as possible. We avoided any

spectral theory and elaborated a purely "geometric" approach. Further applications

are planned in subsequent publications.

I would like to express my great appreciation to Professor H. O. Cordes for

many helpful and inspiring conversations and for his interest in this work. Much

of Chapters 3, 4, and 5 is elaborated from his papers [4] and [5]. I would also like

to thank the referee for a very useful suggestion. And I would like to thank Pro-

fessor D. Bures for a useful conversation.

2. Preliminaries. H denotes in the following a real, complex, or quaternionic

Hubert space, which also can be finite dimensional. If x, y e H, then (x, y) denotes

the inner product of x and y, and ||x|| =(x, x)1'2 the length of x. If H and K are

two Hubert spaces, then £(//, K) is the linear space of continuous ( = bounded)

linear maps ( = operators) from H to K with the norm

||or|| = sup {||a(x)|| ; x e H and |x|| = 1}   for each a g 2(H).

We denote £(//, H) by 2(H). 1 e 2(H) is the identity map. The general linear group

GL(Zf) of the Hubert space H is the topological subspace of £(//) consisting of

the invertible elements of 2(H). It is an open subset of 2(H). The mapping

Inv: GL(H) -> GL(//) which assigns to any y e GL(H) its inverse Inv (y) = y~1 is

continuous. Consequently, GL(//) is a topological group. An element p. e GL(H)

is called unitary or orthogonal if \\p-{x)\\ = ||x|| for all xeH. The unitary elements

of GL(//) form a closed subgroup U{H) of GL(/Y).

If S is a closed linear subspace, then S1 denotes the orthogonal complement of

S in H, and tts: H-^- H the orthogonal projection of H onto S. We notice that

77S 6 £(//),  ||7TS|| = 1, and7TSi = l-77S.

Theorem 2.1. If ye 2{H, K) maps H one-to-one onto K then y-1 e 2{K, H).

Proof. See, for example, [11, p. 18].

For each a e £(//, A") the adjoint a* e £(A^, H) is defined. A map a e 2{H) is

called self-adjoint, if a* = a. We recall a few elementary properties of the adjoint

operation which will be frequently used.

Lemma 2.1. (<x(x), y) = {x, a*(y)) for each x e H,y e Kanda e 2(H, K) (definition).

If a e £(//, K), then ||«*|| = ||«||, kernel (a) = (a*(K))1, kernel (<**) = («(r/))1, and

a(H) is closed if and only if a*(K) is closed. If ae £(//, K) and ß e 2(K, L), then
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iß-a)* = a*-ß*. The orthogonal projection ns of the Hilbert space H onto the closed

linear subspace S of H is self-adjoint.

Lemma 2.2. If ae £(77) and S is a closed linear subspace with a(S) is closed, then

there exists a ß e £(77) such that

nais) = a-ns-ß-ns-a*.

Proof. We consider the map 5 = a ■ ns : H -» H. We have kernel (5) = (5*(7/))1

and kernel (5*)=(ce(7/))±. Since 5iH)=aiS) is closed, we conclude that (kernel (5*))1

= aiS) and (kernel (à))1 = 5*(/7). The restrictions a : 5*(/7) -> a(S) of 5 and

à*': a(5) —> 5*(/7) of 5* are therefore well defined and isomorphisms by Theorem

2.1. We observe that 5* = 5*■ 77aCS). Consider (S')~1-(«*')~1: «*(//) -* 5*{H), and

let j8 = i-((S')-1-(S*')"1)-'n-e £(//), where i : à*(77) -> H is the natural inclusion

and n: H-> à*(7/) is the orthogonal projection onto the closed linear sub-

space cé*(7/). From the construction follows immediately

^a(S) = «■ß-a*-7Ta(s) = ä-ß-&* = a-ns-ß-ns-a*.

The following definition will be very useful.

Definition 2.1. Let a e £(77, K) and let S be a linear subspace of H, then

c(5, a) = inf {||a(*)|| ; * e S and ||*|| = 1}.

Lemma 2.3. Let a e £(//, K) and let S be a closed linear subspace of H. Then

kernel (a) n S={o}, and a(S) is closed if and only if c(S, a) > 0. If c(5, a) > 0, then

the restriction a' : S -*■ a(5) is an isomorphism and

c(S,a) = (|K-1||)-1.

Proof. Suppose ciS, a)>0. Then certainly kernel (a) n S={o}. Now let y e K

and let {a(xn)}"=1 be a sequence with lim a{xn)=y. The sequence {x„}"=1 is then a

Cauchy sequence since

IIX„-Xm||  á {c{S, a))-1- ||«(*„)-a(*m)||.

Let x=lim xn. Then a(x)=>>. Therefore a(5) is closed. Assume now kernel (a) n 5

= {o} and «(51) is closed. a(5) is a Hilbert space and we consider the restriction

a: S-+a{S). By Theorem 2.1, a'"1 € £(a(5), 5). We have

lla'-y^l^/KLxjJX-1 forxE5andx^0.
||«(*)|| \   ||*||   /

With the first expression we can approximate j[ce'_ 1 ¡|.

Lemma 2.4. Suppose a e £(77, K) with «(//) is closed. Then we have

ciaiH), a*) = cia*iH), a).
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Proof. Since a(H) is closed, a*(K) is closed also (Lemma 2.1). The restrictions

a : a*(K) —>a(H) of a and a*': a(H) —>a*(K) of a* are well defined and iso-

morphisms (Theorem 2.1).

c(a(H),a*) = (la*'-1!)-1 = (ü«'*-1!)"1 = (¡(a'-1)*!!)-1 = (\\a'^\\)^

= c(a*(H), a).

Definition 2.2. 2Icfl(//) is called a C*-algebra, if 91 is a subalgebra of 2(H),

a closed subset of 2(H), and (91)* = 91. If 1 e 9t, then we have the closed subgroups

GL(9l) = {y;ye GL(H) with y, y"1 e 91} and

U(91) = U(/7) n 9t

of the topological group GL(H).

GL(9i) is an open subset of the Banach space 91. (There is an open neighborhood

of 1 in 91 contained in GL(9t), since for y sufficiently close to 1 the inverse exists

and can be represented by a geometric series which is convergent in 91.)

Lemma 2.5. Let 91cß(/f) be a C*-algebra with 1 e 91. If y e GL(H) n 9Í is self-

adjoint, then y'1 e GL(H) n 9Í.

Proof. Consider c • y2, where c is a real number. We compute

{{c ■ y2 - l)(x), (c ■ y2 - l)(x)) = c2 ■ (y2(x), y2(x)) - 2c ■ (y(x), y(x)) + (x, x)

áC2.|yP-||x||2-2C-(|¡y-1||)-2-|xp+«x||2

= [i + l¡y|l4-(c-(|y||2- ||y-1D-2)a-(ily|l ■ ly"1!)"4]- W".

We conclude that there exists a c^O such that flc-y2 —1|| < 1. Since we have

c-y2 = l + (c-y2 — 1) and ||cy2 —1|| < 1, the geometric series 2"=o(— l)"-(c-y2 — l)n

is convergent in 91 and gives (c-y2)'1 e 91. Then also (y2)_1e91 and y"1

= y(y2)-1e91.

Lemma 2.6. Recall that a self-adjoint a e 2(H) is said to be positive, if(a(x), x) i O

for all xeH. Let 9t <= 2(H) be a C*-algebra with 1 e 91. Suppose a e 9Í is self-adjoint

and positive. Then there exists a unique self-adjoint and positive ß e 91 with ß2 = a.

If further S^H is a closed linear subspace with a(S)*=S, then also ß(S)^S, and if

a\s = id, then also ß\s=id.

Proof. We may assume that 1 —a is positive. We consider the sequence {ß„}™=0

in 91 defined by ßn +1=ßn+-kia—ßn) and ß0 = o. This sequence is convergent. Let

j8= lim ßn e 91. Then ß has the desired properties. See, for example, [12, p. 15].

Lemma 2.7. Suppose a e 2(H) is self-adjoint and positive. Then 1 + a e GL(H)

and ¡(l + a)-1!^!.
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Proof. By Lemma 2.6 there is a ß e £(//) with ß*=ß and ß2 = a. We compute for

xeH

||(1 + «)(X)||2 = (x,x) + 2-(ß(x),ß(x)) + {«ix),a(x)) i   ||x||2.

This implies c(H, (l + a))il. Therefore l + a is injective and (l + a)(H) is closed

(Lemma 2.3). Since (1 + a)* = l + a, it follows that 1 + a is also surjective (Lemma

2.1). By Theorem 2.1 then 1 + « e GL(H). Finally, by Lemma 2.3

IKl + a)-1!! =(c(//,(l + a)))-1^ 1.

Theorem 2.2. Let 91 <=£(#) be a C*-algebra with 1 e 91. For each y e GL(H) n 91

there is a unique decomposition y = p.-K such that ¡x e U(//) n 9t and k e GL(H) n 9t

is self-adjoint and positive. The map

w:GL(//)n9C->U(//)n9t,

u(y) = p.,

is continuous.

Proof. Consider y*-ye GL(H) n 9t. We have y*■ y is self-adjoint and positive.

By Lemma 2.6 there exists a positive self-adjoint ß e 91 with ß2 = y*-y. Obviously

ß is injective and surjective since ß2 e GL(H). Therefore by Theorem 2.1

ß e GL(H) n 9Í, and by Lemma 2.5 also ß'1 e GL(H) n 9Í. Let x=ß and

fj.=y-ß~1. Then y=p.-K, and k is self-adjoint and positive. We compute

fi*-lx=ß-1-y*-yß-1=ß-1-ß2-ß-1 = l,i.e.,tieV{H)n'n.

To prove the uniqueness of the decomposition, we assume another representation

y=fi-K with the above properties. Then (i-K=fi-Z, or K=p,*-ß-i<, and hence

k = k* = k ■ fi* ■ p.. It follows that k2 = k2 = y* • y. From the uniqueness of ß in Lemma

2.6, we conclude k = k and (¿ = ß.

To prove the continuity of u, it is sufficient to show that the map

w: GL{H) n 9( -> GL{H) n 91,

w(y) = ß, where ß is the unique self-adjoint and positive element with |S2 = y*-y,

is continuous. Let w(y0) = ß0, w(y) = ß.

We apply to ß0 and ß Lemma 2.6, and we obtain ß0 = 82, ß=82 with 8* = S0,

S* = 8, and again 80, 8 e GL(H). Then we decompose

i30 + ^ = 80.(l + (80-1-8)-(8-S0-1)).S0.

Let e = 8-80~1. Now e*-e is self-adjoint and positive. By Lemma 2.7 then

l + e*-eeGL(H) and ||(l+«*-«)-1|ál. We compute

\\ß0-ß\\ = I(j8o-/S)-0So+/S)-0So+/s)-1I| = lljsg-^ll-lCSo+iS)-1!!

= M-w-y*-y|-ï«o"1-(i+«*-«)-1-*o1l

= M-yo-y*-ylH|SoT-

Which proves the continuity of w.
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Corollary 2.1. Let 91 <=£(#) be a C*-algebra with leW.Ifye GL(77) n 91,

then also y"1 e GL(77) n 91, i.e.,

GL(9I) = GL(7F) n 91.

Proof. By Theorem 2.2, y = p.«r with p. e U{H) n 91, k e GL(77) n 91, and <t is

self-adjoint. Then y~1=K~1-p*. By Lemma 2.5, /c"1 e GL(//) n 91, which proves

y-16GL(77)n9I.

Corollary 2.2. Let 91 <=£(#) be a C*-algebra with 1 e 91. For eacA y e GL(9I)

íAere íí a unique decomposition y = p-K such that p e U(9t) and k e GL(9t) is self-

adjoint and positive. The map

«:GL(9l)-»U(9I),

u{y) = p.,

is continuous. We notice further the following property: Let S<^H be a closed linear

subspace. Suppose y e GL(9I) satisfies yiSL) = (y(S))1, then w(y)(>S) = y(S). And if

yx, y2 e GL(9I) satisfy y^S1) = iyi{S))L, i= 1, 2, and yi|s = y2|s, then w(yi)|s = H(y2)|s.

Proof. Theorem 2.2 and Corollary 2.1 prove the first part of the corollary.

yiS1) = iyiS))1 implies y* ■ y(5) = S and y* • yiS1) = SL. The corresponding ß satisfies

then also ß{S) = S and ßiS1) = SL (Lemma 2.6). Hence u{y){S)=riiS) = iyß-1){S)

= y(5).

To prove the last property, observe again y*-YtiS) = S and yf-yiiS1) = S1,

2=1, 2. We compute the corresponding ß( by computing ßt\s and ft|s± separately

and forming jSt=j8i|s ® ß,\s±, i=l, 2. But yï-yi|s=yî-y2|s> therefore jS1|s=<32|s,

and hence /¿i|s=/i2|s.

Theorem 2.3. Let 91 <= £(//) /)<? a C*-algebra with 1 6 91, a«¿/ let S<^ H be a closed

linear subspace with ns e 91. We consider the closed subgroups

GL(9I)S = {y;ye GL(9l) wi/A y(5) = S),

U(9t)s = GL(9t)s n U(/7)

of ¿Ae topological groups GL(9I) a«rt* U(9I). FAen U(9l)sc:GL(9I)s is a strong de-

formation retract of the space GL(9I)S. In particular U(9l)s and GL(9l)s are of the

same homotopy type.

Proof. We introduce the closed subgroup

GL(9I)s,sx = {y; y e GL(9I) with y(S) = S and yiS^ = S1}

of the group GL(9I)S. We have the strong deformation retract map

r:GL(9l)s^GL(9t)s.s,,

r{y) = yns + ns±-yns± = y-ns-ynsi.



1967] R-SETS, GRASSMANN SPACES, AND STIEFEL SPACES 79

(Certainly r(y)(S)<=S and /•(y)(51)c51. We compute directly r(y)r(y'1) = \ and

r(y_1)-r(y) = l. Therefore r{y) e GL(9I)S>|S±, and r is well defined.)

A deformation retract homotopy is given by

r:GL(9i)sx[0, 1]->GL(«)5,

Ky, t) = rt{y) = y-ttr8-ywgi.

(Again rt(y)(S)<=S, rt(y)(S^SS r((y)-ri(y-1) = l, /•t(y-1)-r((y) = l, and thus rt is

well defined.) Then r0 = id, rx = ir, where i: GL(9l)ssi -> GL(9I)S is the inclusion.

Further, rt(y) = y for y e GL(9l)s,s± and Oz%tz%\. Thus, GL(9I)S>S± c GL(9t)s is

a strong deformation retract of GL(9I)S.

Next we show that U(9l)scGL(9i)s>s± is a strong deformation retract of

GL(9I)ssx. The map u of Theorem 2.2 defines a deformation retract map

«:GL(9I)s>sx^U(9I)s,

u(y) — P,   where y = p k is the unique decomposition of Theorem 2.2.

u is well defined. (By Corollary 2.2, u(y)(S) = S, and hence u(y)(SL) = S1. Therefore,

u(y) e U(9t)s.) A deformation retract homotopy is given by

t2:GL(9t)s>six[0, l]^GL(9l)s,sx,

û(Y,t) = ut(y) = p.-(t-l + (l-t)-K).

Again the map ut is well defined. (Namely M + (1 —r)-k e GL(9l) by Lemma 2.7,

and K = ße GL(9t)SfSi gives M+(1 — t) • k e GL(9l)s>sx.) We have u0 = id and ux = i-u,

where i: U(9i)s-^ GL(9t)s>si is the inclusion. Finally, ut(p) = p. for p. e U(9t)s and

Ofítzí 1. Which proves the theorem.

Corollary 2.3. Let 91 be a C*-algebra with le9i. 77ie« U(9I)c:GL(9t) is a

strong deformation retract of the space GL(9t). In particular, U(9l) and GL(9l) are

of the same homotopy type. The strong deformation retract map

m(:GL(9I)^GL(9I),

Mt(y) = ,x-(M + (l-0-K), 0SÍ51,

of Theorem 2.3 has further the following property : IfS^ H is a closed linear subspace,

and if yy, y2 e GL(9I) with yi(S±) = (yi(S))L, i=l, 2, and with yx\s = y2\s, then

ut(Yi)\s = ut(y2)\sfor0z%tzi\.

Proof. We have only to observe that «i|s='<'2|s and p-y\s=p-2\s- Compare

Corollary 2.2.

3. The metric space %(H) of all closed linear subspaces of a Hubert space H.    Let

%(H) = {S; S'^ H and S a closed linear subspace of //}. We recall the definition of



80 ERHARD LUFT [January

various metrics defined on £(/7) and some of their properties. If x e H and

S e XiH), then d\x, S)=inf {|x-j>| ;yeS}= ||(l-7rs)(*)|.

Definition 3.1. For S, Te%iH) we define

8{S, T) = sup {dix, T);xeSand ||*|| = 1},

diS, T) = 8{S, T) + 8{T, S), and

giS,T)=  \\ns-nT\\.

Lemma 3.1.

0^8(5, T)S 1, and0^g(5, F)á 1.

8(5, F) = 0 i/and only if S<=T.

IfS^S', andT'^T, then 8(5, F)^8(5', T).

8iS,T)=\\{l-nT)-ns\\.

8iS, F)^8(5, R) + 8iR, T).

8(5, T) = 8ÇT\ 5^), g(5, r)=£(S\ F^).
8(5, F) ̂ g(5, F) am/ g(5, F) ̂  8(5, F) + S(F, 5).

Proof. These properties follow immediately from the definitions.  See, for

example, [3].

Corollary 3.1. The functions d and g on 2(77) x £(//) define complete metrics

on %iH). We have

giS, T) Ú diS, T) ^ 2-giS, T)   for 5, Te %iH),

and these two metrics are therefore equivalent.

Proof. The completeness is easily proved by using the g-metric.

Observe that 8 itself does not define a metric.

The metric space %iH) is the set £(//) with the equivalence class of metrics

containing d and g.

Lemma 3.2. Let 5, TeXiH). Then the following relation holds

i8iS,T))2 + iciS,nT))2 = l.

In particular 7rT(5) is closed if and only //S(5, F)< 1.

Proof. Observe that ||(i-7rr)(*)||2= ||*|2- \\irT{x)\\2 for xeH. Therefore

i8iS,T)f = sup{||(l-7rr)(*)P;*e5and ||*|| = 1}

= l-inf{||7rr(x)]|2;*e5and ||*|| = 1}

= l-(c(5,7rr))2.

Lemma 2.3 implies therefore 7rr(5) is closed if and only if 8(5, F) < 1.
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Of crucial importance is the following theorem established by T. Kato [8].

Theorem 3.1. If S, Te%iH) with 8(5, F)<1, then T' = nAS) is in £(77) and

satisfies

8iS, T') = S(F', 5) = 8(5, F) = g(5, T).

If further 8{T, 5)< 1, then T' = T.

Proof. From Lemma 3.2 follows F'=-n-r(5) is closed and therefore in S(77).

Since nT-ns=nT.-ns, we have il—nT)-ns = {l—nr)-ns and therefore

8(5, F) = \\il-nT)-ns\\ = Kl-irr)-*,] = 8iS,T').

Consider the map a = nT,-ns. Then a(77) = F' is closed and we can apply

Lemma 2.4.

d*{H), a*) = ciT, ns-nT.) = CÍT, ns) = cia*iH), 77r,-7rs).

But a*iH) = (kernel (a))1 = (51)1 = 5. Therefore

c(F', ns) = c(5, nT.-ns) = ciS, nT.).

By  Lemma   3.2   again   8(F', 5) = 3(5, F').   We   have   S(F', 5)= ||(l-irs)-7rr|

= ||(irr/—7rs)-7rr|| á ||irr — irs|| =g(5, F'). On the other hand,

{ns-nT,)ix) = {l-nT.)nsix)-nT.Al-ns)ix)

for xe H. We obtain

|| (•, - nT,)ix) 12 =   1 (1 - ^0. ,rs(*) ||2 + || »r (1 - 7rs)(*) ||2

^ 8(5, F')2- \\nsix)\\2 + 8ÍT', 5)2- ||(l-7rs)(*)||2 = 8(5, F')2-1*||2.

And, therefore, g{S, D-|ws-wr| g8(5, 7"). I.e., g(5, F') = 8(5, 7"). If further

S(F, 5)< 1, then again c(F, 7rs)>0, and therefore kernel ins-nT) = TL. But also

kernel {nT■ ns)* = kernel {ns■ nT) = inTnAH)Y = T'1.

Hence T'1 = T1, which implies T' = T.

Corollary 3.2.

giS, T) = max {8iS, T), 8ÇT, 5)}  for 5, Te S(/7).

7/g(5, F)< 1, iÄe« 8(5, F) = S(F, 5)=g(5, F).

Proof. If 8(5, F)<1 and 8(F, 5)<1, then by Theorem 3.1 giS,T) = 8iS,T)

= S(F, 5). If 8iS, F)= 1 or 8iT, 5) = 1, then 8(5, F), 8(F, S)^giS, T)S 1 implies

g(5, F)= 1. For another proof see [1].

Corollary 3.3. Suppose S,Te%iH) with 8(5, F)<1. Then there exists an

5' e %iH) with 5c 5' andgiS', F) = S(5, T).
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Proof. We apply Theorem 3.1 to 8{TL, S1) = 8{S, T)<1. Let S=ttsi{T1)cS1.

gi§\ T) = g{T\ S) = 8{T\ S±) = 8{S, T).

Let S' = SS

Lemma 3.3. Let a,ße GL{H) and let S, Te%{H). Then

8(a(S),ß(T)) ú {\\a-ß\\ + 8{S,T))-\\a-\   and

d(a(S),ß(T)) zi (lla-^ll+^^T^-dla-^l + HiS-1!!).

Proof. By definition, 8(a(S), ß(T)) = sup {d(a(x), ß(T)); x e S and ||a(x)|| = l},

and d(a(x), ß(T)) = inf{\\a(x)-ß(y)\\ ;yeT}. We compute

\\a(x)-ß(y)\\   è   \\a(x)-ß(x)\\ + \\ß(x)-ß(y)\\

= h-ß\\-\\x\\ + \\ß\\-\\[{\\x\\)-^x-i\\x\\)-^y]\\.\\x\\.

Therefore,   d(a(x),ß(T))z%\\a-ß\\-\\x\\ + \\ß\\-8(S,T)-\\x\\.   But   ||x|| = || ce - » - c<jc) ||

zi ||«-i|| ■ ||a(x)|| = I«-1! for ||«(x)|| = 1. And we obtain

8(a(S),ß(T)) Ï (\\a-ß\\+8(S,T))-\\a-i\\.

Lemma 3.4. Let a, ß e 2(H), S e %{H), c(S, a) > 0, and let ß(S) be closed. Then

8(a(S),ß(S))a c(S,«)-i■la-ßl

Proof. Again by definition

8(a(S), ß(S)) = sup {d(a(x), ß(S)); x e S and ||a(x)|| = 1},

and d(a(x), ß(S))= inf {\\a(x)-ß(y)\\ ; y e S}. In particular

d(a(x),ß(S)) S ||«(*)-j8(*)|| = h-ß\\-\\x\\-

Since l = |«(jc)|èc(5,«)-W, we obtain ||x|| gc(5, a)"1. Therefore 8(a(x), ß(S))

^c(S, a)-1-1|a—ß||, which proves the lemma.

Lemma 3.5. Let S,TeZ(H) with g(S,T)<l. Consider at = l -1■ vTi e 2(H),

0 ^ t ¿ 1. Then at(S) e %(H), OzZtzil,andt^ at(S) e %(H), 0 g t á 1, is a continuous

path in %(H) which connects S with T such that

g(S,at(S)) = t-g(S,T), OSiSl.

Proof. For x e H we compute

|a((x)||2 = ((\-t-7rT¡.)(x),(l-t-nT¡)(x))

= ((wr+O-0 •*r¿X*M"r+(l-O-»*0(*))

= hT{x)\\2Hi-ty-hTÁxW ̂  M*)lla-
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Therefore, ciS, at) ̂  ciS, nT) = (1 - 8(5, F)2)1'2 = (1 -g(5, F)2)1'2 >0. By Lemma 2.3,

then a,(5) e 2(77) for 0^ig 1. Certainly «0(5) = 5, and aj(5) = Fby Theorem 3.1.

The path t -*> atiS) e 2(77) is continuous. Namely,

diahiS), ahiS)) g  ||aíl-a(j|-(c(5,aíl)-1 + c(5,«i2)-1)

g 2-(l-g(5, F)2)-1'2-!?!-^! (Lemma3.4).

Finally, we prove giS, at(5)) = íg(5, F), OgiS 1, by a continuity argument. First

we conclude from Lemma 3.4 and Corollary 3.2 that 8(5, <x¡(5))á \\ns — at-ns\\

= t-8iS,T) = tgiS,T). For short, let F( = «((5). We claim S(F¡, 5) = 8(5, F() for

Ogrgl. [Namely, let a=sup{s; O^s^ 1 with 8(Ft, 5) = 8(5, Tt) for Oútás}.

Suppose 0g<7< 1. Since 8 is continuous on 2(77) x 2(77), also S(Fff, 5) = 8(5, T„)

= a • g(5, F) < 1, and there exists e > 0 with S(F(, 5) < 1 and 8iS, Tt)<lfor0^t^o + e.

By Corollary 3.2, S(F(, 5) = 8(5, F() for 0 ¿ f ¿ o + e, which contradicts the definition

of a.] By Corollary 3.2, then g(5, Tt)**8(Tf, 5) = 8(5, F,) = ig(5, F) for Ogig 1.

Lemma 3.6. Let 5, F e 2(77) w/7/¡ g(5, F)<1. FAew y=7rj.-7rs + (l-7rr)(l-7rs)

eGL(77)andy(5) = F.

Proof. g(5, F)< 1 implies 8(5, F) = 8(Fi, 5X)< 1 and 8(F, 5) = S(5X, TX)<1. By

Theorem 3.1, y|s is an isomorphism which maps 5 onto F, and y|si is an iso-

morphism which maps 51 onto F1. This proves y e GL(7/). Certainly

y(5) = ttt(5) = F.

Lemma 3.7. Let R,S,Te 2(77) w/rA i?cs and R<=T, and let S' = RL nS and

T' = RLr\T. Then

8(5', 7") = 8iS, T)   and   g(5', F') = g(5, F).

Proof. We have nT=nR + nT, and 7^ = 7^ + 7^.. Substitution into 8(5', F')

= ¡(1 — nT,)-ns,\ and g(5', F')= ||7rs. — 7rr|| proves immediately the lemma.

4. 7?-sets and maximal 7?-sets. We recall the well known Rellich criterion for

compact linear maps of a Hilbert space which states that a linear map of a Hilbert

space is compact if and only if for every e > 0 there is a closed linear subspace of

finite codimension such that the norm of the restriction of the linear map to this

subspace becomes smaller than e. Various examples in analysis motivate a generali-

zation of compact linear maps via the collection of closed linear subspaces of finite

codimension in this criterion. A proper generalization of this collection is the

concept of 7?-sets.

Definition 4.1. A subset 9i<=2(77) is called an 7?-set, if the following condition

is satisfied : For any pair S,Tedi and every e > 0 there exists an R e fñ with

8(7?, 5) < e   and   8(7?, F) < e.
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Examples 4.1.

(1) Any subset 9Î<= Ï(H) with the property that for any pair S, Te'Si, also

S n Tem, isan£-set.

(2) The subset W. = {S; S e 2(/Y) with Smln<=S} of £(//), where Smin e H(H) is

a fixed element, is an £-set.

(3) %{H) itself is an £-set.

(4) Any set {S} consisting of a single element S e %{H) only is an £-set.

(5) A set {Sx,..., Sn} consisting of n elements of %{H) is an £-set if and only if

an Sio = Smin<=St, i=l,...,«.

(6) ï(//)c = {S; Se ï(//) and codim (5) < c}, where c i X0 is a cardinal number, is

an £-set. (Namely, for S, Te^(H)c also S n Te%(H)c. This follows from Sr\T

= Sn (^(T1))1 and hence (S n T)1 = SL®Cl{ns{T1)).) In particular:

Z{H)f = {S;Se %(H) and codim (S) is finite} is an £-set.

(7) If o = {Sn}n°=y is a sequence of closed linear subspaces with 5n + 1<=5„, «=1,

2,..., then St = {5„; n = 1, 2,...} is an £-set.

(8) Further if o = {Sn}n°=1 is a sequence of closed linear subspaces as in (7), then

M (a) = {S;Se %(H) with lim,,-.« 8(Sn, S) = 0} is an £-set.

(9) For explicit examples of £-sets in analysis we refer to [4].

Definition 4.2. For any subset © e £(//) we define

8~ = {T; TeZ(H) such that there is an R e @ with £ <= j"},

Cl(<3) = the closure of S in the metric space £(Zf).

Lemma 4.1. IfStis an R-set, then df and Cl(9i) are R-sets again.

Proof. If S, Te 9t" and e>0 are given, then there are 5', T e at with S'<=S,

7"cTand there is an £e3i with 8(R, S')<e, 8(R, T')<e. But then also 8(R, S)

z%8(R, S')<e, 8(R, T)zZ8{R, T')<e. If S, T e Cl(9t) and *>0 are given, then

there are S', 7" e 3Î with ¿(S", S) < e/2, c/(7", £) < e/2 and there is an £ e 8t with

S(£, S')<«/2, S(£, T')<e/2. We conclude 8(£, 5)^S(£, 5")+ 8(5", 5)<e, S(£, 7")

^8(£, T') + 8(T',T)<e.

Lemma 4.2. For any subset 3 <=$:(//) We have Cl{<Sy<=Cli<3'^).

Proof. Suppose Te C1(<S)V. Then there is a £' e C1(S) with T'cJ, and there is

further a sequence {SJ^-i, Sne<5, with g(Sn, 7")<1/«. But S(5n, r)^S(5n, 7")

ágíA, T')<\/n. By Corollary 3.3 there is an S'n with S„c5; and

g(S'n, T) = 8(Sn, T) < l\n.

Since s; e ©v, this implies Te C1(3V).
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Definition 4.3. A subset VR^XiH) is a maximal 7^-set, if it is an 7?-set and if

50T = 507   and   Cl(50c) = 507.

Examples 4.2.   In Examples 4.1, the 7?-sets in (2), (3), (6), and (8) are maximal.

Theorem 4.1. Each R-set ER is contained in a uniquely determined smallest

maximal R-set A/(9i).

Proof. Let Jl/(3t) = Cl(9r). Then

M(9t)v = ci(8rT c ci(atw) = ci(sr) = m (at) c Midty

implies M{ÍRy = M{íR). Of course Cl(M(3t)) = A/(9l). Obviously AT (91) is the

smallest maximal 7?-set containing the 7?-set 9t.

In associating algebraic structures to an 7?-set there is a freedom to enlarge the

7?-set to a maximal 7?-set (see next chapter). This motivates the introduction of

maximal i?-sets. Hence it is sufficient to consider maximal Fc-sets only.

Repeatedly we will apply the following argument :

Lemma 4.3. Let 'SSI be a maximal R-set, let Te 2(77) and suppose for each e>0

there exists an Se M with 8(5, F) < e, then S e 507.

Proof. Let e>0 be given. Then, by Corollary 3.3, there exists for the 5 of the

hypothesis an 5' e 2(77) with 5^5' and g(5', F) = S(5, T)<e. Since 5' £ 50c, this

implies F £501 = 501.

Lemma 4.4. The maximal R-set 501 = {5; 5 e 2(77) with Smiu^S\, where 5mln

e 2(77) is a fixed element, has the following representation: We introduce the Hilbert

space H' = {SmlI¡)L. Then the map

c: 501 -*2(77'),

c{S) = iSminy n 5,

is an isometry onto 2(77') with respect to the g-metric and 8-structure of 501 and

2(77').

Proof. Certainly c is bijective and Lemma 3.7.

Theorem 4.2. Let 501 be a maximal R-set. If there exists a finite-dimensional

S0 e 5DÎ, then there is an Smln e 507 such that

50c = {5; 5 e 2(77) with 5mln c 5}.

Proof. Consider an 5min £ 50Î such that dim (5min) is minimal. Let 5 £ 507 be
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given. Since 3JI is an £-set there exists for each «= 1, 2,..., an £„ e 2JI such that

S(£„, Smin) < I       S(£n, S) < ~

By Corollary 3.3, there is an R'n e 50Í with £„<=£;, and

g{R'n, ^min) =  S(£„, ^mln)  < "

By  Theorem   3.1, Smln  and  R'n  are isomorphic.   Since  dim {Smln) z¿ dim (£n)

^ dim {R'n) = dim (5mln) and dim {Smin) is finite, we have £„ = R'n.

We conclude

8(^mi„, S) á 8{Smln, Rn) + 8{Rn, S) < |       «=1,2,....

Therefore, 8{Smln, S)=0 and, by Lemma 3.1, Smia<^S.

Corollary 4.1. If H is a finite-dimensional Hubert space, then the maximal

R-sets SDt of %{H) are the spaces %{H'), OS dim {H')z% dim (//). The con-

cept of maximal R-sets becomes in this case trivial, it does not introduce any new

structure.

5. C*-aIgebras associated with £-sets.

Definition 5.1. For an £-set 3t we define (compare [4] and [5])

/(3t) = {a; a e 2{H) such that for each e > 0 there is an 5* e 3t

with ||a-"s|| < e and ||a*-7rs|| < e}, and

A{iñ) = {a; a e 2{H) such that for each 5 e 9t and e > 0 there is

a Te 9t with ¡(1 — Trs)-a-7rT||  < e and ||(l— TTs)-a*-irT\\  < e}.

Theorem 5.1. /(3t) is a C*-algebra in 2{H), A{fö) is a C*-algebra with unit 1

in 2{H), /(3t)c^(at), and /(9t) » a closed twosided *-ideal in A{fft).

Proof. Immediately from the definitions, compare [4] and [5].

In [4] and [5] it was also shown that /(3t) = /(A/(3t)) and ^(9t) = ^(M(9t)),

where A/(3t) is the uniquely determined maximal £-set associated with 9t. This

implies that one can restrict oneself to maximal £-sets. The classical situation is

obtained, if we choose as a £-set the maximal £-set 9JÎ = %{H)f (Examples 4.1 (6)).

Then

I{£.(H)') = S(/Y), the ideal of compact linear maps in 2(H).

A(%(H)>) = 2(H).

Lemma 5.1. For S e X(H) let 2(H)S± = {a ; a e 2(H) with ans = o and 7t-s± ■ a = a).

Certainly 2(H)S± is isometric to 2(S1). If m is an R-set and S e 9t, then £(//)sx <= /(3t).

In particular ttsx e Z(3t), and hence tts, ttsi. e ^4(9t).
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Proof. A direct consequence of Definition 5.1.

Definition 5.2. Let 9t be an 7?-set. Then we consider also the following closed

invariant subgroups of the groups GL(.4(9t)) and U(yl(9t)) (Definition 2.2):

GL,(/(9t)) = {1 + a ; 1 + a e GL(77) and a e 7(91)},   and

U5(/(9t)) = GLa(/(9t)) n U(77).

Definition 5.3. If 5 e 2(77) and GcGL(77) a subset, then we denote

Gs = {y; y e G with yiS) = 5},

GiS) = {y;yeG with y\s = id},   and

G\s = {y|s;ye G with yiS) = 5}.

Corollary 5.1. Let 91 be an R-set, and S e 91. Then we have the representations

U(^((9î))s = U(^(9{))|sxU(5i),

U9(7(91))s = U,(7(91))|sxU(51),   and

UM9t))(S> = U9(7(9t))(S) = U(5^).

Further U(^(91))scGL(^(9t))s, and U(7(9i))scU(7(9i))s are strong deformation

retracts. In particular U(^(9i))s and GL(^(9i))s, and U(7(9i))s and GL(7(9t))s

are of the same homotopy type.

Proof. The first part follows directly from Lemma 5.1. The second part from

Theorem 2.3 in the case of .4(91), and by the same construction as in the proof of

Theorem 2.3 in the case of 7(91). (We have ns± e7(91) and ns=l—ns±e/4(9c).)

Definition 5.4. Let ©=2(77). If y £ GL(77), then let yi<B) = {yiS); 5 e ©}. We

denote

GL(@) = {y;ye GL(77) with y(@) = © and y*(©) = ©},    and

U(<S) = {p;p.e U(77) with p.(@) = ©}.

If <B is closed in 2(7/), then GL(©) and U(@) are closed subgroups of GL(/7).

Lemma 5.2. Let 91 be an R-set and let y e GL(/7). Then y e Ai?R) if and only if

for each S em we have y~AS) e M(9i) and y* " \S) e M (91).

Proof. Observe first that by the definition of the adjoint map y(5) = (y*"1(5±))1

for any 5 £ 2(77). Suppose now y £ ^(91). Let 5 £ 91 and e > 0 be arbitrarily assigned.

From Lemma 2.2 we have the representations

''Vis1) = y7rsi-^-7rsi-y*    and    7V(Si) = y*-nsi-ß-ns±-y.
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By the definition of ,4(91) there is a Te 9î with

\\il-ns).ynT\\  < (|y|| • UpD"1-«,    and

\\il-ns).y*.nT\\  < (||y|| • \\ß\\)^-e.

We conclude

SiF.y-1^)) = S(F,(y*(5^) =  ¡n^-n-A =  \\y*-ns,-ßA^-Y^T)\\ < *,

and similarly 8iT, y*-\S)) = 8iT, (y(5±))1)<£. By Lemma 4.3,

y-\S) £ A/(9Î) and y*"1^) e M(9t).

Suppose now yeGL(77) satisfies y'AS), y*^(5) e M(9t) for all 5 £91. We

turn to the definition of ,4(91) and assume 5 £ 9î and e > 0 be given. Let T'=y~ \S)

and T"=y*~AS). Since 91 is an F-set, there is an Fe9î with 8(7?, F')<(||y||)-1-e

and 8(7?, F")<(||y||)"1-e. Observe that with Lemma 2.2 we can conclude that

nSL-ynT. = o and 7TSiy*-7rr» = o. We compute

¡(l-Tr^-y-TTflH  ¿  ||(l-7rs)-y(l-7rr,)-TrB||-|-||(l-7rs)-y7rr-7rs||

Í ||y||-S(7?,F')<£,

and similarly ||(l-7rs)-y*-7rÄ|| <£. Which proves y e /l(9t).

Theorem 5.2 (compare [5]). Let 507 be a maximal R-set. Then

GL(50c) = GL(77) n ,4(501) = GL(^(50c)),   and

U(50c) = U(/7) n .4(501) = UG4(50t)).

Proof. If yeGL(50c), then y-1(50c) = 50c and y*"1(50c) = 50c and, by Lemma 5.2,

y e GL(77) n /í(5üc). If y e GL(7/) n ,4(501), then by Corollary 2.1, y"1 £ GL(77)

n^(5D?), and we conclude y(50c) = 50c and y*(50c) = 50c, and therefore y £ GL(Söl).

This proves also U(50c) = U(/7) n ¿(SR).

Lemma 5.3. Let Wl be a maximal R-set. For any pair 5, F £ 50c and every e>0

there exists an R e 50c vwYA F^S and 3(F, F)<e {compare Definition 4.1).

Proof. We may assume 0 < e ̂  1. First there is an R e 50c with 8(7?, 5) < e/8 and

8(73, T)<eß. By Corollary 3.3 there are 5', F'£ 50c with F^s", RcT', and

g(5', 5)<e/8, g(F', F)<e/8. Consider now y=w8-iTS.+il-irs){l—rra.) e GL(50c)

(Lemma 3.6). We have yiS') = S, and v/e compute

|y-l| =  ||7rs-7rs,-7rs-7rs. + 7rs-7rs..||  ^ 8(5, 5')+ 8(5', 5) ¿ 2g(5', 5) < e/4,

and ||y-1|| = |(l + (y-l))-1||^l/(l-||y-l||)<2. Let F = y(/?)e50c. Certainly

/?cy(S')=5. Now S(F, F)^8(y(7?), 70+8(7', F). But by Lemma 3.3, 8(y(R), 7")

= Ily-l|| • ||y_1| <«/2. And 8(7", T)úgiT, T)<eß. Hence S(F, F)<e.
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Definition 5.5. Let <S<=-%{H) and let S0 e £(//). Then we denote

<S|So = Sn %(S0) = {S;Se®   with   5 c S0}.

Theorem 5.3. Let SOt be a maximal R-set and let S0 e 9Ji. Then 9K|So is a maximal

R-set again with respect to the Hubert space S0.

Proof. Lemma 5.3 gives 2Jc|So is an £-set. Evidently (5Dt|So)N' = 9JÎ|So (see Defini-

tion 4.3). And SR|So = 2R n 2(S0) is closed, since £(S0)c2:(/0 is closed.

Definition 5.6. Let 9t <=£(//) and S0 e %{H). Then we denote by

«Iso = {«Uo ; <*k 6 &(S0) where a e 91 with «(So) c S0}.

Theorem 5.4. Lei Wbe a maximal R-set and S0 e 9JÍ. Then

7(SR|So) = 7(3»)|So    and   yi(SK|So) = ¿(2R)|So.

Proof. Directly from Definition 5.1 with the use of Lemma 5.3.

Theorem 5.5. Let W be a maximal R-set and let S e 9Jt. Then we have

GL{A{m\s)) = GL{A{W))sIGL{A{m)){S),

\J{A{m\s)) = \J{A{m))sIU{A{W)){S),

GL?(/(9Jt|s)) = GL4(/(ÜR))s/GL,(7(aR))(S),

U,(/(3K|S)) = U,(/(TO))S/Ufl(/(W)){S),

U(i4(3R))s = U^SDtl^xUÍS1),   and

U4(7(äR))s = U,(7(SK|s))xU(Si).

Proof. Direct consequence of Theorem 5.4.

6. The path components of maximal £-sets.

Lemma 6.1 (compare [4]). Let W be a maximal R-set. Each open ball 58(S>r)

= {7; 7 e 5Dt and g{S, T) < r) in 5DÎ with center S and radius r, 0 < r zi 1, is path con-

nected.

Proof. Let Te S3(S>r) be given. We consider first S1, TL e £(//). Since g{SL, 71)

=g{S, T)<r, we can apply Lemma 3.5 to the pair S1, 7X. Consider at = \ — t-TrT

e £(//), O^/^l. Then t -> at{SL) e H(H) is a continuous path in £(//), which

connects S1 with T1 and with g(S\ at(S1)) = t-g(S1, T1) for Og t g 1.

Now we turn to the path t-> Tt = (at(Sx))L e %(H), Ogfgl. The complement

map J_: %(H) -*> £(//) is continuous by Lemma 3.1. The new path is therefore

continuous again, and connects S with Tin %(H). We have g(S, Tt)=g(Sx, a^S1))

-tg(S,T)<r, Og/ál.
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Finally, 7¡ e "Sil, 0 z¿ t zi 1. We apply Lemma 4.3. Let e > 0 be given. By Lemma 2.2,

77-^(51) = o£t-7rs±-/}-irsj.-ot*. There exists an £ e 9JÎ with 8(£, S)<(||at| • ||j3||)-1-e and

8(£,7)<(||ai|H|/3||)-1.e.Then

8(R,Tt) = 8(£, (at(SL)Y) = ||(l-7r(8t(Si))i).77S|| = inatV¡í)-na\]

S H-|]9|-|«^-((l-0-l + M^i)-*»|

â ||ai||-||j8|K(l-0-8(£S) + í-8(£,7))<£.

Corollary 6.1. A maximal R-set 30t is locally path connected. Path components

and connected components coincide therefore, and they are open and closed in 9JÎ.

Definition 6.1. First we introduce the following notation: If G is a topological

group, then G1 denotes the path component of its unit leG. Let S3(Sjl)

= {7; Te 9Jc with g(S, 7)< 1} be the open ball in 9K in the g-metric with radius 1

and center S e 30t. Then we have the following cross-section map

s: »w>1) -> GL»(/(SR)) c GL»(3R)

S(T)   =  TTT-7TS + (1—1TT)-(1—TTS).

Lemma 6.2. The map s is well defined, continuous, and satisfies s(T)(S) = T.

Proof. By Lemma 3.6, s(T) e GL(H) and s(T)(S) = nT(S) = T. Further, s(T)

= (1 — ttti) ■ (l — 7rsi) + 77Ti • 7TSi e GL,(/(9JÎ)). To show the continuity of s, we compute

\\s{Ty)-s{T2)\\ = \irTl"ir8—wra-ws+7Trj.-wSj.—wra-wsi||

=  ll7TT1-'rrJ| + ||i'rf-'n'r¿|| = 2g{Ty,T2).

By Lemma 6.1, 93<s,d is path connected.  Since l=i(S) 6i(58(S>1)), it follows

*(93<s.i>)cGL»(/(9Jl)).'

Definition 6.2. We have the action of the group GL(9K) on 3R

a:GL0öl)x2R->äJt,

a(y, S) = y(S).

Lemma 6.3. a is continuous. If 6 e tt0{$H) is a path component of SW, we have in

particular the action of GL'(9Jl) on S

a: GL*(3R)x ©-»■<£.

And from this action the maps

a„:e^e,

a AS) = y(S) for a fixed y e GViW),   and

as: GViW)-> Q,

as{y) = y{S)for a fixed S e <£.
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ay is a homeomorphism of S onto itself for each y e GL'ijiOc). as is a continuous map

onto 6. The same holds for the group GL'(7(501)).

Proof. Let (yls Si), (y2, 52) £ GL(50c) x 50c. Then from Lemma 3.3

d{aiyx, Sx), a{y2, 52)) = diyASx), yAS2))

á(l|yi-y2||+^(51,52))-(||yr1|| + ||y2-1||),

which proves the continuity of a, and therefore of ay and as. ay is a homeomorph-

ism, since ay ■ ay 1 = id and ay 1-ay = id.

To show that as is a map onto ©, let F £ S be given. Then there exists a con-

tinuous path 5(, 0áí¿ 1, in ©, which connects 50 = 5 with SX = T. We can find an

integer N with giSktN, 5(fc + 1)W)< 1 for £ = 0, 1,..., TV-1. It is therefore enough to

show that for S,Ted with g(5, F)< 1 there exists a y e GL'(50c) with y(5) = F.

We can take s(T) e GL'(50c) of Lemma 6.1 as such an element y.

Lemma 6.4. The map as: GL'(50c) -> ©, where S e S, is open. The same holds for

GLU/(50c)).

Proof. If y e GL,(50c), then we denote by ly: GLliW) -» GL1(50c) the left trans-

lation lyia) = ya, a £ GL'fjOc). Observe that as = ay-asly-i for y£GL1(50l). Also

that a3(Sil)ce and (as ■ j)(F) = T for all Fe 93(Si1) by Lemma 6.2.

Suppose now DcGL^iOc) is an open subset, and consider y £ £). Then there is

an open neighborhood O^GL'fjOc) of 1 with D^-iijD) n (as)_1(93(S>1)).

Now as(D) = (a,,as/y-i)(D). But i_1(Oi)cas(Oi) (if Tes-^^i), then i(F) e O,

and F= (as ■ s){T) ; hence F e as(0,)). Further 5 e s ~ ̂ O.) (namely 1 £ O,). Therefore,

asiy) = yiS) £ ay(i"1(£),))ca),(as(/),-i(D))) = as(0). Since ay is a homeomorphism,

a/i^^O,)) is open, which proves the lemma.

Definition 6.3. A Banach manifold is a topological Hausdorff space such that

each point has an open neighborhood homeomorphic to an open subset of a

Banach space. (See for example [10] and [13].)

Theorem 6.1. A maximal R-set 50Î is a Banach manifold. In particular the path

components of 501 are connected Banach manifolds.

Proof. Let 5 e 50c be given, and let £ £ 7r0(50c) be the path component of 507

with S e ii. We construct a coordinate system (U,/) at 5: Consider the open map

of the preceding Lemma 6.4

a^GLW^©,

asiy) = yiS).

Let Ù = {y;ye GL1(50c) with n's-yise GL(5)}, where is: S -* 77 is the inclusion and

n's: H^ S is the projection. Ü is open in GL,(50c). (Proof: The map/?s: GL'(50c) ->
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fl(5) defined by ps{a)=n's-a-LS is continuous. GL(5) is open in £(5), and Ü

= (Fs)_1(GL(5)).) We define U = as(Ü). U is open in © and therefore in 50c.

Next let ,4(50c)s si = {«; a e,4(50c) with a-775 = a and ttsi •« = «}. ,4(50î)s s± is a

closed linear subspace of the Banach space .4(507) and hence a Banach space.

Before we construct the coordinate homeomorphism/ we notice the following:

Let

£(77)s,si = {a; a £ £(/7) with a-ns = a and 77si-a = a}.

If a e £(7/)s>si, then 1 + a e GL(/7) (namely (1 + a) ■ (1 - a) = 1 and (1 - a) ■ (1 + a) = 1).

And if otj, a2 e £(77)ss±, then (l + a1)(5) = (l + a2)(5) if and only if a1 = a2.

Consider now the continuous map

/:fi->¿(2R)s,sA,

Ay) = 'n's^-Y-7TsA7Ts-Y-7rs + ^s^)~1-^s

= y*sA7rs-Y"n's + TTsi-)~1-'n's-ns.

Observe that (l+/(y))(5) = y(5). We define/via the commutative diagram

\ f     ̂
U-M(50c)s,s,

by f=/Aas)~1- The map/is well defined and therefore continuous. (Namely if

asiyi) = asiy2) for yx, y2 e ft, then yi(5) = y2(5) and (1 +/(yi))(S) = (1 +/(y2))(5),

and hence /(yi)=/(y2) by the remark above.)

Next we consider the continuous map

K:A{W)sM-*GLriW),

h~ia) = l + tt.

h is well defined. (£(«) £ GL(77) n .4(501) = GL(50c), and 1+i-o, OSt^ 1, is a path

which connects 1 with A(a). Therefore, A(a) £ GL1(50c).) Since n's ■ (/¡(a)) • cs = ls,

we have further Ä(a) e Ct. We compute

ifih)ia) = a   for   a e ^(50c)ssi,   and

(/i-/)(y) = l+/(y)    for   y £ fi.

And finally we define

A:,4(50c)s,sx^U,

h = as-h~.

Then we have (/■A)(o) = a for a e ¿(SR)s>si, and (A/)(F) = (l+/(y))(5) = y(5) = F

for FeU, where yefi with as(y) = yiS) = F. This proves /: U -> .4(50i)SjSi is a

homeomorphism onto the Banach space ,4(50c)SjSi and h=f~l.
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Definition 6.4. Let 5DÎ be a maximal £-set, let S e tt0{TI) be a path component

of 9JÍ, and let S e S be fixed. We consider the closed subgroup

GL\3Jt)a = {y;ye GV(m) with y{S) = S},

and we form the quotient space

GV(W)IGV(M)s = {M; Y e GVW)}

of left cosets [y]=y-GL1(5nî)s. This quotient space is given the topology induced

by the projection map

p: GVCm) -» GLAWiyGLXIJl^.

We can lift the map as : GL^SDf) -> (£ onto the quotient space.

a^GLW/GLWs-»®,

âsily]) = as{y) = yiS).

Similarly for the group GLJ(/(50l)).

Theorem 6.2. âs: GLI(5Ol)/GL1(50c)s -*■ S is a homeomorphism. The spaces S and

GL\m)IGL\m)s can therefore be identified.

Proof. Consider the commutative diagram

GL>(jmw

P        ^\.

âs   ^^-*
GL1(5Dt)/GL1(5Di)s->&■

Certainly âs is bijective. Since as is continuous and open, âs is a homeomorphism.

Theorem 6.2,. âs : GLJ(/(50î))/GLJ(/(9)t))s ->(£■ is a homeomorphism. The spaces

(£ and GU,(ICm))IGVg(ICm))s can be identified also.

Definition 6.5. We have a canonical local cross-section of GL1(9Jt)s in GL'ijDt).

*' = (4s)-10B<s,i)) is an open neighborhood of the point [1] e GV(m)IGV{m)s.

We define

s'-.W^GVCm)

s' = s-âs,   i.e.,   s'([y]) = s(y(S)).

We have/>-5'([y]) = [i(y(S))]. But (s(y(S)))(S) = y(S) and therefore [s(y(S))] = [y].

Or ps'([y]) = [y] for [y] e S3'. Similarly for GL»(/(W))S and GV(I{m)).

The Steenrod construction [14, p. 30] can now be applied, and we obtain:

Theorem 6.3. If K is a closed subgroup of GL\M)S,

p: GV(m)IK^ S = GLW/GLWs



94 ERHARD LUFT [January

the projection map induced by the inclusion of cosets, then a bundle structure can be

assigned to GL,(50l)/A' relative to p such that the fibre of the bundle is GL'(50i)s/A'

and the group of the bundle is GL,(507)S/A'o acting on GL1(50c) S/K as left translations,

where K0 is the largest subgroup of K invariant in GL1(50l)s. The same holds for the

group GL'(7(50c)).

Corollary 6.2. GL'(5u7) is a principal fibre bundle over

© = GLI(50c)/GL1(50l)s

with fibre and structure group GL1(50l)s, which acts on the fibres by left translations.

In particular we have an exact sequence for the homotopy groups

•■•-* t*+i(«) -* ^(GL'(50c)s) -* 7rn(GL»(50l)) -* 7rn((S) -+..-..

Corollary 6.2,. GL'(7(50c)) is a principal fibre bundle over

(£ = GLJ(7(50c))/GLj(7(50c))s

with fibre and structure group GLj(7(50f))iS, which acts on the fibres by left translations.

In particular we have an exact sequence for the homotopy groups

■'•-+ *»+i(®) -* 7rn(GLJ(7(50c))s) -> nAGVAm)) -> 7rn(<£) -*....

The preceding constructions and arguments can also be applied to the unitary

groups U1(50c) and UJ(7(50c)).

Definition 6.1'. Let 93(S.i)={F; Fe 507 with g{S, T)< 1} be again the open ball

in 50c in the g-metric with radius 1 and center 5 £ 50c. Then we have the cross-

section map

p:S8(S.1)->US(7(a»))cTji(aB))

V = US,     i.e.,     viT) = w(7rr-7rs + (l-7rr)-(l-7Ts))

where u: GL(5Dl) -* U(50l) is the map of Theorem 2.2.

Lemma 6.2'. The map v is well defined, continuous, and satisfies t)(F)(5) = F.

Proof. r(F)(5) = F follows from Corollary 2.2. We show

m(GLJ(7(50c)) c GLJ(7(50c)).

Recall that if y £ GLJ(/(50c)), then uiy) = p = yß'\ where ß e GL(50l) is the

uniquely determined positive and self-adjoint element with j82=y*y. We write

(8=1 + «, a £.4(501), and show a e 7(50c). First /32 = l + 2(x + a2 e GLJ(/(50c)) implies

2« + a2 = 2« ■ (1+ia) e 7(501). We have now l + $a e GL(50c). (Namely l+ß e GL(5»c)

by Lemma 2.7, and therefore l + i« = i-(1+jS) e GL(50c).) Since 7(50c) is an ideal in

,4(50c), we conclude that a e 7(507). This shows that ß and hence p = y/3_1 are in

GL>(7(5Dl)).
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From here on, Definition 6.2, Lemma 6.3, Lemma 6.4, Definition 6.4, and

Definition 6.5 carry over word by word to the unitary groups U'ijD?) and UJ(/(9Jl)),

and we obtain:

Theorem 6.2'. âs: U'ODtyU'iJaJtJs -> © is a homeomorphism. The spaces © and

U'(5W)/U1(?0t)s can therefore be identified.

Theorem 6.2',. âs : UJ(/(90t))/UJ(/(9Jl))s -> © is a homeomorphism. The spaces

and U;(/(30t))/U1,(/(5Dt))s can be identified also.

Theorem 6.3'. If K is a closed subgroup of U'fJDOs,

p: UW/A^© = U,(SR)/U1(SR)s

the projection map induced by the inclusion of cosets, then a bundle structure can be

assigned to \J\W)jK relative to p such that the fibre of the bundle is U1(5Dt)s/A:

and the group of the bundle is U1(90t)s/£o acting on \Jl{>SR)s/K as left translations,

where K0 is the largest subgroup of K invariant in U1(5IOt)s. The same holds for the

group UJ(/(SR)).

Corollary 6.2'. U'ijul) is a principal fibre bundle over

© = U1(2«)/U1(?0t)s

with fibre and structure group U1(5Dt)s, which acts on the fibres by left translations.

In particular we have the exact sequence for the homotopy groups

■ ■ ■ -> irn + y(Z) -> ^(UWs) -> ^(LT'Oul)) - Wb(<S) -*...

Corollary 6.2J,. UJ(/(SW)) is a principal fibre bundle over

© = UJ(/(a»))/UK/(8K))s

with fibre and structure group UJ(/(3H))S, which acts on the fibres by left translations.

In particular, we have the exact sequence for the homotopy groups

...-+ nn + 1(<Z) - 7rn(UJ(/(8W)s) -> TTÁVlilW)) ■* -n(©) ->•    •

7. Stiefel spaces associated with maximal £-sets. In the following we introduce

homogeneous spaces, which are direct analogues of the Stiefel manifolds of finite-

dimensional vectorspaces. We consider the group GL(/4($DÎ)) only. Everything

holds also for the group GL,(/(2R)).

Definition 7.1. Let 9Jt be a maximal £-set, © e 7r0{iVl) a path component of 5Dt,

and let S e © be fixed. The Stiefel space St(©)s associated with the path component

© (relative to 5) is defined as

St(©)s = {A; A e £(S, H) such that there is a y e GL1^) with A = yts},
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where is: 5-> 77 is the inclusion. St(®)s is a closed subset of £(5, 77) and is given

the relative topology.

Lemma 7.1. 7/5!, 52 £ ©, then the spaces St(S)Sl and St(S)S2 are homeomorphic.

The reference element S e (5 is therefore irrelevant. The Stiefel spaces St((£)s are

path connected.

Proof. There exists a /3 e GL,(50c) with ß{S1) = S2 (Lemma 6.3). Consider the

map i„: St(Œ)Sl -> St(ß)S2, iBiX) = yß~1-iS2, where A = y iSl. Then ie is a homeo-

morphism. GL'(50c) is path connected implies directly St(©)s is path connected.

Definition 7.2. We have the natural projection map

a:St(S)s^e,

a(A) = A(5).

q is continuous (Lemma 3.4) and maps St((£)s onto ©.

Definition 7.3. Let D(cs)=a-1(a3(Sil)) = {A; A£St(K)s with g(5, A(5))<1}. We

have the cross-section map

r:0(cs)->GL»(5Dc)

r(A) = y • 7TS + (l - ny(S)) ■ (l - 77S),       where A = y i¡¡.

Lemma 7.2. r is well defined, continuous, and satisfies r(A) • is = A.

Proof. The continuity follows from Lemma 3.4.

Definition 7.4. We have the action of the group GL'(50c) on St((S)s

b: GLifSR) x St(S)s -^ St((£)s,

b{y, A) = y A.

b is continuous. It determines the maps

6r:St(e)s->St(<£)s,

briX) = y A   for a fixed y e GL1(5Dc),    and

6A:GLHS»)->St(G9s,

ôA(y) = y. A   for a fixed A £ St((S)s.

¿)y is a homeomorphism of St((£)s onto itself for each y e GL,(50c). ¿>A is a continuous

map onto St(<£)s.

Lemma 7.3. The map bh: GL'ijDc) -» St((£)s is ope«.

Proof. First o,s is open by the same arguments as in Lemma 6.4 using the
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cross-section r of Definition 7.3. And bA = bis-kB, where A=ß-ts and k: GL\3R) ->

GL\m), the right translation kß(y) = yß.

Theorem 7.1. The Stiefel spaces St(S)s are Banach manifolds.

Proof. There is a natural connection with Theorem 6.1. In the following we

refer to the notation introduced in the proof of this theorem. We construct a

coordinate system (S3, g) at the point ts. Consider the open map of the preceding

Lemma 7.3

¿VGLW^Sti©)^

Kiy) = yis-

Let Û = {y;yeGLI(9K) with {jrs-y)\s = 7T's-yLSeGV{m\s)}. ft is an open subset

of GL'(9Jt). Let 5B = ¿\S(Ü). Then SB is open in St(©)s.

Consider next the continuous map

g:ñ^A(iXll)s^xGV(m\s)

síy) = (/(y),*vyis).

We define g via the commutative diagram

»->A(m)s,s± x GL'(a»|s)

by g=g-{bl¡¡)~1. The map g is well defined and therefore continuous. (Namely if

btsiyx) = bls{y2) for yx,y2eï\, then yy^ = y2-is and f{yy) =/(y2), and therefore

Kyi)=#(ya)0
We consider the continuous map

k: A{m)s¡SL x GL»(3R|S) -* GL'iSDt),

Ha,Y') = (l + o¡)-(is-y'-77s + 7rsx).

Je is well defined and continuous. Further -n's-k{a, y')-is = y' implies £(a, y') e Ü. We

compute

ig^){a,y') = {a,y')    for    (a, y') 6 yi(3»)s>si x GL^U),    and

{k-g)iy) = yiTs + TTsi   for   y eft.

Finally we define

k:A{m)s,sixGLXlR\s)-+%s,

k = bls-k.
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Then we have {g-k){a,y') = {a,y') for (a, y') E^(50c)SiSixGL1(50c|s), and (A>g)(A)

= iyns + ns±)-is = X for A e S3, where yeü with yis = X. This proves g: SB -*■

/l(50c)ss± x GL1(50i|s) is a homeomorphism onto the open subset .4(5Dc)ssi

x GL,(50c|s) of the Banach space .4(50î)s,si x .4(501 |s).

Definition 7.5. Let 501 be a maximal F-set, let (£ E7r0(50c) be a path component

of 50c, and let 5 e G be fixed. We consider the closed subgroup

GL»(SW){S) = {y;ye GUQBt) and y|s = id},

and we form the quotient space

GL1(50c)/GL,(50c){S) = {[y]; y e GV{Wt)}

of left cosets [y] = y GL,(50l)(S). This quotient space is given the topology induced

by the projection map

p: GL'ijOc) -» GL,(50c)/GL,(50c){S).

We can lift the map bls : GU(W) -> St((£)s onto the quotient space.

Ols:GL'(50c)/GL1(50î)(S)->St(e)s,

MM) = K(y) = y-is-

Theorem 7.2. bls : GL,(50c)/GL1(50c){s) -> St(S)s is a homeomorphism. The

spaces St(G)s and GL,(50l)/GL1(50c)(S} can be identified.

Proof. The same as that of Theorem 6.2.

Definition 7.6. We have a canonical local cross-section of GL,(50c)<s, in GL'(50c).

D^iB^yADits)) is an open neighborhood of the point [l] e GLW/GL'ÍSM),,,,.

We define

r'^'^GLp),

r' = r-bls,   i.e.,   r\[y]) = r(yis).

We have pr'i[y])=[riy is)].  But r{y is)-ts = y is and therefore  [r(y cs)] = [y].

Hence p ■ r'{[y]) = [y] for [y] e £)'.

The Steenrod construction [14, p. 30] can be applied, and we obtain:

Theorem 7.3. If K is a closed subgroup o/GL1(50c)(S),

p: GL^SR)/*-* St(E)s = GL1(50c)/GL1(50l)(S)

the projection map induced by the inclusion of cosets, then a bundle structure can

be assigned to GL,(50c)(S)/A' and the group of the bundle is GLI(50c)(S)/Ar0 acting on

GL,(50c)(S)/Ä' as ¡eft translations, where K0 is the largest subgroup of K invariant in

GL'(50c)(S).
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Corollary 7.1. GL'fJäJl) is a principal fibre bundle over

St(©)s = GV{m)/GV{Tl){S)

with fibre and structure group GL,(2Ji)(S) which acts on the fibres by left translations.

Corollary 7.2. The projection

q: St(©)s = GLW/GLW,.» -> © = GV(3R)/GV(m)s

(compare Definition 7.2) defines a principal bundle over © with fibre and struc-

ture group GL,(SOt|s) = GLI(9K)s/GL,(S0t)(S), which acts on the fibres by left trans-

lations.

The same constructions and arguments apply also to the orthogonal case.

Definition 7.1'. Let Tt be a maximal £-set, let © 6 7r0(3JÎ) be a path component

of 9JÍ, and let S e © be fixed. The orthogonal Stiefel space U(©)s associated with

the path component S (relative to 5) is defined as

U(©)s = {v,ve 2(S, H) such that there is a p. e \]\Wl) with v = pis},

where ls : S -»■ H is the inclusion. U(6)s is a closed subset of £(S, H) and is given

the relative topology.

Lemma 7.1'. If Sy, S2 e ©, then the spaces U(©)Sl and U(©)s¡! are homeomorphic.

The reference element Se© is therefore irrelevant. The orthogonal Stiefel spaces

U(©)s are path connected.

Proof. The same as of Lemma 7.1.

Definition 7.2'. We have the natural projection map

?:U(G)s-*6,

q(v) = v(S).

q is continuous and maps U(S)S onto ©.

Definition 7.3'. Let ^{■s)=q'1(^iS.y)) = {v; ve U(©)s with g(S, v(S)) < 1}. We

have the cross-section map

w:K{s)^\3(m),

w = u-r,   i.e.,   w(v) = u(p.-TTS+(l-TTuiS))-(l-TTS))       where v = p.-is,

where u : GLijöl) -»■ U0Dt) is from Theorem 2.2, and r is the cross-section map of

Definition 7.3.

Lemma 7.2'. w is well defined, continuous, and satisfies w(v) -is = v.

Proof. The last property follows from Corollary 2.2.

Definition 7.4 and Lemma 7.3 carry over word by word to the orthogonal

case.
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Theorem 7.1'. The orthogonal Stiefel spaces U(6)s are Banach manifolds.

Proof. The same construction as in Theorem 7.1. The group GL'(50c) is replaced

by the group U1(50l), which is a Banach manifold. (The well-known exponential

map exp: 7/(.4(50c))-s- U,(50c), where 77(.4(50c)) is the closed real linear subspace

of the hermitian elements of .4(507), determines a homeomorphism from an open

neighborhood of o in 77(.4(50c)) to an open neighborhood of 1 in U,(50l). The

inverse to the exponential map is provided by a log-map.)

Definitions 7.5 and 7.6 carry over again without any change to the orthogonal

case. We conclude:

Theorem 7.2'. bls : UI(5nc)/Ul(50c)(S) -> U(©)s is a homeomorphism. The spaces

U(6)s and U,(50c)/U1(50c)(S) can be identified.

Theorem 7.3'. If K is a closed subgroup of \Jl{iJi){S),

p: LI«*- U(<S)S = U,(50c)/U1(5DÎ){S)

the projection map induced by the inclusion of cosets, then a bundle structure can be

assigned to \J\W)¡K relative to p such that the fibre of the bundle is U\W){S)¡K

and the group of the bundle is U'(50c)(S>/.rY0 acting on U\W)[S)IK as left translations,

where K0 is the largest subgroup of K invariant in TJ1(50c){S).

Corollary 7.1'. U*(50c) is a principal fibre bundle over U(e)s = U1(50c)/U,(50c)(S)

with fibre and structure group U1(50c){S) c U(51), which acts on the fibres by left

translations.

Corollary 7.2'. The projection map

q: U(G)S = U1(50c)/U,(50c){S) -> G = U,(5Dc)/U1(50c)s

defines a principal bundle over G with fibre and structure group

U'(50c|s) = U,(50c)s/U1(50c){S),

which acts on the fibres by left translations.

Theorem 7.4. The orthogonal Stiefel space U((£)s<= St(G)s is a strong deformation

retract of the Stiefel space St(6)s. In particular U(G)S and St(G)s are of the same

homotopy type.

Proof. We introduce first the map

e:GL(50c)^GL(50c),

e(y) = y7rs + 7T(y(S))i-y7rsJ. = y-7ry(S)-y7rsi.
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e is well defined. Namely we compute

ÍY-irv<.syyTTs'-)-ÍY~1+irs-Y~1-Tr(y(s-)}i) = l,    and

iy~1 + TTs-y-1-TTlHS))±)-{y—TTHSyyTrs±) = 1.

This proves e(y) e GL(äft). The continuity of e follows from Lemma 2.3.

Finally we consider the map

/: GL'(aR) x [0, lj^GLW,

j(y, t) = jt(y) = »My)),      OStúi

where ut is the strong deformation retract map of Corollary 2.3. We turn to the

commutative diagram

GVi'SR) x [0, 1 ] -Ï-+ GL1^)

bls x id K

St(©)sx[0, l]^-*St(©)s

Let j=bísj{bt¡¡ x id)'1. The map / is well defined by the particular property of

ut established in Corollary 2.3. It is continuous, since bis is open.

We have j0 = id, j\ maps St(©)s onto U(©),s, and/t|U((f)s = /í/for Oáíá 1. Hence

Jt, Ozitzi 1, is a strong deformation retract homotopy for U(©)sc:St(©)s.

8. Grassmann spaces and Stiefel spaces of a Hilbert space. We consider now the

maximal £-set m = %{H). In this case A(m) = £(//) and I(iW) = 2(H), and the

theory simplifies essentially. It does not depend on Chapters 4 and 5 at all. Since

GL{m) = GL(H) and U(9K) = U(//), one has not to take particular care of these

groups any more.

This case establishes also a direct connection with the "ordinary theory" of

Grassmann and Stiefel spaces of a Hilbert space. In the following we present this

ordinary theory independent of the dimension of the Hilbert space. We investigate

then the Grassmann and Stiefel spaces of infinite-dimensional Hilbert spaces, and

we will obtain a certain complete characterization.

Crucial is the following theorem:

Theorem 8.1 (see [9]). Let H be an infinite-dimensional Hilbert space. The groups

GL(H) and U(/7) are contractible. In particular GL(H) and V(H) are connected,

and all homotopy groups are trivial.

ttí(GL(H)) = 0   and   7Tt(V(H)) = 0  for i = 0,1,2,....

Definition 8.1. Let f and I be two cardinal numbers with f + I = dim (//). The
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Grassmann space ©<i,i> of type ï, I of the Hilbert space 77 is the set

@<u> = {5; 5 c 77 a closed linear subspace with dim (5) = t and codim (5) = 1}

with the relative topology induced by the inclusion ©<(,(><= 2(77).

If 77 is finite dimensional, we obtain the ordinary Grassmann manifolds. In this

case we can of course dispense with the double index.

If 77 is a separable infinite dimensional Hilbert space, we denote dim (77) = X0

= oo, and we have the following types of Grassmann spaces

©<n,»>,   ©<<*,,»>,    ©<«,„>   where« = 0, 1,2,....

Theorem 8.2. The Grassmann spaces ©<i,[> are the path components © of the

space 2(7/). The Grassmann spaces ©<(,[> are therefore connected Banach manifolds

{Theorem 6.1), and homogeneous spaces

@<u> = GL(77)/GL(77)S = U(77)/U(/7)s,

where Se ©<t,i>.

Proof. Let 5E@<tiI> and let G be the path component of 2(77) with SeQ.

First we have ©t=@<(1>. Namely if TeQ, then there exists a y e GL(77) with

y(5) = F and therefore dim(F) = I and codim (F) = I. Hence Fe ©<f,i>. Now let

Te @<f,i> be given. We show that there is a continuous path in 2(77) which

connects 5 with F. Since dim (5) = dim (F) = I and codim (5) = codim (F) = I, we

can construct a y e GL(/7) with yiS) = F. If 77 is a finite-dimensional real Hilbert

space, we may assume y e GL\H). In all other cases we have GL'(77) = GL(/7).

Therefore there exists a continuous path yt e GL(/7), O^r^l, with y0 = l and

yi = y. Then ytiS), O^t^l, is a continuous path in 2(//) which connects 5 with

F (Lemma 3.4). This shows Ted. Hence ffi=@<u>.

Corollary 8.1. Let 5e@<,>i> be fixed. GL(/7) is a principal bundle over

®<u> with fibre and structure group GL(77)S, and also U(/7) is a principal bundle

over @<i,i> with fibre and structure group U(77)s = U(5) x UiS1) iCorollaries 5.1

and 5.1').

Theorem 8.3. The map _|_: ©<u> -> ®<u>, _L(5) = 51, is an isometry with

respect to the d-metric and to the g-metric.

Proof. Lemma 3.1.

Definition 8.2. Let ï and I be two cardinal numbers with k + l=dim (//). An

orthonormal <ï, l>-frame <f> in 77 is an ordered set {ej of power k of pairwise

orthogonal vectors of unit length, and if [<£] = [{e¡}] is the closed linear subspace

determined by the set </>, then dim i[<f>]) = t and codim ([<£]) = I.

A <I, l>-frame </< in 77 is an ordered set {vt} of power f of linearly independent

vectors, such that if [<¡>] = [{v¡}] is the closed linear subspace determined by the set
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if>, we have dim ([ip]) = f and codim ([i/j]) = I, and further there exists an orthonormal

<f, I>-frame <f>o = W such that the linear map

am.3- [<f>o] -* W   determined by

«0*o. *>(*•) = °i

is an isomorphism onto [ifi]. This last condition is of course not necessary if ï is

finite.

The Stiefel space ©<f,i> of type f, I of the Hilbert space H is the set

©<t,i> = {«A; «A a <ï, I>-frame in //}.

And the orthogonal Stiefel space U<fI> of type ï, I of the Hilbert space H is the

set

u<u> = {</>; <f> an orthogonal <f, I>-frame in //}.

A natural topology on the sets ©<i,i> and U<(1> will be subsequently introduced.

Obviously U<[,i>c©<f,i>.

We obtain the ordinary Stiefel manifolds if H is a finite-dimensional vectorspace.

In this case we need of course again one index only.

If H is a separable infinite-dimensional Hilbert space, we denote again

dim (//) = X0 = oo, and we have the following types of Stiefel spaces

^<n,oo>,      ^2<co,oo>»      ^<°°,n>>

and the orthogonal Stiefel spaces

U<n.oo>,   U<oo,oo>,   ll<oo,n>       where n — 0, 1,....

Lemma 8.1. Let <^0 = {^i} be a fixed orthonormal (t,V)-frame of H, and let

S= [<f>o\- If H is a finite-dimensional real vectorspace, we assume I < dim (//). We

consider the following natural map (compare Chapter 1)

W- @<u> -*• Sti@<f.i>)s,

/0o(</i) : S -> H is the linear map uniquely determined

by i*0(>l>)(ei) = vi   where   </> = {vt} e @<u>.

This map iéo defines also

i*e:«<t.i>->U(®<u>V

The map z'0o is bijective in both cases.

Definition 8.3. Let Se©(U). Then we identify ©<u> with St(@<M>)s, and

U<til> with U(©<u>)s. If His a finite-dimensional real vectorspace and í = dim H,

then we identify S(dlD1,B)i0) with GL(H) and U<dlm(íí)>0> with U(H).

Theorem 8.4. The Stiefel spaces ©<t,i> and U<f>l> are Banach manifolds. They

are connected except for H a finite-dimensional real vectorspace and t = dim//.
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(7« this case ©<aim<«),o> = GL(77) and U<dhn(ii)0> = U(77) have exactly two path com-

ponents.) The Stiefel spaces are also homogeneous spaces. We have

©<u> = GL(77)/GL(/7)(S)    and   U<u> = U(77)/U(77){S),

where Se ©<t,i>. Finally U<i<i>c:©<,>1> is a strong deformation retract of the space

©<i,i>. In particular Ll<f>(> and ©<i,i> are of the same homotopy type.

Corollary 8.2. Let S e @<,,i>. Then GL(/7) is a principal fibre bundle over

©<,,i> = GL(77)/GL(77)(S) with fibre and structure group GL(77)<S), which acts on

the fibres by left translations. And U(/7) is a principal fibre bundle over U<tt)>

= U(/7)/U(77)(S) with fibre and structure group U(/7){S) = L^S1), which acts on

the fibres by left translations.

Theorem 8.5. Let 77 be an infinite-dimensional Hilbert space. The projection map

p : U(/7) -> U<(jl> = U(77)/U(/7)(S), where S e ©<f,i>, determines a universal classifying

principal bundle for the group U(51). iFor the definition of universal classifying

principal bundles see, for example, [14, p. 100].) U<[|> is therefore a universal

classifying space FU(/n for the group U(/7'), where 77' is a Hilbert space with

dim (//') = I. In particular U<t>n> is a universal classifying space BWn) for the

orthogonal group U(w) of the n-dimensional vectorspace, n = 0, 1.

Proof. By Theorem 8.1, 7ri(t/(/7))=0, i=0, 1,..., and the theorem on p. 102

in [14].

Corollary 8.3. Let H be an infinite-dimensional Hilbert space. The homotopy

groups of the Stiefel spaces U<i,(> and ©<t,(> are

7ri(U<t>1>) = 7Ti(<S<(pI>) = 0,    / = 0, 1, 2,...,    if I is not an integer,

*o(U<f,n>) = 7r0(©<i,n>) = 0,   for n = 0,1,2,...,

T((U<f,n>) = Ti(©<i„,>) = ni_AVin)),    i=l,2,...,   for n = 0,1,....

And the singular homology and cohomology with coefficients in the ring of integers Z

is

77(U<t>i>; Z) = 77(©<{jl>;Z) = 0,    if I is not an integer,

77(U<I>n>;Z) = 77(©<f,n>;Z) = 77(FU(n);Z)   for n = 0,1,2,....

For a description of the cohomology ring 77*(FU(n); Z) see, for example, [2].

Proof. By Theorem 8.4, U<|,j> and 3<t,i> are of the same homotopy type. The

exact sequence for the homotopy groups of the principal bundle p : U(77) -*>

U(7i')/U(77){iS) gives immediately the homotopy groups of the space U<t.i>. The

vanishing of the singular homology groups and therefore of the singular cohomol-
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ogy groups in the first case follows from the Hurewicz isomorphism theorem

which relates homotopy groups and singular homology groups (see, for example,

[14, p. 79]).

Corollary 8.4. In particular let H be a separable infinite-dimensional Hilbert

space. Then the homotopy groups of the Stiefel spaces are

Ti(©<n,=o>) = ^i(U<n,oo>) = 0,       / = 0,1,2,...,   for n = 0,1,2,...,

"■((©<»o,»>) = "■i(U<oo,o)>) = 0,   i = 0, 1, 2,...,

i-o(©< *>,„>) = ^o(U<=c,n>) = 0,   for n = 0,1,2,...,

"•¡(©<«,,n>) = *r«(u<».n>) = tt, _!(£/(/!)),   1=1,2,...,   forn = 0,1,2,....

Theorem 8.6. Let Se ©<i,í>. The projection map

q: ©<u> = GL(/7)/GL(/7){S) -> ®<w> = GL(/7)/GL(//)s

defines a principal bundle over @<f>(> with fibre and structure group GL(S), which acts

on the fibres by left translations. And the projection map

q: U<M> = U(//)/U(//){S) -> ®<u> = U(//)/U(/7)s

defines a principal bundle over ©<f>1> with fibre and structure group U(S), which

acts on the fibres by left translations.

Corollary 8.5. Let H be an infinite-dimensional Hilbert space. Suppose I is not

an integer. Then the projection q: ©<t,i> -»■ ©<[,(> determines a universal classifying

principal bundle for the group GL(//'), and the projection q: Vl<u> -> ©<t,[> a

universal classifying principal bundle for the group U(//'), where //' is a Hilbert space

with dim (//') = !. ©<(,[> is therefore a universal classifying space BGUH-, and BmH1

for the groups GL{H') and U(//'). In particular ©<„,[> is a universal classifying

space £GL<n) ond BV{n)for the groups GL(«) and U(«) of the n-dimensional vectorspace.

Corollary 8.6. Let H be an infinite-dimensional Hilbert space. The homotopy

groups of the Grassmann spaces ®<i,i> are

7Ti(@<I r>) = 0,    if neither t nor I is an integer,

"o(®<».i>) = To(@<!.n>) = 0,   forn = 0,1,2,...,

Ti(®<».l>)=^(®<i.»>) = wf_1(U(n)),   z=l,2,...,   forn = 0,l,2.

And the singular homology and cohomology with coefficients in the ring of integers

Z is

H(©<!,[>! Z) = 0,    if neither I nor I is an integer,

/7(©<n,I>;Z) = //(©<U>;Z) = H{BWn);Z),  forn = 0,1,2,....
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Corollary 8.7. Let H be a separable infinite-dimensional Hilbert space. Then the

homotopy groups of the Grassmann spaces are

",(©<...>) = 0,    i = 0,1,2,...,

7ro(@<n,co>) = 7T0(©<„o,„>) = 0,   for n = 0,1,2,...,

"■i(@<n,°o>) = 7r¡(©<00,n>) = nt_x{Uin)),    i =1,2,...,   for n = 0,1,2,....

Remarks. It is easy to associate with the various classifying spaces of type

FGL(n) and BV(n) in this chapter in a natural way universal classifying vector bundles

of dimension n. Since all spaces which occur in this chapter are Banach manifolds,

it follows from Theorem 15 of [13] that all maps in this chapter which induce

isomorphisms for the homotopy groups are homotopy equivalences. In particular

all spaces with vanishing homotopy groups are contractible.

9. The general case. There appear various examples of maximal F-sets in

analysis (see [4]). In a subsequent publication we intend to compute the homotopy

type of the path components and of the associated groups of some of these examples.

Theorem 5.5, Corollaries 6.2 and 6.2„, and Theorem 9.1 imply the following

theorem, which can be used for computations:

Theorem 9.1. Let M be a maximal R-set, and let © e 7r0(50c) be a path component

of 50c such that there is a S e(£ with codim (5) infinite. Suppose also that U(50c|s)

and Uq(7(50c|s)) are connected. Then we have the exact sequences of homotopy groups

■••-»■ T,+l(i) -* 7rn(U(50c|s)) -> nAVAM)) -* *„(<£) -*-•••

■ • ■ -> 7rn + 1(S) - 7rn(U,(7(50c|s))) -> 7rn(Uj(/(50c))) -> 7rn(©) -►-...
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