MAXIMAL R-SETS, GRASSMANN SPACES,
AND STIEFEL SPACES OF A HILBERT SPACE

BY
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1. Introduction. The ordinary Fredholm theory of Hilbert spaces was general-
ized in [4] and [5] to apply to a wider range of problems in analysis. The ideal of
compact linear maps, which plays a fundamental role in the ordinary theory, was
replaced by a certain class of C*-algebras called R-algebras in [4]. This generali-
zation is based on the Rellich criterion for compact linear maps of a Hilbert space,
which states that a linear map is compact if and only if for every e > 0 there exists a
closed linear subspace of finite codimension such that the norm of the restriction
of the linear map to this subspace becomes smaller than . The R-algebras in [4]
are defined by substituting for the collection of closed linear subspaces of finite
codimension in this criterion a collection of closed linear subspaces which is an
R-set.

The R-sets are subsets of the metric space of all closed linear subspaces of a
Hilbert space, which satisfy a condition related to the metric. For the explicit
definition we refer to Chapter 4. Each R-set is contained in a uniquely determined
smallest maximal R-set. The algebraic objects attached to an R-set depend on this
maximal R-set only, and its structure is of crucial importance.

The path components of a maximal R-set are simply Grassmann manifolds
for a finite-dimensional Hilbert space. In the following we present a general theory
of Grassmann and Stiefel manifolds associated with a maximal R-set of a Hilbert
space. This theory contains many important features of the ordinary theory of
Grassmann and Stiefel manifolds of a finite-dimensional Hilbert space. Our
constructions and arguments are independent of the dimension, and the ordinary
theory for finite-dimensional Hilbert spaces and its direct generalization to Hilbert
spaces of arbitrary dimension appear as special cases.

We show that the path components of a maximal R-set are Banach manifolds
and homogeneous spaces determined by the action of the group of continuous iso-
morphisms of the Hilbert space onto itself which leave the maximal R-set invariant.
Furthermore, there is a natural fibre bundle structure.

Several other Banach manifolds are associated in a canonical way with a path
component of a maximal R-set. They are homogeneous spaces with a fibre bundle
structure and direct analogues of the ordinary Stiefel manifolds.

Finally, we investigate the maximal R-set of all closed linear subspaces of a
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Hilbert space. This special case gives directly the ordinary theory of Grassmann
and Stiefel spaces for arbitrary not necessarily finite-dimensional Hilbert spaces.
The result of [9], that the general linear group of an infinite-dimensional Hilbert
space is contractible, implies the Grassmann and Stiefel spaces of an infinite-
dimensional Hilbert space are universal classifying spaces for the general linear
group of certain Hilbert spaces.

We tried to make this manuscript as self-contained as possible. We avoided any
spectral theory and elaborated a purely ‘“ geometric” approach. Further applications
are planned in subsequent publications.

I would like to express my great appreciation to Professor H. O. Cordes for
many helpful and inspiring conversations and for his interest in this work. Much
of Chapters 3, 4, and 5 is elaborated from his papers [4] and [5]. I would also like
to thank the referee for a very useful suggestion. And I would like to thank Pro-
fessor D. Bures for a useful conversation.

2. Preliminaries. H denotes in the following a real, complex, or quaternionic
Hilbert space, which also can be finite dimensional. If x, y € H, then (x, y) denotes
the inner product of x and y, and ||xj|=(x, x)*/2 the length of x. If H and K are
two Hilbert spaces, then (H, K) is the linear space of continuous (=bounded)
linear maps (= operators) from H to K with the norm

]| = sup{|le(x)|; x € H and ||x|| = 1} for each « € (H).

We denote Q(H, H) by 8(H). 1 € &(H) is the identity map. The general linear group
GL(H) of the Hilbert space H is the topological subspace of {(H) consisting of
the invertible elements of Q(H). It is an open subset of {(H). The mapping
Inv: GL(H) — GL(H) which assigns to any y € GL(H) its inverse Inv (y)=y~1is
continuous. Consequently, GL(H) is a topological group. An element p € GL(H)
is called unitary or orthogonal if |u(x)|| =] x| for all x € H. The unitary elements
of GL(H) form a closed subgroup U(H) of GL(H).

If S is a closed linear subspace, then S* denotes the orthogonal complement of
S in H, and =g: H — H the orthogonal projection of H onto S. We notice that
s € (H), |ns|=1, and mgr=1—mg.

THEOREM 2.1. If y € &(H, K) maps H one-to-one onto K then y~* € (K, H).

Proof. See, for example, [11, p. 18].

For each o € (H, K) the adjoint o* € &(K, H) is defined. A map « € (H) is
called self-adjoint, if o*=a. We recall a few elementary properties of the adjoint
operation which will be frequently used.

LeMMA 2.1. («(x), y)=(x, «*(y)) for each x € H, y € K and « € &(H, K) (definition).
If « € &(H, K), then |o*||=|«|, kernel («)=(a*(K))*, kernel («*)=(c(H))*, and
o(H) is closed if and only if o*(K) is closed. If « € &(H, K) and B € &(K, L), then
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(B-a)*=a*-B*. The orthogonal projection wg of the Hilbert space H onto the closed
linear subspace S of H is self-adjoint.

LEMMA 2.2. If o € Q(H) and S is a closed linear subspace with ofS) is closed, then
there exists a B € Q(H) such that

— *
TSy = a"ﬁ's‘ﬂ"ﬁ's'a B

Proof. We consider the map a=a-wg: H— H. We have kernel (&) =(&*(H))*
and kernel (&*)=(&(H))*. Since &(H)=q(S) is closed, we conclude that (kernel (&*))*
=a«(S) and (kernel (@))!=&*(H). The restrictions & :&*(H)— o(S) of & and
&*': o S) — a*(H) of &* are therefore well defined and isomorphisms by Theorem
2.1. We observe that a*=&*-m,g,. Consider (a')~!-(a*')~!: &*(H) — &*(H), and
let B=u-((&)~*-(a*')~1)-m € &(H), where «: @ (H) — H is the natural inclusion
and =: H— &*(H) is the orthogonal projection onto the closed linear sub-
space &*(H). From the construction follows immediately

Tys) = @ f-0% 7wy = @-B-8* = a-mg-fomg-a*.

The following definition will be very useful.
DEFINITION 2.1. Let o € &(H, K) and let S be a linear subspace of H, then

(S, @) = inf {|e(x)||; x € S and ||x| = 1}.

LEMMA 2.3. Let « € Q(H, K) and let S be a closed linear subspace of H. Then
kernel () N S={0}, and oS) is closed if and only if c(S, «)>0. If ¢(S, @) >0, then
the restriction o': S — o(S) is an isomorphism and

(S, @) = (o'~

Proof. Suppose c¢(S, «)>0. Then certainly kernel («) N S={o}. Now let ye K
and let {o(x,)}7-, be a sequence with lim «(x,)=y. The sequence {x,}=-, is then a
Cauchy sequence since

"xn —Xm " = (C(Sa a)) -t “a(xn) - c‘(xm) " .

Let x=1lim x,. Then «(x)=y. Therefore «(S) is closed. Assume now kernel (¢) N S
={o} and «(S) is closed. «(S) is a Hilbert space and we consider the restriction
o': S — oS). By Theorem 2.1, «’ =1 € &(«(S), S). We have

e XD _ (1= ¢ o s
ol - ( E ) < (e(S, ) for xe S and x # o.

With the first expression we can approximate |jo’~1|.

LeMMA 2.4. Suppose o € &(H, K) with «(H) is closed. Then we have
c(e(H), a*) = c(oa*(H), o).
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Proof. Since «(H) is closed, «*(K) is closed also (Lemma 2.1). The restrictions
o' o*(K) > a(H) of « and o*': «(H) — «*(K) of o* are well defined and iso-
morphisms (Theorem 2.1).

c(dH), o*) = (Jo*' )71 = ([* )7 = (I D*D7F = (le' 2 )7?
= c(a*(H), ).

DEFINITION 2.2. A< g(H) is called a C*-algebra, if U is a subalgebra of Q(H),
a closed subset of Q(H), and (A)*=A. If 1 € A, then we have the closed subgroups

GL®) = {y; y € GL(H) with y, y~* € %} and
U =UH)NA

of the topological group GL(H).

GL(%) is an open subset of the Banach space 2. (There is an open neighborhood
of 1 in U contained in GL(%), since for y sufficiently close to 1 the inverse exists
and can be represented by a geometric series which is convergent in 2L.)

LEMMA 2.5. Let A<L(H) be a C*-algebra with 1€ U. If y € GL(H) N W is self-
adjoint, then y=* € GL(H) N 2.

Proof. Consider c-y?, where c is a real number. We compute
(- y*= 1)), -y = 1(x)) = - (¥*(x), y*(x)) —2¢- (¥(x), ¥(x)) + (, *)
- yl*- Ixl2 = 2¢-Cly =2 D=2 %12+ | x|
[T+l l*- =l Iy D722 = vl - Iy D21 %112

We conclude that there exists a ¢#0 such that |c-y*—1| < 1. Since we have
c-y?=1+4(c-y*—1) and |c-y®—1| <1, the geometric series Do (—1)*-(c-y2—1)*
is convergent in % and gives (c-y*)"'e«U. Then also (y?) '€ and y~?
=y () e

IA

LEMMA 2.6. Recall that a self-adjoint « € &(H) is said to be positive, if (e(x), x) = O
for all x e H. Let W< &(H) be a C*-algebra with 1 € U. Suppose « € W is self-adjoint
and positive. Then there exists a unique self-adjoint and positive B € U with f2=o.
If further S< H is a closed linear subspace with o(S)< S, then also B(S)<S, and if
o|s=id, then also B|s=id.

Proof. We may assume that 1—« is positive. We consider the sequence {B,}n-o
in A defined by B,.1=P8,+3(e—B2%) and B,=o0. This sequence is convergent. Let
B=1im B, € A. Then B has the desired properties. See, for example, [12, p. 15].

LeEMMA 2.7. Suppose o« € Q(H) is self-adjoint and positive. Then 1+« € GL(H)
and |(1+e) | =1
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Proof. By Lemma 2.6 there is a 8 € &(H) with *=p8 and p%=«. We compute for
xeH

1A+ a)@)[? = (x, x)+2-(B(x), Bx)) + (a(x), a(x)) = [|x]>
This implies ¢(H, (14 «)) = 1. Therefore 1+« is injective and (1+«)(H) is closed

(Lemma 2.3). Since (14 a)*=1+c«, it follows that 1+« is also surjective (Lemma
2.1). By Theorem 2.1 then 1+« € GL(H). Finally, by Lemma 2.3

[a+a)~] = (c(H, A+e))* < 1.

THEOREM 2.2. Let W< L(H) be a C*-algebra with 1 € . For eachy € GL(H) N A
there is a unique decomposition y=p.-« such that p € U(H) N A and x € GL(H) N A
is self-adjoint and positive. The map '

u:GLH)NUA—->UH)N A,

uly) = p,
is continuous.

Proof. Consider y*-y € GL(H) N A. We have y*-y is self-adjoint and positive.
By Lemma 2.6 there exists a positive self-adjoint 8 € A with f2=y*.y. Obviously
B is injective and surjective since B%2e€ GL(H). Therefore by Theorem 2.1
BeGL(H)N A, and by Lemma 2.5 also B~1e GL(H)NA. Let «=B and
p=y-B~1. Then y=p-x, and « is self-adjoint and positive. We compute
prop=pt.y*y-pi=p"1-p2-p71=1,ie, pe UH) N A

To prove the uniqueness of the decomposition, we assume another representation
y=f-k with the above properties. Then p-x=f-k, or k=p*-ji-%, and hence
k=x*=k-[i* u. It follows that k?=&k%=y*.y. From the uniqueness of 8 in Lemma
2.6, we conclude k=« and p=.

To prove the continuity of u, it is sufficient to show that the map

w: GL(H)N A - GLH) N ¥,
w(y)=8, where B is the unique self-adjoint and positive element with p2=y*.y,
is continuous. Let w(yo)=Bo, w(y)=pB.
We apply to B, and B Lemma 2.6, and we obtain B,=283, f=28% with 8§ =35,
8*=34, and again 8, 8 € GL(H). Then we decompose
Bo+B = 8-(1+(8578)-(8:851)- .
Let ¢e=6-651. Now ¢*.¢ is self-adjoint and positive. By Lemma 2.7 then
1+¢e*-e€ GL(H) and ||(1+¢*-2)~ | = 1. We compute
1Bo—Bl = [(Bo—B)-(Bo+B)-(Bo+B) | = B3] 1(Bo+B)*|
= [78-vo—y*-yl- |85t (1+e*-8)7*- 851
S v vo—v*-vl- 185

Which proves the continuity of w.
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COROLLARY 2.1. Let A=LQ(H) be a C*-algebra with 1eU. If ye GLH) N ¥,
then also y~*e GL(H) N ¥, i.e.,
GL®) = GL(H) n .

Proof. By Theorem 2.2, y=p-« with ue UH) N A, k€ GL(H) N A, and « is
self-adjoint. Then y~'=x"1-u*. By Lemma 2.5, «~! € GL(H) N ¥, which proves
y~ e GL(H) N Y.

COROLLARY 2.2. Let A<L(H) be a C*-algebra with 1€ U. For each vy € GL(%)
there is a unique decomposition y=p-« such that p € U®) and « € GL(¥) is self-
adjoint and positive. The map

u: GL®) — U(Y),

uly) = p,
is continuous. We notice further the following property: Let S< H be a closed linear
subspace. Suppose y € GL(Y) satisfies y(S*)=(y(S))*, then u(y)(S)=9(S). And if
v1, v2 € GL() satisfy y(S*)=(v(S)), i=1, 2, and y,|s=".|s, then u(y,)|s=u(y,)|s.

Proof. Theorem 2.2 and Corollary 2.1 prove the first part of the corollary.
Y(S*)=(y(S))* implies y* - (S) =S and y* - y(S*)=S". The corresponding B satisfies
then also B(S)=S and B(S*)=S* (Lemma 2.6). Hence u(y)(S)=pn(S)=(y-872)(S)
=9(S).

To prove the last property, observe again yf-y,(S)=S and yf -y(SH)=S",
i=1, 2. We compute the corresponding B; by computing B;|s and B|s. separately

and forming ﬁi'_"ﬁils @B;Isl, i=1, 2. But ‘}’;_k')/ll_g:)’g")’gls, therefore B1|s=ﬁ2|s,
and hence p|s=pols.

THEOREM 2.3. Let A< Q(H) be a C*-algebra with 1 € %, and let S< H be a closed
linear subspace with ms € 2. We consider the closed subgroups
GL®W)s = {y; y € GL(Y) with ¥(S) = S},
U@®)s = GLQ2)s N U(H)

of the topological groups GL(%) and UN). Then UN)s<=GL(Y)s is a strong de-
formation retract of the space GL(¥)s. In particular U(¥)s and GL(N)s are of the
same homotopy type.

Proof. We introduce the closed subgroup
GL¥)s,s: = {y; v € GL(A) with ¢(S) = S and ¢($*) = §*}
of the group GL(¥)s. We have the strong deformation retract map
r: GL(%)s — GL(%)s, 51,

r(y) = y-ms+msiy-msL = y—mg -y 7L,
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(Certainly r(y)(S)<=S and r(y)(S*)=S*t. We compute directly r(y)-r(y~*)=1 and
r(y~Y-r(y)=1. Therefore r(y) € GL(¥)s,s., and r is well defined.)
A deformation retract homotopy is given by

F: GL@)s % [0, 1] — GL(¥)s,
iy, t) = ry) = y—t-ms-y-ms..

(Again r(y)(S)<S, ry) (SIS, rdy)-ry™")=1, ry™")-r{y)=1, and thus r, is
well defined.) Then ro=id, ry=i-r, where i: GL(¥)s,s. — GL(); is the inclusion.
Further, r(y)=y for y e GL(¥)ss: and 0=¢=1. Thus, GL()s s:=GL(¥)s is
a strong deformation retract of GL();.

Next we show that U)s<=GL()s s is a strong deformation retract of
GL(2)s,5:. The map u of Theorem 2.2 defines a deformation retract map

u: GL®)s,s: = U,
u(y) = p, where y = p-« is the unique decomposition of Theorem 2.2.

u is well defined. (By Corollary 2.2, u(y)(S)=S, and hence u(y)(S*)=S". Therefore,
u(y) e U)s.) A deformation retract homotopy is given by

ii: GL()s,s: X [0, 1] > GL®)s 1,
iy, 1) = uly) = p-(t-1+(1=1)-x).

Again the map u, is well defined. (Namely ¢-1+ (1 —1)-x € GL(¥Y) by Lemma 2.7,
and k=B€ GL()g s gives -1+ (1 —1)- ke GL(N)s, s:.) We have uy=idand u, =i-u,
where i: U)s - GL()s,s: is the inclusion. Finally, u,(x)=p for p € U(¥)s and
0=<¢=<1. Which proves the theorem.

COROLLARY 2.3. Let A be a C*-algebra with 1€ U. Then UA)<=GL¥) is a
strong deformation retract of the space GL(). In particular, U(¥) and GL(Y) are
of the same homotopy type. The strong deformation retract map

u;: GL() — GL(),
u(y) = p-(-1+(1-1)x), 0=st=1,

of Theorem 2.3 has further the following property: If S< H is a closed linear subspace,
and if y,, yo € GL(X) with y(S)=(S))*, i=1, 2, and with y,|s=vs|s, then
uly,)|s=uys)|s for 0st=1.

Proof. We have only to observe that x;|s=xy|s and p,|s=ps|s. Compare
Corollary 2.2.

3. The metric space T(H) of all closed linear subspaces of a Hilbert space H. Let
T(H)={S; S=H and S a closed linear subspace of H}. We recall the definition of
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various metrics defined on T(H) and some of their properties. If x € H and
S € T(H), then d(x, S)=inf {|x—y[; y € S}= |1 —75)(x)|.
DEerINITION 3.1. For S, T € T(H) we define
8(S,T) = sup{d(x,T); xS and ||x| = 1},
d(S,T) = &S, T)+(T, S), and
g(S, T) = |ms—mz|.

LeMMA 3.1.

0=48(S,T)=<1,and 0=g(S,T)=1.

8(S, T)=0 if and only if S<T.

If ScS’, and T'<T, then §(S, T)<8(S’, T").
5(S, T)= | (1 =) ms|.

8(S, T)<8(S, R)+ (R, T).

(S, T)=8(T*, S*), &(S, T)=g(S*, T*).

(S, T)<g(S,T) and g(S, T)< &(S, T)+ (T, S).

Proof. These properties follow immediately from the definitions. See, for
example, [3].

COROLLARY 3.1. The functions d and g on T(H) x T(H) define complete metrics
on ¥(H). We have

g(S, T) £d(S,T) =£2:g(S,T) forS,TeZI(H),

and these two metrics are therefore equivalent.

Proof. The completeness is easily proved by using the g-metric.

Observe that § itself does not define a metric.

The metric space T(H) is the set T(H) with the equivalence class of metrics
containing d and g.

LEMMA 3.2. Let S, T € T(H). Then the following relation holds
(8(S, T))*+(<(S, m))* = 1.
In particular =(S) is closed if and only if §(S, T)<1.
Proof. Observe that ||(1—m7)(x)||%= ||x||2— |7z(x)|? for x € H. Therefore

(&S, T))* = sup {|(1—7r)(x)|*; x € S and | x| = 1}
= 1—inf {|7:(x)|?; x€ S and |x| = 1}
= 1—(e(S, m))*

Lemma 2.3 implies therefore =1(S) is closed if and only if (S, T) < 1.



1967] R-SETS, GRASSMANN SPACES, AND STIEFEL SPACES 81

Of crucial importance is the following theorem established by T. Kato [8].

THEOREM 3.1. If S, T € I(H) with &S, T)<1, then T'=n(S) is in T(H) and
satisfies
&S, T) = 81", 8) = &S, T) = (S, T).

If further &(T, S)<1, then T'=T.

Proof. From Lemma 3.2 follows T'=m(S) is closed and therefore in T(H).

Since 7y mg=mr.- s, we have (1 —my)-mg=(1—my)-7s and therefore

S, T) = |@—mg)-7s| = |(A—mp)-ms| = &S, T").

Consider the map oa=my.-ms. Then o(H)=T" is closed and we can apply

Lemma 2.4.
c((H), e*) = o(T", m5-mr)) = (T, m5) = c(e*(H), .- m5).
But o*(H)=(kernel («))*=(S*)*=S. Therefore
(T, m5) = (S, mp--ms) = (S, ).

By Lemma 3.2 again &7, S)=98(S,7T’). We have &7, S)=|Q1—ms) 7|
=|(wp—ms) 7| £ | g — 75| =g(S, T'). On the other hand,

(ms—mp)(x) = A—mp) - ws(x) =77 - (1= 75)(X)
for x € H. We obtain
s —m)D? = A =72)-7s D2+ e A=)
S (S, TP [ms(x) |2+ (T, S)?: [(A—ms)(x)|? = (S, T")%- || x|

And, therefore, g(S, T")=|ns—np|| 2 8(S, T'). Le., g(S, T)=8(S, T'). If further
8(T, S) <1, then again ¢(T, ms) >0, and therefore kernel (s-w;)="T". But also

kernel (mp-mg)* = kernel (wg-mp) = (mp-ws(H))* = T'L.
Hence T'* =T, which implies 7' =T.
COROLLARY 3.2.
&(S, T) = max {&(S, T), (T, S)} for S, T e I(H).
If g(S, T) <1, then 8(S, T)=8(T, S)=g(S, T).
Proof. If §(S, T)<1 and &(T, S)<1, then by Theorem 3.1 g(S, T)=§(S, T)

=8(T, S). If &(S, T)=1 or &T, S)=1, then &S, T), &T, S)<g(S, T)<1 implies
&(S, T)=1. For another proof see [1].

CoRrOLLARY 3.3. Suppose S, Te T(H) with (S, T)<1. Then there exists an
S’ € T(H) with S<S’ and g(S’, T)=98(S, T).



82 ERHARD LUFT : [January
Proof. We apply Theorem 3.1 to 8(T*, $*)=8(S, T)<1. Let S=ng (T*)< S*.
g8, T) = g(T*, §) = 8(T*, S*) = &S, 7).

Let S'=38".

LeEMMA 3.3. Let o, 8 € GL(H) and let S, T € T(H). Then
8(«(8), B(T)) = (le—Bl+3(S, T))- e, and
d((S), B(T)) = (|a—B|+d(S, T))-(le" ||+ B2
Proof. By definition, 8(x(S), B(T))= sup {d(«(x), B(T)); x€ S and |«(x)|=1},
and d(a(x), B(T)) = inf {J«(x)— B()|; » € T}. We compute
leG) =B = [alx)—B)| + [BGx)—BW
< fe=Bl-Ixl+ 181 MCx D=t x=lx)=*-y1 - |1

Therefore, d(«(x), B(T)) = lle—pl - x| + 18] - (S, T)- | x[. But |x|=e* (x|
Sle- ex)|| = [le~ || for [|e(x)] =1. And we obtain

8((S), B(T)) = (=B + (S, T))- 2.

LEMMA 3.4. Let o, B € &(H), S € T(H), c(S, @)>0, and let B(S) be closed. Then
3((S), B(S)) = (S, )7 - [a—B].

Proof. Again by definition
3(«(S), B(S)) = sup {d(«(x), B(S)); x € S and [o(x)]| = 1},
and d(«(x), B(S))=inf {|«(x)—B(»)||; ¥ € S}. In particular
d(e(x), B(S)) £ |lax)—B@)] = [la—B]- x|

Since 1=|«(x)|| Zc(S, &) | x|, we obtain |x| = c(S, )~*. Therefore &(«(x), A(S))
2¢(S, @)~ |e—B|, which proves the lemma.

LEMMA 3.5. Let S,TeI(H) with g(S,T)<1. Consider o,=1—t-mr1L € L(H),
0=t=<1.Then «(S) e T(H),0=t=<1,andt - «(S) € T(H), 0=t <1, is a continuous
path in T(H) which connects S with T such that

8(S, a(S)) = 1-g(5,T), O=st=sl

Proof. For x € H we compute
lea(o)|? = (1= t-mr)(x), @ —t-7)(x))
= ((mr+ (1 —1) - mpu)(x), (mp+ (1 = 1) - 77.)(x))
= |rr@)2+ A=) |rra(x)]? 2 [mr(x)]2
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Therefore, ¢(S, &) 2 ¢(S, mp)=(1-38(S, T)?)*2=(1-g(S, T)**?>0. By Lemma 2.3,
then «,(S) € T(H) for 0=¢=<1. Certainly o(S)=3S, and «;(S)=T by Theorem 3.1.
The path ¢ — «,(S) € T(H) is continuous. Namely,

d(e4,(S), 0, () S o, — ey || - ((S; o))+ (S, 0,)7Y)
< 2-(1-g(S, T)?) 12 |t,— 1y (Lemma 3.4).

Finally, we prove g(S, «(S))=¢-g(S, T), 0t <1, by a continuity argument. First
we conclude from Lemma 3.4 and Corollary 3.2 that 8(S, «(S)) < ||7ms—a;- 75|
=t-8(S, T)=t-g(S, T). For short, let T,=«(S). We claim &(T,, S)=24(S, T;) for
0=t=<1. [Namely, let o=sup{s;0<s=1 with 8T}, S)=8(S, T;) for 0=r<s}.
Suppose 0=<o<1. Since & is continuous on T(H) x T(H), also &T,, S)=48(S, T,)
=o0-g(S,T) < 1,and there exists ¢ >0 with 8(T}, S)< 1 and &(S,T;) < 1for0<t<o+e.
By Corollary 3.2, 8(T;, S)=48(S, T}) for 0=t < o +¢, which contradicts the definition
of ¢.] By Corollary 3.2, then g(S, T})=8(T;, S)=98(S, T,)=t-g(S, T) for 0t <1.

LeEMMA 3.6. Let S, Te T(H) with g(S, T)< 1. Then y=np-ms+(1—n)-(1—mg)
€ GL(H) and y(S)=T.

Proof. g(S, T) <1 implies (S, T)=8T", S*)<1 and &, S)=8(S*, T*)<1. By
Theorem 3.1, y|s is an isomorphism which maps S onto T, and y|s. is an iso-
morphism which maps S* onto T*. This proves y € GL(H). Certainly

S) = m(S) = T.

LeEMMA 3.7. Let R, S, Te Z(H) with R<S and R<T, and let S'=R' N S and
T'=R‘NT. Then

88, T") = &S, T) and g(S',T) = g(S, T).

Proof. We have m;=mp+n. and wmg=mz+ms. Substitution into &(S’, T')
=|(1—my) -7g| and g(S’, T')= |ms — .| proves immediately the lemma.

4. R-sets and maximal R-sets. We recall the well known Rellich criterion for
compact linear maps of a Hilbert space which states that a linear map of a Hilbert
space is compact if and only if for every >0 there is a closed linear subspace of
finite codimension such that the norm of the restriction of the linear map to this
subspace becomes smaller than e. Various examples in analysis motivate a generali-
zation of compact linear maps via the collection of closed linear subspaces of finite
codimension in this criterion. A proper generalization of this collection is the
concept of R-sets.

DEFINITION 4.1. A subset R=ZI(H) is called an R-set, if the following condition
is satisfied: For any pair S, T € R and every >0 there exists an R € R with

SR, S) < and SR, T) < e.
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EXAMPLES 4.1.

(1) Any subset R<ZT(H) with the property that for any pair S, T e R, also
SN TeR, is an R-set.

(2) The subset R={S; S € T(H) with Sy, <S} of T(H), where Spyn € T(H) is
a fixed element, is an R-set.

(3) T(H) itself is an R-set.

(4) Any set {S} consisting of a single element S € T(H) only is an R-set.

(5) A set{S,,..., S,} consisting of n elements of T(H) is an R-set if and only if
an S, =Smin< S, i=1,...,n

(6) T(H)*={S; SeIT(H)and codim (S) < ¢}, where ¢ = R, is a cardinal number, is
an R-set. (Namely, for S, Te T(H)° also S N T e T(H)°. This follows from SN T
=S8 N (m5(T*))* and hence (S N T)*=S* @ Cl(ws(T™)).) In particular:

T(H)Y = {S; S e I(H) and codim (S) is finite} is an R-set.

(7) If o={S,};>-, is a sequence of closed linear subspaces with S, ,,<S,, n=1,
2,...,then R={S,; n=1,2,...}is an R-set.
(8) Further if 6={S,};-, is a sequence of closed linear subspaces as in (7), then
M(o) = {S; S € T(H) with lim,_, , 8(S,, S)=0} is an R-set.

(9) For explicit examples of R-sets in analysis we refer to [4].
DEFINITION 4.2. For any subset S<Z(H) we define

&Y = {T; T € T(H) such that there is an Re & with R< T},
CI(8) = the closure of & in the metric space T(H).

LEMMA 4.1. If R is an R-set, then R and CI(R) are R-sets again.

Proof. If S, Te R~ and >0 are given, then there are S’, 7' € R with S'< S,
T’'<T and there is an Re R with 8(R, S')<e, 8(R, T')<e. But then also 3(R, S)
<3(R, S)<e, (R, T)SO(R, T")<e. If S, T eCI(R) and £>0 are given, then
there are S’, T' € R with d(S’, S)<e/2, d(T’, T)<e/2 and there is an Re R with
3(R, S")<ef2, 8(R, T')<&f2. We conclude 8(R, S)<8(R, S")+3(S’, S)<e, 8(R, T)
SR, TH+&T', T)<e.

LemMA 4.2. For any subset S<I(H) we have CI(8)” <= CI(&").

Proof. Suppose T e CI(8)™. Then there is a 7’ € CI(S) with T'<T, and there is
further a sequence {S,}v-1, S, € &, with g(S,, T')<1/n. But 8(S,, T)=8(S,, T")
<g(Sn, T')<1/n. By Corollary 3.3 there is an S, with S,<.S;, and

g(Sn, T) = &S, T) < 1/n.
Since S € &, this implies T € CI(&").



1967] R-SETS, GRASSMANN SPACES, AND STIEFEL SPACES 85

DEFINITION 4.3. A subset M <T(H) is a maximal R-set, if it is an R-set and if
M =M and CIM) = M.
ExampLEs 4.2. In Examples 4.1, the R-sets in (2), (3), (6), and (8) are maximal.

THEOREM 4.1. Each R-set R is contained in a uniquely determined smallest
maximal R-set M(R).

Proof. Let M(R)=CI(R™). Then
M@R)” = CI(RY)” < CI(R) = CI(RY) = M(R) < M(R)”

implies M(R)"=M(R). Of course CI(M(R))=M(R). Obviously M(R) is the
smallest maximal R-set containing the R-set R.

In associating algebraic structures to an R-set there is a freedom to enlarge the
R-set to a maximal R-set (see next chapter). This motivates the introduction of
maximal R-sets. Hence it is sufficient to consider maximal R-sets only.

Repeatedly we will apply the following argument :

LeMMA 4.3. Let M be a maximal R-set, let T € T(H) and suppose for each ¢>0
there exists an S € M with 8(S, T)<e, then S € M.

Proof. Let £¢>0 be given. Then, by Corollary 3.3, there exists for the S of the
hypothesis an S’ € T(H) with S<S’ and g(S’, T)=48(S, T)<e. Since S’ € M, this
implies T € M =M.

LEMMA 4.4. The maximal R-set M={S; S € T(H) with Sp,<S}, where Sy,
€ $(H) is a fixed element, has the following representation: We introduce the Hilbert
space H' =(Spn)*. Then the map

c: M —IT(H'),
C(S) = (Smln)l' NS,
is an isometry onto I(H') with respect to the g-metric and 8-structure of M and
T(H').
Proof. Certainly c is bijective and Lemma 3.7.
THEOREM 4.2. Let IR be a maximal R-set. If there exists a finite-dimensional
So € M, then there is an Sy, € M such that
M = {S; S € T(H) with Spin < S}.

Proof. Consider an S, € M such that dim (Sp;,) is minimal. Let S M be
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given. Since M is an R-set there exists for each n=1, 2,..., an R, € M such that
8(Rm Smln) < %’ S(Rm S) < %‘

By Corollary 3.3, there is an R, € % with R,<R; and

’ 1
g(Rm Smin) = 8(Rm Smln) < ;’
By Theorem 3.1, S.;, and R; are isomorphic. Since dim (Spy,)< dim (R,)
<dim (R;)= dim (Sp,,) and dim (Sy,;,) is finite, we have R,=R;.
We conclude

St 5) 5 ¥Suims RI+3(R S) <2 m=1,2,....
Therefore, 8(Spi,, S)=0 and, by Lemma 3.1, Sp;,<S.

COROLLARY 4.1. If H is a finite-dimensional Hilbert space, then the maximal
R-sets M of IT(H) are the spaces T(H'), 0= dim (H')< dim (H). The con-
cept of maximal R-sets becomes in this case trivial, it does not introduce any new
structure.

5. C*-algebras associated with R-sets.
DEFINITION 5.1. For an R-set R we define (compare [4] and [5])

I(R) = {«; a € &(H) such that for each ¢ > 0 there is an Se R
with |« 75| < £ and |o* 75| < &}, and
A(R) = {«; « € (H) such that for each S € R and ¢ > 0 there is
a TeR with |(1—7g)-a 77| < eand |(1—ms)-a*-7y| < &}

THEOREM 5.1. I(R) is a C*-algebra in Q(H), A(R) is a C*-algebra with unit 1
in Q(H), I(R)< A(R), and I(R) is a closed twosided *-ideal in A(R).

Proof. Immediately from the definitions, compare [4] and [5].

In [4] and [5] it was also shown that I(R)=I(M(R)) and A(R)=A(M(R)),
where M(R) is the uniquely determined maximal R-set associated with ®R. This
implies that one can restrict oneself to maximal R-sets. The classical situation is
obtained, if we choose as a R-set the maximal R-set M =ZT(H)’ (Examples 4.1 (6)).
Then

I(T(H)') = €(H), the ideal of compact linear maps in &(H).
AR(H)) = &(H).
LEMMA 5.1. For S € T(H) let 8(H)s.={a; a € Q(H) with a-mg=0 and ms.-a=a}.

Certainly Q(H)s. is isometric to (S*). If R is an R-set and S € R, then {(H)s. < I(R).
In particular mg. € I(R), and hence s, ms1 € A(R).
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Proof. A direct consequence of Definition 5.1.
DEFINITION 5.2. Let &% be an R-set. Then we consider also the following closed
invariant subgroups of the groups GL(4(R)) and U(4(R)) (Definition 2.2):

GL,(I®) = {1+«;14+0e GL(H) and a € I(R)}, and
U (@) = GLIR)) N U(H).

DEFINITION 5.3. If S € T(H) and G=GL(H) a subset, then we denote
Gs = {y; y € G with ¢(S) = S},
G, = {y; y€ G with y|s = id}, and
Gls = {¥ls; ¥ € G with 1(S) = S).

COROLLARY 5.1. Let R be an R-set, and S € R. Then we have the representations
U(A®)s = UA®R)]s x U(S*),
U(I(R)s = U(IR))|s x U(SY), and
UA@)s) = UIR))s) = U(S*).

Further U(A(R))s<=GL(AR))s, and U(I(R))s<=UI(R))s are strong deformation
retracts. In particular U(A(R))s and GL(A(R))s, and U(I(R))s and GL(I(R))s
are of the same homotopy type.

Proof. The first part follows directly from Lemma 5.1. The second part from
Theorem 2.3 in the case of 4(R), and by the same construction as in the proof of
Theorem 2.3 in the case of I(R). (We have w5 € I(R) and mg=1—7g € A(R).)

DEFINITION 5.4. Let S<Z(H). If y € GL(H), then let (&)={»(S); S € S}. We
denote

GL(®) = {y; y e GL(H) with (&) = & and y*(&) = &}, and
U(®) = {u; p € U(H) with u(©) = &}.

If & is closed in T(H), then GL(&) and U(S) are closed subgroups of GL(H).

LEMMA 5.2. Let R be an R-set and let y € GL(H). Then y € A(R) if and only if
for each S € R we have y~*(S) € M(R) and y*~(S) € M(R).

Proof. Observe first that by the definition of the adjoint map y(S)=(y*~*(S}))*
for any S € T(H). Suppose now y € A(R). Let S € R and > 0 be arbitrarily assigned.
From Lemma 2.2 we have the representations

= = %
Tysty = y-msi-Brasi-y* and  musy = y*omse-frmgiey.
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By the definition of A(R) there is a 7€ R with

| =ms)-y-mzll < (lyl-1BI)~*-e, and
l@=mg)-y*-me| < (lyl-1B)~*-e
We conclude

8(T, y=X(S)) = 8(T, G*(SNY) = lmpsiy mr| = [y* - msr-B-(mse-y-mr)| < e,

and similarly 8(7, y*~%(8))=8(T, (y(S*))*) <e. By Lemma 4.3,
y~1(S) € M(R) and y*~1(S) € M(R).

Suppose now y € GL(H) satisfies y~1(S), y*~1(S) e M(R) for all SeR. We
turn to the definition of A(R) and assume S € R and >0 be given. Let T'=y~1(S)
and T"=9*-1(S). Since R is an R-set, there is an R e R with 8(R, T")<(||y|)~*-¢
and 8(R, T")<(||y|)~*-e. Observe that with Lemma 2.2 we can conclude that
mgL-y-mr.=0 and wg1-y*-mp.=0. We compute

[A=ms)-y-me| < |(1=ms)-y-(A—mp)-mp| + [ (A =75) -y -7, -]
= “7“ (R, T') <,
and similarly ||(1—mg)-y*-mg| <e. Which proves y € A(R).

THEOREM 5.2 (COMPARE [5]). Let M be a maximal R-set. Then
GL(M) = GL(H) N A(M) = GL(A(M)), and
UMm) = UH) N AM) = UA(M)).

Proof. If y € GL(M), then y~1(M)=M and y*~(M)=M and, by Lemma 5.2,
ye GL(H) N A(). If y € GL(H) N A(M), then by Corollary 2.1, y~* € GL(H)
N A(M), and we conclude y(M)=M and y*(PM)=M, and therefore y € GL(IM).
This proves also UR)=U(H) N A(M).

LEMMA 5.3. Let I be a maximal R-set. For any pair S, T € I and every ¢>0
there exists an R € M with R< S and 8(R, T) <& (compare Definition 4.1).

Proof. We may assume 0 <e< 1. First there is an R € M with §(R, S)<¢/8 and
8(R, T)<e/8. By Corollary 3.3 there are S’, T'e M with R<S’, R<T’, and
g(S’, S)<¢/8, g(T’, T)<¢/8. Consider now y=ug-ms.+(1—ms)-(1—ms) € GL(M)
(Lemma 3.6). We have y(S")=S, and we compute

ly=1| = |7s-7g—ms—m5+ms-ms| < 8(S, S )+8(S", S) < 2-8(S", §) < ¢/4,

and [y~ =[a+@-1)"Y$1/(1-]y—1])<2. Let R=y(R)eM. Certainly
Rcy(S")=S. Now &R, T) = 8(»(R), T)+8(T", T). But by Lemma 3.3, 8(»(R), T")
Slly—1|- |y~ <e/2. And 8T, T)<g(T", T)<¢/8. Hence 8(R, T) <e.
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DErFINITION 5.5. Let @< Z(H) and let S, € T(H). Then we denote
Bls, = 8N I(S,) ={S;SeB with S < S}
THEOREM 5.3. Let MM be a maximal R-set and let S, € M. Then M|, is a maximal

R-set again with respect to the Hilbert space S,.

Proof. Lemma 5.3 gives M|, is an R-set. Evidently (M|s,)” =M|s, (see Defini-
tion 4.3). And M|5, =M N T(S,) is closed, since T(S,)<=T(H) is closed.
DEFINITION 5.6. Let A< Q(H) and S, € T(H). Then we denote by

Wls, = {els,; @ls, € ZL(So) Where « € A with a(Sy) < So}.

THEOREM 5.4. Let M be a maximal R-set and S, € M. Then
IM|s,) = I(M)|s, and AM|s,) = A(M)|s,.
Proof. Directly from Definition 5.1 with the use of Lemma 5.3.

THEOREM 5.5. Let M be a maximal R-set and let S € M. Then we have
GL(A(M]5)) = GL(A(M))s/GL(A(I));s),
U(A(R]5)) = U(A(D))s/U(AI) s
GL(I(M|s)) = GLI(M))s/GL (M) s,
U (I(M]5)) = UI(B))s/UI(BR))s)5
U(AM)s = U(A(M|5))x U(SY), and
U I(M)s = U (M|5)) x U(SH).

Proof. Direct consequence of Theorem 5.4.

6. The path components of maximal R-sets.

LEMMA 6.1 (COMPARE [4]). Let M be a maximal R-set. Each open ball B,
={T; T Mand g(S, T)<r} in M with center S and radius r, 0<r<1, is path con-

nected.

Proof. Let T € B, be given. We consider first S*, T+ € T(H). Since g(S*, T)
=g(S, T)<r, we can apply Lemma 3.5 to the pair S*, T*. Consider o,=1—¢ 71
€ Q(H), 0=<t=<1. Then t — «(S*) € T(H) is a continuous path in T(H), which
connects S* with T* and with g(S*, «(S*))=¢-g(S*, T*) for 01,

Now we turn to the path ¢t - T,=(«(S*))* € T(H), 0=t=1. The complement
map | : T(H) — T(H) is continuous by Lemma 3.1. The new path is therefore
continuous again, and connects S with T in T(H). We have g(S, T;) =g(S*, «(S4))

=t-g(S,T)<r, 05t=1.
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Finally, T, € M, 0=t < 1. We apply Lemma 4.3. Let £>0 be given. By Lemma 2.2,
sty =04 mse-B-msi-off. There exists an R € M with 8(R, S) < (||e| - |B]) & and
8(R, T) < (leu] - 81)~*-e. Then

3(R, T)) = 8(R, (2(SY)") = (1 —=meysint) mell = | maysty mrl
< leall - 181 s (L=1) -1+ £ rga) g
< e 18- ((1—12)-8(R, $)+1-8(R, T)) < e

COROLLARY 6.1. A maximal R-set M is locally path connected. Path components
and connected components coincide therefore, and they are open and closed in M.

DEeFINITION 6.1. First we introduce the following notation: If G is a topological
group, then G' denotes the path component of its unit 1€G. Let B,
={T; T € M with g(S, T) < 1} be the open ball in M in the g-metric with radius 1
and center S € M. Then we have the following cross-section map

st Bs,1 —> GL{(I(M)) = GLY(M)
$(T) = mp-ms+(1—mr)-(1—g).

LEMMA 6.2. The map s is well defined, continuous, and satisfies s(T)(S)=T.

Proof. By Lemma 3.6, s(T) € GL(H) and s(T)(S)=m(S)=T. Further, s(T)
=1—7r1)- (1 —7g1) +mro-ms € GL(I(M)). To show the continuity of s, we compute
Is(T)—s(T2)|| = ||me, - 7s—7r, *Ms+ LWL — T, ‘s

S |mr, —mr, | + |rpg —7rg || = 2-8(T3, To).
By Lemma 6.1, B, is path connected. Since 1=5(S) € s(Bs,1)), it follows

5(Bs,1)) = GLLI(M)).
DEFINITION 6.2. We have the action of the group GL(%) on M

a: GL(I) x M — M,
a(y, S) = ¥(S).
LEMMA 6.3. a is continuous. If € € no(M) is a path component of I, we have in
particular the action of GLY() on €
a: GL'(IM) x € — 6.
And from this action the maps
a,: € — ¢,
a,(S) = y(S) for a fixed y e GL'(M), and
as: GL'(I?) — €,
as(y) = ¢¥(S) for a fixed S € €.
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a, is a homeomorphism of € onto itself for each y € GLYM). ag is a continuous map
onto €. The same holds for the group GLL(I(I)).

Proof. Let (y;, S)), (ys, S2) € GL(IM) x M. Then from Lemma 3.3

d(a(y1, S1), a(yz, S2)) = d(y1(S1), v2(S2))
S (lya—val +d(S1, S2)-(lys |+ llyz 1),

which proves the continuity of a, and therefore of a, and as. a, is a homeomorph-
ism, since a,-a, '=id and a; '-a,=id.

To show that as is a map onto €, let T € € be given. Then there exists a con-
tinuous path S;, 0<¢<1, in €, which connects S,=S with S;=7. We can find an
integer N with g(Sy/n, Si+1yv) <1 for k=0, 1,..., N—1. It is therefore enough to
show that for S, T e € with g(S, T)<1 there exists a y € GL'(I) with ¢(S)=T.
We can take s(T") € GL'(#?) of Lemma 6.1 as such an element y.

LEMMA 6.4. The map as: GLY(IR) — €, where S € G, is open. The same holds for
GL(I(M)).

Proof. If y e GL'(3®), then we denote by /,: GL' (M) — GLY(IM) the left trans-
lation /(e)=y-«, « € GLY(IR). Observe that as=a,-as-l,-: for y € GLY(9). Also
that B5,,,=€ and (as-s)(T)=T for all T € B ;, by Lemma 6.2.

Suppose now < GLYM) is an open subset, and consider y € ©. Then there is
an open neighborhood ©,=GLY(M) of 1 with O,</,-1(D) N (as) (Bis.1)-
Now ag(D)=(a,-as-1,-1)(D). But s~ (D) <ay(D,) (if Tes (D), then s(T) € O,
and T'=(as-s)(T); hence T € ag(£2,)). Further S € s~*(9,) (namely 1 € O,). Therefore,
as(y)=v(S) € a,(s " (Dp) <= a,(as(l,- (D)) =as(D). Since a, is a homeomorphism,
a,(s~1(9,)) is open, which proves the lemma.

DErFINITION 6.3. A Banach manifold is a topological Hausdorff space such that
each point has an open neighborhood homeomorphic to an open subset of a
Banach space. (See for example [10] and [13].)

THEOREM 6.1. A maximal R-set M is a Banach manifold. In particular the path
components of MM are connected Banach manifolds.

Proof. Let SeM be given, and let € € my(M) be the path component of M
with § € 8. We construct a coordinate system (11, /) at S: Consider the open map
of the preceding Lemma 6.4

as: GLY(I) — G,
as(y) = A(S)-

Let i ={y; y € GLY(M) with -y - s € GL(S)}, where «5: S — H is the inclusion and
ms: H— S is the projection. T is open in GLY(3). (Proof: The map ps: GL{(MM) —
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2(S) defined by ps(e)=mg-a-t5 is continuous. GL(S) is open in £(S), and 1l
=(ps)"Y(GL(S)).) We define U=ay(il). U is open in € and therefore in M.

Next let A(M)s s ={e; a€ A(M) with a-mg=« and mgr-a=a}. A(M)s s is a
closed linear subspace of the Banach space A(9) and hence a Banach space.

Before we construct the coordinate homeomorphism f, we notice the following:
Let

Q(H)s st = {a; e € &(H) with «-7g = e and wg1-a = o},
If e € Q(H)s, 51, then 14+« € GL(H) (namely 1+«)-(1—«)=1and 1—a)-(1+a)=1).
And if oy, oy € &(H)s st, then (14 «,)(S)=(1+a,)(S) if and only if a; =aj,.
Consider now the continuous map
f: ﬁ —> A(?D?—)S,Sl,
J@) = msy-ms-(msy-ms+ms) " oms
=y s (msy mstme) "t mg—ms.

Observe that (1+£(y))(S)=9(S). We define f via the commutative diagram

U——A(M)s 52

by f=f-(as)~*. The map f is well defined and therefore continuous. (Namely if

as(yr)=as(ya) for 1, ya € 1, then y,(S)=7x(S) and (1+S(r))S)=A+/(r2))(S),
and hence f(y,;)=f(y.) by the remark above.)
Next we consider the continuous map

h: A(W)s,s1 — GLI(M),
h(e) = 1+a.
h is well defined. (A(«) e GL(H) N A(M)=GL(M), and 1+¢-«, 0St<1, is a path
which connects 1 with A(x). Therefore, A(x) € GLY9).) Since wg-(A(e))-ts=1s,
we have further A(«) € i. We compute
(f*h)@) = « for o€ A(M)ss:, and
(a-f)y) = 1+f(y) for yeti.
And finally we define
h: AM)s,sr — U,
h = agh
Then we have (f-h)(o)=c for « € A(M)s s, and (h-HT)=1A+f))S)=HS)=T

for Te U, where y e 1l with as(y)=y(S)=T. This proves f: 1 > A(M)s s+ is a
homeomorphism onto the Banach space A(M)s s: and h=f"1.
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DEFINITION 6.4. Let M be a maximal R-set, let € € 7w y(M) be a path component
of M, and let S € € be fixed. We consider the closed subgroup

GL'(M)s = {y; y € GLY(M) with ¥(S) = S},
and we form the quotient space
GL'(M)/GL(M)s = {[r]; y e GL'(M)}

of left cosets [y]=y-GLY(M)s. This quotient space is given the topology induced
by the projection map

p: GLY(I) — GLY(M)/GLY(M)s.
We can lift the map as: GLY () — € onto the quotient space.
ds: GLY(I)/GL{(M)s — G,
ds([yD) = as(y) = ¥(S).
Similarly for the group GLI(Z(I)).

THEOREM 6.2. dg: GLY(I)/GLY(M)s — € is a homeomorphism. The spaces € and
GLY(I)/GLY(M)s can therefore be identified.

Proof. Consider the commutative diagram

GL(m) o
P
é
GLI(R)/GL{(M)s—————>6.

Certainly d; is bijective. Since ag is continuous and open, ds is a homeomorphism.

THEOREM 6.2,. ds: GLY(I(M))/GLYI(M))s — € is a homeomorphism. The spaces
€ and GLY(I(IR))/GLYI(M))s can be identified also.

DEFINITION 6.5. We have a canonical local cross-section of GLY(9)g in GLY(I).
B’ =(ds)"}(Bs,1y) is an open neighborhood of the point [1] € GLY(M)/GLY(M)s.
We define

s": B — GLY(M)
s'=s-ds, ie, S([yD) = s((S)).
We have p-s'([y]) = [s(x(S))]. But (s(»(S))(S)=»(S) and therefore [s(/(S))]=[y].
Or p-s'([y])=[y] for [y] € ¥'. Similarly for GLYZ(I))s and GLY(I(IM)).
The Steenrod construction [14, p. 30] can now be applied, and we obtain:

THEOREM 6.3. If K is a closed subgroup of GL(IM)s,
p: GLY(M)/K — € = GLY(M)/GL (M)



94 ERHARD LUFT [January

the projection map induced by the inclusion of cosets, then a bundle structure can be
assigned to GLY(I)/K relative to p such that the fibre of the bundle is GLY(M)s/K
and the group of the bundle is GL\(I)s/K, acting on GLY (M) s/K as left translations,
where K, is the largest subgroup of K invariant in GLY)s. The same holds for the
group GLY{(I()).

COROLLARY 6.2. GLY (M) is a principal fibre bundle over
€ = GLY(M)/GLY M)

with fibre and structure group GL'(9)s, which acts on the fibres by left translations.
In particular we have an exact sequence for the homotopy groups

<+ >y 1.1(€) = m(GLY(M)s) — 7o(GLY(M)) —> 7€) - -

COROLLARY 6.2,. GLY(I(M)) is a principal fibre bundle over
€ = GLy(I(M))/GL(I(M))s

with fibre and structure group GLY(I(9M))s, which acts on the fibres by left translations.
In particular we have an exact sequence for the homotopy groups

<o = 142(€) = m(GLII (M))s) > m(GLYI (M) — my(€) —- - -

The preceding constructions and arguments can also be applied to the unitary
groups U'(M) and ULI(M)).

DEFINITION 6.1°. Let B 1,={T; T € M with g(S, T) <1} be again the open ball
in M in the g-metric with radius 1 and center S € M. Then we have the cross-
section map

v: Bs,1, > U (M) = UMW),
v=u-s ie, v(T)=ulmrms+@A—mg)-(1—ms))

where u: GL(I) — U(M) is the map of Theorem 2.2.
LEMMA 6.2". The map v is well defined, continuous, and satisfies v(T(S)=T.

Proof. v(T)(S)=T follows from Corollary 2.2. We show
u(GLy(I(M)) = GLAI(M)).

Recall that if y e GLYI(M)), then u(y)=p=y-B~*, where e GL(M) is the
uniquely determined positive and self-adjoint element with B>=y*-y. We write
B=1+¢, a € A(M), and show « € I(M). First f2=1+2a+«* € GLYI(M)) implies
20+ o2 =2a-(1+3ce) € I(M). We have now 1+4« € GL(M). (Namely 1+ 8 € GL(I)
by Lemma 2.7, and therefore 1+3a=14-(1+8) € GL(M).) Since I(M) is an ideal in
A(M), we conclude that « € I(M). This shows that B and hence p=y-B~* are in
GLL(I(M)).
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From here on, Definition 6.2, Lemma 6.3, Lemma 6.4, Definition 6.4, and
Definition 6.5 carry over word by word to the unitary groups U'(It) and U4(Z(2)),
and we obtain:

2

THEOREM 6.2". dgs: UYIM)/UYM)s — € is a homeomorphism. The spaces € and
UYM)/UYM)s can therefore be identified.

THEOREM 6.2;. ds: UNI(IM))/ULI(M))s — € is a homeomorphism. The spaces
and UNI(M))/ULI(M))s can be identified also.

THEOREM 6.3". If K is a closed subgroup of U'M)s,
p: U(M)/K — € = U(M)/UYM)s

the projection map induced by the inclusion of cosets, then a bundle structure can be
assigned to U M)/K relative to p such that the fibre of the bundle is UY(M)s/K
and the group of the bundle is U(M)s/K, acting on U (M)s/K as left translations,
where K, is the largest subgroup of K invariant in UY(M)s. The same holds for the
group UYI(M)).

COROLLARY 6.2'. UYM) is a principal fibre bundle over
€ = U(Mm)/U'(M)s

with fibre and structure group UY(IM)s, which acts on the fibres by left translations.
In particular we have the exact sequence for the homotopy groups

<o = a1 41(€) > (U IR)s) > mo(UH(M)) — ma(€) - - -

COROLLARY 6.2;. UL(I(M)) is a principal fibre bundle over
€ = Uy(I(M))/UI(M))s

with fibre and structure group ULNI(IM))s, which acts on the fibres by left translations.
In particular, we have the exact sequence for the homotopy groups

<o = 1 1(€) > m (UG (M)s) — ma(UnI(M)) — 7 (€) — - - -

7. Stiefel spaces associated with maximal R-sets. In the following we introduce
homogeneous spaces, which are direct analogues of the Stiefel manifolds of finite-
dimensional vectorspaces. We consider the group GL(A(9M)) only. Everything
holds also for the group GL(I()).

DEFINITION 7.1. Let M be a maximal R-set, € € m,(M) a path component of M,
and let S € € be fixed. The Stiefel space St(€)s associated with the path component
€ (relative to S) is defined as

St(€)s = {A; A e &(S, H) such that there is a y € GLY(IM) with A = y-¢},
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where 5: S — H is the inclusion. St(€); is a closed subset of 2(S, H) and is given
the relative topology.

LemMA 7.1. If S,, S; € €, then the spaces St(€)s, and St(€)s, are homeomorphic.
The reference element S € € is therefore irrelevant. The Stiefel spaces St(€)s are
path connected.

Proof. There exists a B € GLY(I) with B(S;)=S, (Lemma 6.3). Consider the
map ig: St(€)s, = St(€)s,, ig(A)=y-B~!-is,, where A=y-i5.. Then i; is a homeo-
morphism. GL!(9R) is path connected implies directly St(€)s is path connected.

DEFINITION 7.2. We have the natural projection map

q: St(€)s — €,
q(X) = A(S).

q is continuous (Lemma 3.4) and maps St(€)s onto €.
DEerINITION 7.3. Let O(:5)=g"'(Bs,1)={A; A € St(€)s with g(S, A(S))<1}. We
have the cross-section map

r: O(is) > GLY(M)
r(d) = y-ms+(1—mys) (1—ms), where A = y 5.
LEMMA 7.2. r is well defined, continuous, and satisfies r(A)-ws=A.
Proof. The continuity follows from Lemma 3.4.
DEFINITION 7.4. We have the action of the group GL(I) on St(€)g
b: GLY(M) x St(€)s — St(€)s,
by, ) = vy-A
b is continuous. It determines the maps
b,: St(€)s — St(€)s,
b,(A) = y-A for a fixed y e GLY(M), and
by: GLY(I) — St(C)s,
by(y) = y-A for a fixed A € St(€)s.

b, is a homeomorphism of St(€)s onto itself for each y € GLY(3). b, is a continuous
map onto St(€)s.

LEMMA 7.3. The map b,: GLY(I) — St(C); is open.

Proof. First b,; is open by the same arguments as in Lemma 6.4 using the
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cross-section r of Definition 7.3. And b,=b,, - ks, where A=8-1s and k: GLY(I) —
GLY(9), the right translation k(y)=1y-B.

THEOREM 7.1. The Stiefel spaces St(€)s are Banach manifolds.

Proof. There is a natural connection with Theorem 6.1. In the following we
refer to the notation introduced in the proof of this theorem. We construct a
coordinate system (%, g) at the point 5. Consider the open map of the preceding
Lemma 7.3

b,;: GLY(M) — St(C)s,
bts(Y) = Y-ls.

Let fi={y; y € GLM) with (ms-y)|s=ms-y-ts€ GL(M|s)}. 11 is an open subset
of GLY(I). Let B=b5,(i1). Then B is open in St(€)s.
Consider next the continuous map

&: L — A(M)s 5. x GLY(M|5)
£0) = (FO), ms-v-15).
We define g via the commutative diagram
i
b.s

g

Y

%_'i_—)A(WZ)S'Sl X GL‘(mls)

by g=g-(b,)~*. The map g is well defined and therefore continuous. (Namely if
bis(71)=bis(y2) for yy, ys€ i, then y,-15=yy15 and f(y1)=F(y2), and therefore

&(y)=8(y2).)
We consider the continuous map

k: A5 s x GLY(M|s) — GLY(M),
ke, ¥') = 140)- (s ¥ s +ms1).

k is well defined and continuous. Further =5- k(e, y')- 5= implies k(, ¥') € i. We
compute

E-k)e ) = (0 y) for (o) € A(WM)s,5:x GLY(M|), and
k-8)y) = y-ms+ms for yefl
Finally we define
k: A(M)s s: x GLY(M|5) —> B,
k = by-k.
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Then we have (g-k)(e, ¥)=(e, y') for (e, ¥’) € A(M)s s: x GLYM|s), and (k- g)()
=(y-mg+ms1)-ts=A for Ae B, where y € with y-is=A. This proves g: 8 —
A(M)s,s: x GLY(M|s) is a homeomorphism onto the open subset A(M)s,se
x GLY(M|s) of the Banach space A(M)s, 5. X A(M|s).

DEFINITION 7.5. Let M be a maximal R-set, let € € mo(M) be a path component
of M, and let S € € be fixed. We consider the closed subgroup

GL ()5, = {y; v € GLY(M) and y|s = id},
and we form the quotient space
GL'()/GLY (M), = {[y]; y € GL'(M)}

of left cosets [y]=vy-GLY(IM)s,. This quotient space is given the topology induced
by the projection map

p: GLY() — GLY(M)/GL(M)s)-

We can lift the map b,,: GL' (M) — St(€)s onto the quotient space.
bis: GLY(WD)/GLI(IR);s, — SYC)s,
bl = bis) = 7+1s.

THEOREM 7.2. b, : GLY(M)/GLY(M)s; — St(€)s is a homeomorphism. The
spaces St(€)s and GLY(M)/GLY(M),s, can be identified.

Proof. The same as that of Theorem 6.2.

DEFINITION 7.6. We have a canonical local cross-section of GL(I),s, in GL'(R).
9’ =(b.,;)"*(D(s)) is an open neighborhood of the point [1] € GLYI)/GLY(M);s).
We define

r': 9 — GLY(M),
r= r'BLs’ i~c°, r,([‘y}) = r(y"'S)‘

We have p-r'([y)=[r(y-w)]. But r(y-is)-ts=y-is and therefore [r(y-is)]l=[y].
Hence p-r'([y)=[y] for [y] e ©".
The Steenrod construction [14, p. 30] can be applied, and we obtain:

THEOREM 7.3. If K is a closed subgroup of GLY(IM),s,,

p: GLY(IMM)/K — St(€)s = GLY(M)/GL(M),5

the projection map induced by the inclusion of cosets, then a bundle structure can
be assigned to GLY(9)s,/K and the group of the bundle is GL'(M)s,/K, acting on
GLY(M)s,/K as left translations, where K, is the largest subgroup of K invariant in
GLY(M);s)-
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COROLLARY 7.1. GLY9) is a principal fibre bundle over
St(€)s = GL'(IM)/GLY(M);s)

with fibre and structure group GL(I)s, which acts on the fibres by left translations.

COROLLARY 7.2. The projection
g: St(€)s = GLY(M)/GL(M)5) > € = GLI(M)/GLY(M);

(compare Definition 1.2) defines a principal bundle over € with fibre and struc-
ture group GLY(M|s)=GLY(M)s/GLY(M)(s,, which acts on the fibres by left trans-
lations.

The same constructions and arguments apply also to the orthogonal case.

DEFINITION 7.1°. Let M be a maximal R-set, let € € 7,(M) be a path component
of M, and let S € € be fixed. The orthogonal Stiefel space U(€)s associated with
the path component € (relative to S) is defined as

U(€)s = {v; ve (S, H) such that there is a p € UY(IM) withv = p-1g},
where «5: S — H is the inclusion. U(€); is a closed subset of £(S, H) and is given

the relative topology.

LemMA 7.1". If Sy, S, € €, then the spaces U(€)s, and U(€)s, are homeomorphic.
The reference element S € € is therefore irrelevant. The orthogonal Stiefel spaces
U(Q)s are path connected.

Proof. The same as of Lemma 7.1.

DEFINITION 7.2'. We have the natural projection map
q: U(€)s —€,
q() = »(S).

q is continuous and maps U(€)s onto €.
DEFINITION 7.3". Let 8B(15)=¢ *(Bs,1) ={v; v € U€)s with g(S, v(S))<1}. We
have the cross-section map

w: B(is) = UY(M),

w=ur, ie, wp) =up rs+1—m,g) (1—7g)) where v = p-g,
where u: GL(M) — U(MR) is from Theorem 2.2, and r is the cross-section map of
Definition 7.3.

LeMMA 7.2, w is well defined, continuous, and satisfies w(v)-ig=v.

Proof. The last property follows from Corollary 2.2.
Definition 7.4 and Lemma 7.3 carry over word by word to the orthogonal
case.
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THEOREM 7.1'. The orthogonal Stiefel spaces U(€)s are Banach manifolds.

Proof. The same construction as in Theorem 7.1. The group GLY(9%) is replaced
by the group U'(M), which is a Banach manifold. (The well-known exponential
map exp: H(A(IM)) — U (M), where H(A(M)) is the closed real linear subspace
of the hermitian elements of A(M), determines a homeomorphism from an open
neighborhood of o in H(A(M)) to an open neighborhood of 1 in U(M). The
inverse to the exponential map is provided by a log-map.)

Definitions 7.5 and 7.6 carry over again without any change to the orthogonal
case. We conclude:

THEOREM 7.2". b, : UNMM)/UYM) s, — U(C)s is a homeomorphism. The spaces
U(@)s and UY(I)/UYM),s, can be identified.

THEOREM 7.3". If K is a closed subgroup of UYM)s),

p: U W)/K — U(C)s = U'(M)/U(M)s)

the projection map induced by the inclusion of cosets, then a bundle structure can be
assigned to U M)/K relative to p such that the fibre of the bundle is U (M)s,/K
and the group of the bundle is U'(IM),s,/K, acting on U'(M)s,/K as left translations,
where K, is the largest subgroup of K invariant in UY(M),s,.

COROLLARY 7.1'. UYM) is a principal fibre bundle over U(€)s=UYM)/U (IM),s,
with fibre and structure group UY(M)s,<U(S*), which acts on the fibres by left
translations.

COROLLARY 7.2". The projection map

q: U(€)s = U'(M)/U'(M)(s5) —> € = U M)/ UN(M)s
defines a principal bundle over € with fibre and structure group
U(M]s) = UNM)s/U (M),
which acts on the fibres by left translations.

THEOREM 7.4. The orthogonal Stiefel space U(€)s< St(€); is a strong deformation
retract of the Stiefel space St(€)s. In particular U(€)s and St(€)s are of the same
homotopy type.

Proof. We introduce first the map

e: GL(I) — GL(M),

e(y) = y- st Tyt Y Tst = Y —Tys) Y Tsi.
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e is well defined. Namely we compute

(y=7ysy Yy ms) (v T ms y T Lomgsyr) = 1, and
(s y Ve mpent) - (Y= Ty Y mss) = L

This proves e(y) € GL(IM). The continuity of e follows from Lemma 2.3.
Finally we consider the map

J: GLY() x [0, 1] — GL'(®),
Jost) =jly) = ufe(y)), 0=st=s1

where u, is the strong deformation retract map of Corollary 2.3. We turn to the
commutative diagram

GL'(Mm) x [0, 1] L, GL'(M)
b xid by

2

St(©)s X [0, 1] —2—> SH(©)s.
Let j=b,;-j- (b, xid)~*. The map j is well defined by the particular property of
u, established in Corollary 2.3. It is continuous, since b,  is open.
We have j,=id, j, maps St(€); onto U(€)s, and j;|ye)s=id for 0=¢=< 1. Hence
Jiw 021 <1, is a strong deformation retract homotopy for U(€)s< St(€)s.

8. Grassmann spaces and Stiefel spaces of a Hilbert space. We consider now the
maximal R-set M=T(H). In this case A(M)=L(H) and I(M)=2L(H), and the
theory simplifies essentially. It does not depend on Chapters 4 and 5 at all. Since
GL()=GL(H) and U(M)=U(H), one has not to take particular care of these
groups any more.

This case establishes also a direct connection with the “ordinary theory” of
Grassmann and Stiefel spaces of a Hilbert space. In the following we present this
ordinary theory independent of the dimension of the Hilbert space. We investigate
then the Grassmann and Stiefel spaces of infinite-dimensional Hilbert spaces, and
we will obtain a certain complete characterization.

Crucial is the following theorem:

THEOREM 8.1 (SEE [9]). Let H be an infinite-dimensional Hilbert space. The groups
GL(H) and U(H) are contractible. In particular GL(H) and U(H) are connected,
and all homotopy groups are trivial.

7(GL(H) =0 and =(UH) =0 fori=0,1,2,....

DEerFINITION 8.1. Let ¥ and [ be two cardinal numbers with t+[=dim (H). The
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Grassmann space @y i, of type I, I of the Hilbert space H is the set
&1, = {S; S < H a closed linear subspace with dim (S) = f and codim (S) = [}

with the relative topology induced by the inclusion &y 1, < T(H).

If H is finite dimensional, we obtain the ordinary Grassmann manifolds. In this
case we can of course dispense with the double index.

If H is a separable infinite dimensional Hilbert space, we denote dim (H)=R,
=00, and we have the following types of Grassmann spaces

@(n,w), @<oo,ao)y @(w’n) where n = 0, 1, 2,....

THEOREM 8.2. The Grassmann spaces .y, , are the path components € of the
space T(H). The Grassmann spaces ® 1, are therefore connected Banach manifolds
(Theorem 6.1), and homogeneous spaces

&, = GL(H)/GL(H)s = U(H)/U(H)s,

where S € & y,15.

Proof. Let Se ®,, and let € be the path component of T(H) with Se€.
First we have €=®y ,. Namely if Te €, then there exists a y € GL(H) with
y(S)=T and therefore dim (T)=t and codim (T)=I. Hence T € &, ,. Now let
T e ®,, be given. We show that there is a continuous path in T(H) which
connects S with 7. Since dim (S)=dim ()=t and codim (S)=codim (T)=I, we
can construct a y € GL(H) with y(S)=T. If H is a finite-dimensional real Hilbert
space, we may assume y € GLY(H). In all other cases we have GL'(H)=GL(H).
Therefore there exists a continuous path y, € GL(H), 0=¢=<1, with y,=1 and
y1=y. Then y(S), 0<7<1, is a continuous path in T(H) which connects S with
T (Lemma 3.4). This shows T € €. Hence €=& ;5.

COROLLARY 8.1. Let S€ @y, be fixed. GL(H) is a principal bundle over
.1, with fibre and structure group GL(H)s, and also U(H) is a principal bundle
over &y 1, with fibre and structure group U(H)s=U(S) x U(S*) (Corollaries 5.1
and 5.1").

THEOREM 8.3. The map 1 : G —> Gy, L(S)=S, is an isometry with
respect to the d-metric and to the g-metric.

Proof. Lemma 3.1.

DEFINITION 8.2. Let ¥ and [ be two cardinal numbers with k+/=dim (H). An
orthonormal (¥, [>-frame ¢ in H is an ordered set {e;} of power k of pairwise
orthogonal vectors of unit length, and if [¢]=[{e})] is the closed linear subspace
determined by the set ¢, then dim ([¢])=t and codim ([¢])=1.

A (&, D-frame ¢ in H is an ordered set {v;} of power t of linearly independent
vectors, such that if []=[{v}] is the closed linear subspace determined by the set
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¥, we have dim ([]) =t and codim ([]) =, and further there exists an orthonormal
(t, D-frame ¢,={e;} such that the linear map

%00y’ [$o] = [] determined by

aso.0(@) = 0;

is an isomorphism onto []. This last condition is of course not necessary if ¥ is
finite.
The Stiefel space Sy,, of type {, I of the Hilbert space H is the set
Sy = {¥; ¢ a t, D-frame in H}.

And the orthogonal Stiefel space Uy (, of type t, 1 of the Hilbert space H is the
set
U, = {¢; 4 an orthogonal (¥, [)-frame in H}.

A natural topology on the sets Sy, and Uy, will be subsequently introduced.
Obviously U, €S 5.

We obtain the ordinary Stiefel manifolds if H is a finite-dimensional vectorspace.
In this case we need of course again one index only.

If H is a separable infinite-dimensional Hilbert space, we denote again
dim (H)=X,=00, and we have the following types of Stiefel spaces

g(n.w» @(m,w>, @(w,n)’

and the orthogonal Stiefel spaces

1I<n'm>, u<¢,’m), u<w'n> Where n = 0, 1, “eee
LemMA 8.1. Let ¢o={e;} be a fixed orthonormal (X, )-frame of H, and let

S=[¢o). If H is a finite-dimensional real vectorspace, we assume ¥ < dim (H). We
consider the following natural map (compare Chapter 7)

log: Sty = SUG (1,155,
iso($): S — H is the linear map uniquely determined
by is,(¥)e)=v; where ¢ = {v}e Sq,,.
This map iy, defines also
log: Ueriy > UG,
The map iy, is bijective in both cases.
DEerFINITION 8.3. Let S € &, ;,. Then we identify &, with St(&,)s, and

Uy,1y with U(Sy,15)s. If H is a finite-dimensional real vectorspace and t=dim H,
then we identlfy g(dlm (H),0) with GL(H) and u«“m (H),0) with U(H).

THEOREM 8.4. The Stiefel spaces Sy, and U, are Banach manifolds. They
are connected except for H a finite-dimensional real vectorspace and ¥=dim H.
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(In this case & (aym 0y = GL(H) and U aym (ay,0, = U(H) have exactly two path com-
ponents.) The Stiefel spaces are also homogeneous spaces. We have

Su,» = GL(H)/GL(H)sy and U, = UH)/U(H),s),

where S € & 15. Finally U, (, =Sy, is a strong deformation retract of the space
Sr.15- In particular Ny 1, and Sy, are of the same homotopy type.

COROLLARY 8.2. Let S€ @, ,. Then GL(H) is a principal fibre bundle over
&1.1y=GL(H)/GL(H)s, with fibre and structure group GL(H)s,, which acts on
the fibres by left translations. And U(H) is a principal fibre bundle over U,
=U(H)/U(H)s, with fibre and structure group U(H),=U(S*), which acts on
the fibres by left translations.

THEOREM 8.5. Let H be an infinite-dimensional Hilbert space. The projection map
p: U(H)—> Uy, =UH)/U(H)sy, where S € ® 4,1, determines a universal classifying
principal bundle for the group U(S*). (For the definition of universal classifying
principal bundles see, for example, [14, p. 100).) U, is therefore a universal
classifying space By, for the group U(H'), where H' is a Hilbert space with
dim (H')=1. In particular W ,, is a universal classifying space By, for the
orthogonal group U(n) of the n-dimensional vectorspace, n=0, 1, . . ..

Proof. By Theorem 8.1, n(U(H))=0, i=0, 1,..., and the theorem on p. 102
in [14].

CoROLLARY 8.3. Let H be an infinite-dimensional Hilbert space. The homotopy
groups of the Stiefel spaces U (, and S 1, are
mWt) = 7(Sqp) =0, i=0,1,2,..., iflisnot an integer,
To(Uct,ny) = 7o(Sct,my) =0, forn=0,1,2,...,
m(Wirny) = m(Bny) = m:(Um), i=1,2,..., forn=0,1,....
And the singular homology and cohomology with coefficients in the ring of integers Z
is
HW 53 Z) = HG,15; Z) = 0, ifLis not an integer,
HW0y;Z) = H®t,ny; Z) = HByw;Z) forn=0,1,2,....

For a description of the cohomology ring H*(By,; Z) see, for example, [2].

Proof. By Theorem 8.4, Uy, and S, are of the same homotopy type. The
exact sequence for the homotopy groups of the principal bundle p: U(H) —
U(H)/U(H)s, gives immediately the homotopy groups of the space U,,. The
vanishing of the singular homology groups and therefore of the singular cohomol-
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ogy groups in the first case follows from the Hurewicz isomorphism theorem
which relates homotopy groups and singular homology groups (see, for example,
[14, p. 79)).

COROLLARY 8.4. In particular let H be a separable infinite-dimensional Hilbert
space. Then the homotopy groups of the Stiefel spaces are

1(Bnwy) = m(Wnwy) =0, i=0,1,2,..., forn=0,1,2,...,
(S, 03) = M(Wqw,w3) =0, i=0,1,2,...,

710(Scw.my) = To(Wewo,my) =0, forn=0,1,2,...,

1(Swmy) = M(Wew.ny) = m_2(UM), i=1,2,..., forn=0,1,2,....

THEOREM 8.6. Let S € ®y,1,. The projection map
q: Sy = GL(H)/GL(H)s) —> G¢r,; = GL(H)/GL(H)s
defines a principal bundle over ® (¢ (, with fibre and structure group GL(S), which acts
on the fibres by left translations. And the projection map
q: W,y = UH)/UH)s) = G,y = UH)/U(H)s

defines a principal bundle over & , with fibre and structure group U(S), which
acts on the fibres by left translations.

COROLLARY 8.5. Let H be an infinite-dimensional Hilbert space. Suppose | is not
an integer. Then the projection q: &y, — &y, determines a universal classifying
principal bundle for the group GL(H'), and the projection q: Uy, — G5 a
universal classifying principal bundle for the group U(H'), where H' is a Hilbert space
with dim (H')=Y. &y, is therefore a universal classifying space Bgyy, and By,
for the groups GL(H') and U(H'). In particular &, (, is a universal classifying
space Bgy,ny and By, for the groups GL(n) and U(n) of the n-dimensional vectorspace.

COROLLARY 8.6. Let H be an infinite-dimensional Hilbert space. The homotopy
groups of the Grassmann spaces ® ., are

(G, 15) = 0, if neither ¥ nor 1 is an integer,
To(Bn,15) = 7o(Scrny) =0, forn=0,1,2,...,
T (Sny) = mi(Sppy) = m_(U@), i=1,2,..., forn=0,1,2,....
And the singular homology and cohomology with coefficients in the ring of integers
Zis
H(®.15;Z) = 0, if neither t nor | is an integer,
H(® 155 Z) = H®y,ny;Z) = HBywy; Z), forn=0,1,2,....
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COROLLARY 8.7. Let H be a separable infinite-dimensional Hilbert space. Then the
homotopy groups of the Grassmann spaces are

T((w,05) =0, i=0,1,2,...,
11‘0(@0‘,\»)) = 710(@@0'")) = 0’ for n= O, 1’ 2’ e ‘
‘rri(@(n,ow) = ﬂt(@ﬂu,n)) = m_l(U(n)), i=12,..., for n=0,1, 2’ o

REMARKS. It is easy to associate with the various classifying spaces of type
By and By, in this chapter in a natural way universal classifying vector bundles
of dimension n. Since all spaces which occur in this chapter are Banach manifolds,
it follows from Theorem 15 of [13] that all maps in this chapter which induce
isomorphisms for the homotopy groups are homotopy equivalences. In particular
all spaces with vanishing homotopy groups are contractible.

9. The general case. There appear various examples of maximal R-sets in
analysis (see [4]). In a subsequent publication we intend to compute the homotopy
type of the path components and of the associated groups of some of these examples.
Theorem 5.5, Corollaries 6.2 and 6.2,, and Theorem 9.1 imply the following
theorem, which can be used for computations:

THEOREM 9.1. Let M be a maximal R-set, and let € € wo(M) be a path component
of M such that there is a S € € with codim (S) infinite. Suppose also that U(I|s)
and U (I(3M|s)) are connected. Then we have the exact sequences of homotopy groups

o+ 2> 7 1(€) > m(U(M]5)) > m(UN(ER)) > m(€@) — - - -
- = 1 1(€) = m(U(I(M]5))) = m(U(I(M))) — (@) — - - -.

REFERENCES

1. N. L. Ahiezer and I.- M. Glazman, Theorie der linearen Operatoren im Hilbert-Raum,
Akademie-Verlag, Berlin, 1954.

2. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de
groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.

3. H. O. Cordes and J. P. Labrousse, The invariance of the index in the metric space of
closed operators, J. Math. Mech. 12 (1963), 693-720.

4. H. O. Cordes, On a class of C*-algebras, Math. Ann. (to appear).

S. , On a generalized Fredholm theory, Math. Ann. (to appear).

6. , Uber eine nichtalgebraische Charakterisierung von I-Fredholm-Operatoren, Math.
Ann. (to appear).

7. C. Z. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers
and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.

8. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators,
J. Analyse Math. 6 (1958), 261-322.

9. N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3
(1965), 19-30.




1967] R-SETS, GRASSMANN SPACES, AND STIEFEL SPACES 107

10. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.

11. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New
York, 1953.

12. B. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes,
Ergebnisse der Mathematik, Springer, Berlin, 1942.

13. R. S. Palais, Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966),
1-16.

14. N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J.,
1951.

UNIVERSITY OF BRITISH COLUMBIA,
VANCOUVER, BRITISH COLUMBIA, CANADA



