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Introduction. It is well known that every nonprincipal ultrafilter D on a set 7

is to-incomplete, provided the cardinal of the set I is not exceedingly large. (We

refer the reader to the comprehensive paper by Keisler and Tarski [5] for all relevant

information and further references.) Since ultrafilters are closed under finite inter-

sections of its members, it is easy to see that D being to-incomplete is equivalent to

saying that there exists a to-termed sequence

X0 a x,. => ■ ■ ■ = xn => ■ ■ ■

of elements of D such that

n *» = o.
nsco

In this note we give some partial answers to the following question : What are the

cardinals a and ultrafilters D such that D will have a descending a-termed sequence

X„ =>•••=> Xn => • • •, r¡ < a,

of elements of D such that

n xn = o?

We say that the ultrafilter D has an a-descending sequence if it has a descending a-

termed sequence of elements as above; in which case, we also say that D is

descendingly a-incomplete. The question raised above is not entirely trivial, because

simply knowing that D has a subset E of cardinality a such that f) E=0 will not

automatically produce a (well-ordered) descending a-termed sequence of elements

of D with intersection 0. As examples, let us consider some simple cases when

a = a>x. It is clear that no ultrafilter D on a countable set I has an condescending

sequence. It is equally clear that an ultrafilter D on a set I with cardinality oix has

an condescending sequence if and only if every element of D has power ojx, i.e.,

D is uniform on 7. Now, let us consider a nonprincipal ultrafilter D on a set 7 with

cardinality co2. Let ß be the smallest cardinal for which there exists a set in D ofthat

power. If ß < co2, then we have already reduced the problem to the two preceding

cases, that is:

if ß = co, then D has no condescending sequence,
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and

if ß = cuy, then D has an ¿^-descending sequence.

Suppose ß=u>2, i.e., D is uniform on /. Then it follows as a consequence of our

result Theorem 1.1 that, assuming 2mi =o>2, D has an ^-descending sequence. This

special result for arbitrary uniform ultrafilters Dona set / of cardinality w2 is

apparently new. Previously, the result was known only for certain uniform ultra-

filters D. Generalizations of the ideas involved in this proof have led to the writing

of this paper.

The original interest in this problem was motivated by studies in the cardinalities

of ultraproducts of models (see, for example, Keisler [3]). In fact, the special

result quoted above settled a conjecture of Keisler (private communication). We

shall show in §2 that our results have applications to ultraproducts and model

theory. Theorem 2.2 is a result of Keisler and is reproduced here with his permission.

1. Set-theoretical results. We let a, ß, y range over cardinals, r¡, £, £ range over

ordinals, and m, n over finite ordinals. a+ denotes the cardinal successor of a,

and cf (a) the cofinality of a. J A' ¡ denotes the cardinal of the set X. In what follows

we shall prove two principal results. They are:

Theorem 1.1. If a is a regular infinite cardinal such that 2a = a + , and if D is an

ultrafilter having an a + -descending sequence; then D has an a-descending sequence.

Theorem 1.2. {Assume the generalized continuum hypothesis.) If a is a singular

cardinal and D is an ultrafilter having an a +-descending sequence, then either

(i)   D has a cf{a)-descending sequence,

or else

(ii) there exists a cardinal ß<a such that for every regular cardinal y, ßziy<a,

D has a y-descending sequence.

We shall give the proof of Theorem 1.1 in detail and the proof of Theorem 1.2

in outline.

In all of the following lemmas let a he an infinite regular cardinal. Given two

functions/, g e a", we write/S g (or g~èf) if

\iv < « -f{n) = giv)}\ = «,

and we write/<g (or g>/) if g$f i.e.,

\{v < « -fil) ^ g(v)}\ < «•

Clearly, /<g implies/^g.

Lemma 1.1. Let Xca" with \X\zZ<x. Then there exists a function f e a" such that

f> g for all g eX.
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Proof. We first well order X so that

X ={gn:v < a}.

We define the function fe a" as follows: for each -o <a,

firf) is the ordinal successor of [J gAy)-
iSn

Notice that since a is regular, the ordinal {Jn„gAv) ¡s less than a, so/(i?) is also

less than a and fea". Now, given any ge X, say g=g( for some £<a, then for

every -n ̂ £,

/&i)-[j¿ftfo)] + l >SíO?)-

Hence/> g.

Lemma 1.2. .4.sjwme that 2a=a+. FAere exisr-s a subset T<=aa of power a+ such

that for every fe a",

\{geY:gïf}\ = <*•

Proof. Well order the set a"={g< : f <a+}. We define a sequence of functions

as follows. Suppose £<a+ and for every r¡<C,fi is already defined. Consider the

set of functions

X = {f,:r,< fí U {ft}.

This set has power at most a, so by Lemma 1.1, let/ be a function in a" which is

greater than all members of X. Now, let

Y = {/ : S < a+}.

It is clear that | y|=a+. Suppose /is an arbitrary function in a", then f=gv for

some 77<a+. For every £ such that -n^£<a+, we have

S-, < /«•

Hence,

|{geT:gg/}| a«.

The lemma is proved.

Let Y={f : f < a+} be a set of functions as in Lemma 1.2. For each t e a u a",

we shall define a descending a-termed sequence

Y¡, £ < a,

of subsets of a+ as follows. Suppose first that t e a. For each f <a, let

Yl = {v<a+ :£ </„(/)}.
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Notice that if f ^£<a, then

a+  ZD   Y\ =>  F?,

and, furthermore,

(o n y\ « o.

Next suppose r e aa. For each f < a, let

y| = {r, < a+ : there exists a £ ^ f such that/„(0 g *(£)}.

Again, if f ^ £ < a, then

a+ 3 y| => y*.

Intuitively, if / e a, then Y[ is the set of all indices -n of functions /„ in y such that

the value of/, at í is greater than Ç. If t e aa, then y| is the set of all indices r¡ of

functions/, in Y such that at some future point ££ £, the value of/, at £ is at most

the value of t at £. Thus, for such a teaa,

{<«
implies that

there are at least a places £ where/„(£) z% /(£).

This means that /„ zi t. But by our construction of Y, only at most a functions /„

in y can satisfy the above, so we have

(2) in illá«.
\i<a I

To summarize, we have that (1) holds if t e a, and (2) holds if t e a".

Lemma 1.3. Let E be any family of nonempty subsets of a+ closed under finite

intersection. Then there exists a t e a U a" such that

(a+-yi)££      for all £ < a.

Proof. Suppose to the contrary that

(3) for every t e a u a", there is a i < a such that (a+ — y|) e £.

Then, as t ranges in a, we can define a function fe a" such that for every f <a,

(a+-y;(i))e£.

Now, consider the sequence Y{, £<a. By our assumption (3), there is a £<a

such that

{a+ - YD e E.

Now,

(«+-F/(0)-{,<«♦  : /„(£) z% /(£)}
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and

(V - YD = {v < «+ : for all | ^ £,/„(£) > /(#}.

This means that

(a+-7/(0)n(«+-y/) = OEF,

which is a contradiction.

Lemma 1.4. Suppose that 2a = a + and D is any uniform ultrafilter on the set a+.

Then D has an a-descending sequence.

Proof. Under the assumption that 2a = a + , we construct the set y as in Lemma

1.2, and the sequences Y¡, £<a, for each t e a u aa, satisfying all of the preceding.

By Lemma 1.3, we see that there exists a t eakJ aa such that

Y¡ e D,       for all £ < a.

If í e a, then since, by (1), (~]f<a y|=0, D has an «-descending sequence. If t e a",

then by (2), we have

in y\i s «.ií<«   i
So the intersection is not a member of D. From this we see easily that the new

sequence

z?= Yi-\n ni

is an a-descending sequence of elements of D such that

n zt = o.

The lemma is proved.

Proof of Theorem 1.1. Let D be any ultrafilter having an a + -descending sequence :

For each £<a + , let ZÍ=[P)„<Í y,]— y.. We now define an ultrafilter Fon the set

a+ as follows: given X^a+, we say that

Ie£   if and only if    IJ Zte D.
ieX

We may verify easily that E is an ultrafilter on a + . Let X be any subset of a+ such

that | A'| <a+. Then there is an in<a+ such that

i < 7]       for every £ £ X.

Hence,

Yv n [ U Z4] = 0
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and this means that X $ E. So £ is uniform on a+. By Lemma 1.4, £ has an a-

descending sequence Xt, £<a, such that p){<a X(=0. From this it easily follows

that D must also have an a-descending sequence.

Outline of proof of Theorem 1.2. (Assume GCH.) Suppose a is a singular

cardinal and suppose that D has an a + -descending sequence. Without loss of

generality (see above proof) we can assume that D is a uniform ultrafilter on the

set a+. Suppose that (ii) fails to hold, i.e., for every cardinal ß < a, there is a regular

cardinal y such that ßz^y<a and D does not have a y-descending sequence. Let us

select an increasing cf (a)-termed sequence of such cardinals, say, yt, £ < cf(a), so

that

i < yt       for each £ < cf (a)

and

Consider the cartesian product

p= n Yt-
î<of(«)

We see that |p| =ce + . We now repeat Lemmas 1.1-1.4 with obvious modifications,

for instance, replacing the set aa by p and the cardinal a by cf(a). Since we have

assumed that D has no y?-descending sequences, it will follow that some cf(a)-

descending sequence of the type Y\, f < cf(a), with tep, must have all of its terms

in D. Since, again,

I n Tifs«,

we easily see that D has a cf(a)-descending sequence. Hence (i) holds.

Let us now discuss some consequences of Theorems 1.1 and 1.2 and some

problems which are still open. For simplicity, in the following discussion, we shall

assume the GCH whenever it is needed. From our results it follows that if D has

an a>a + „-descending sequence, then D has an «^-descending sequence, if a>a is

regular. Thus, if D has an con-descending sequence, then D has an com-sequence for

each m, Oz%m<n. In particular, if D is uniform on co„, say, then D has an con-

descending sequence, so D has an condescending sequence for all m, Ozím<n.

The case of singular cardinals is far less satisfactory. For instance, suppose D

has an cum + j-descending sequence, then all we can conclude from Theorem 1.2 is

that D will have an co-descending sequence, a trivial result. The trouble here is

that case (i) of 1.2 may hold while case (ii) fails. On the other hand, suppose D

has an mai + i-descending sequence, then we can not even conclude that D has an

condescending sequence, because in going down in cardinality, case (ii) of 1.2

may hold while case (i) fails. We may, of course, apply our results over and over

again to those cardinals y for which D has a y-descending sequence, but there is
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still no assurance that condescending sequences exist in D. Thus the two repre-

sentative open problems are:

(I) If D has an wa + rdescending sequence then does D have (a) an condecreasing

sequence ? (b) an condescending sequence for each n ?

(II) If D has an toWl + ndescending sequence then does D have (a) an o>x-

descending sequence? (b) an condescending sequence for each ni

There are also two closely related problems which cannot be stated in the

manner of (I) and (II). They are :

(I') If D is uniform on coro, then must D have (a) an condescending sequence?

(b) an condescending sequence for each n ?

(IT) If D is uniform on <omi, then must D have (a) an to2-descending sequence ?

(b) an ton-descending sequence for each n ^ 2 ?

Finally, one may ask to what extent is the assumption of 2a = a+ (or the GCH)

necessary in our arguments.

2. Model-theoretical applications. Both of the applications we shall present in

this section depend heavily on existing model-theoretical results (Theorems 2.1

and 2.2). The applications are of the following nature: knowing that D has an

a-descending sequence will allow us to conclude from other results that certain

things happen to D.

Our first application has to do with cardinalities of ultraproducts. We refer the

reader to Keisler [3] for notation and other references. Suppose D is a uniform

ultrafilter on the set ß, and a is an arbitrary infinite cardinal, then as in [3], we let

aB¡D denote the cardinal of the corresponding ultrapower of a. Let «(a, ß) be the

smallest cardinal in the set

{aB¡D : D uniform on /?}.

Some known results concerning the function k are the following :

(i)    ic(a, a)>a;

GO  K(2a<,y«,/9)=/forally = 2;

(iii) t(com, con) > com for all m, 0 S m ^ n ;

(iv) /c(to, a) > w, unless a is so large that there is a nonprincipal co-complete

ultrafilter over a.

The function k is not yet very well understood. For instance, it is suspected that

k(jS, a) > a for all ß such that co ̂  ß g a,

however, we have no proof. It is not even known whether k is a monotonically

increasing function in the second argument. Many of these questions are open

with or without the assumption of the GCH. Two of the simplest unknown in-

equalities are the following :

(t(cO, U)x)   >   COj?

k(coi, co^) > wx ?
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The second inequality would be true if the answer to problem {!') is yes. By using

our results in §1 and the following Theorem 2.1, we can supply a few more values

of the function k. Recall that Theorem A, part (i), of [3] states :

If ot is infinite and D is a countably incomplete ultrafilter on ß, then

aB¡D = [<xBID]<°.

A generalization of this result is the following.

Theorem 2.1. Suppose y is a cardinal such that a = ^i<yaô and suppose D is an

ultrafilter on ß with a y-descending sequence. Then

aB/D = [ae¡DY.

Proof. This result is clearly a direct generalization of the result y=co. Its proof

is also a direct analog of the corresponding proof, and should present no difficulties.

We shall omit the details.

Using this simple result we see that various values of k can now be calculated

(assuming the GCH). For example suppose that

« = wmy, ß = <*>*, and y = wy,

then by combining 2.1 with 1.1, we see that

(V)(GCH) «{»ay, oi2)  = Wffl1+1.

Clearly, various other values of k can be similarly calculated. Simple though

results of the kind in (v) may be, we emphasize that at the moment we do not

know of any other way of establishing them. One last remark. If the answer to

problem (V) is yes, then by combining 2.1 with 1.1, we have

«i'»ai,<t)a>) = atai + 1.

The second kind of applications we have in mind have to do with elementary

extensions of models

Wl = (A, S,..->

for a first-order language with a binary predicate g which is stipulated to be a

simple ordering relation. An elementary extension

9Î = <£, £,•••>

of S0Í is said to be an end extension if every element of B — A comes after every

element of A in the ordering ^ on B. Various results are known about end

extensions. For instance, every model ÍVH of Peano's arithmetic has a proper end

extension ÍH, where ^ is the natural ordering in arithmetic. The following Theorem

2.2 describes the situation completely for a certain kind of models iïïla where ^

is a well-ordering relation. It gives us all the information we need to know about

elementary extensions of such models.
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Let a be an infinite cardinal and let :£ be the natural ordering of the ordinals in

a. We use < to denote ^ but not =. By the complete model on a we mean the model

50ca = <a, g,...>

which has among its relations and functions (listed in some definite order in the

• • • part of the model) every finitary relation and function on a. Let

5ft = <F, £,-••>

be any elementary extension of 50îa. Notice that the relation ^ on B may not be

a well-ordering relation. Let ß be any cardinal less than or equal to a. We say that

5ft realizes ß if there exists an element be B such that

5W (= $ < b < ß,       for every Ceß.

Notice that in the above f and ß are elements of a, hence of 50ca, while if such an

element b exists it obviously must be in B—a.

The following interesting theorem is due to Keisler (unpublished, private

communication) and is given here with his permission.

Theorem 2.2. Let ß, y be cardinals such that ßfiyfLa and y is a regular cardinal.

The following are equivalent:

(i)   Every elementary extension 5ft of !üca which realizes y also realizes ß.

(ii) Every uniform ultrafilter D on the set y has a ß-descending sequence.

Proof (in outline). Assume (i). Let D be a uniform ultrafilter on y. Let 5ft be the

ultrapower 50í¿/7), so 5ft is an elementary extension of 50ca. The identity function

/(f) = f for each f < y gives rise to an element

b = {geay :f~Dg}

in 5ft such that

ffi \= f < b < y,       for all f £ y.

Hence 5ft realizes y. By (i), 5ft realizes ß. Let c be an element in 5ft such that

5ft |= f < c < ß,       forallf eft

and let/e aT be any representative of c. Then, by the definition of ultraproducts,

we have, for each ¿j e ß, the set

Y( = {r,ey:é<f{v) <ß}eD.

Clearly, the sequence Yt, C<ß, is descending and

n Yt = o.

So D has a ß-descending sequence and (ii) is proved.
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Assume (ii). Let 9? be any elementary extension of 9Jca having an element b

such that

9Î |= £ < b < y,       for all f g y.

Let D be the set of all subsets £ of y such that

9c |= P(b).

Notice that each subset £ of y must be listed among the relations in 9Jlœ, hence the

above line is meaningful. We can see without difficulty, using strongly the fact that

3Î is an elementary extension of Wla, that

if£, QeD, then£n QeD;

if Pe D and £ <= Q c y, then QeD;

if £ u Q = y, then either Pe Dor QeD.

Hence D is an ultrafilter on y. Suppose P<=y and |£ | < y. Then because y is regular,

there will exist an element rj < y such that

ima\= \/x(P(X)->xâr,).

Hence

9Î |= Vx(P(x) -^Xúr¡).

This means that not 9Í |= P(b) and £ $ 7). So D is uniform on y. By (ii), 7) has a

ß-descending sequence y«, f <ß. We may assume that Y0 = y. We now define a

function £ with domain y and range a subset of ß as follows : For each r¡ ey

F{n) = the least ordinal £ such that r¡ $ Y(.

This function £is among the relations listed in 9Jla. We can express in 5Dta that:

the domain of £ is the set {x : x < y);

the range of £ is a subset of {x : x < ß} ;

for each f e ß if x e Y( then F(x) > Ç.

Because all of the above statements are also true in 9t, we see that :

F(b) is defined ;

F(b) < ß;

and, because b e Y( for every | e ß,

i < F(b) < ß,       for every ^ e ß.

Thus 9Î realizes ß. The theorem is proved.

Remarks about Theorem 2.2. The proof in the direction (i) implies (ii) does not

require that 50îa is a complete model or that y is regular. The proof in the other
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direction only required that 50ia be complete only with respect to the binary

relations and functions on a. Actually, in this direction of the proof one can exploit

the very much similar ideas in Chang [2] and show that if 5ft realizes y then many

different elements of 5ft can be found which realizes ß.

An example of an application of 2.2 and 1.1 is the following. Suppose that

a^co2 and 2rai = to2. Then

every elementary extension 5ft o/50ca which realizes to2 also realizes wx.

Obviously, the solutions to some of the problems we raised in §1 will give new

results here.

In conclusion, we would like to point out that the ideas underlying Theorem 2.2

can be generalized and extended to models of set theory, see Keisler [4]. Then

our results 1.1 and 1.2 have corresponding applications to the so-called natural

models of set theory.
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