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Comparison theorems of Sturm's type will be obtained for the linear elliptic

partial differential equations

n n

(1) lu =   2  Dy(aiiDju) + 2 2 byDyU + cu = 0,
i.l=l i = l

n n

(2) Lv =   2   Dy(AyjDjV) + 2 2 ByDyV + Cv = 0
i,l=l i = l

on unbounded domains £ in «-dimensional Euclidean space £n. The boundary

£ of £ is supposed to have a piecewise continuous unit normal vector at each point.

Points in £n are denoted by x=(x\ x2,..., xn) and differentiation with respect to

x' is denoted by Dt, i= 1, 2,..., «. The coefficients aih by, c, Ayt, By, and C in (1)

and (2) are assumed to be real and continuous on £ u £, and the matrices (aw)

and (Ay,) symmetric and positive definite in £. A "solution" of (1) (or (2)) is

supposed to be continuous in £ u £ and have uniformly continuous first partial

derivatives in £, and all derivatives involved in (1) (or (2)) are supposed to exist,

be continuous, and satisfy the differential equation at every point in £.

Some recent results of Clark and the author [2], [7] apply to bounded domains

£ in £\ In the self-adjoint case by = By = 0, i=l, 2,..., «, the variation of lu is

defined as

(3) V[u] = \      T (.au-Aii)DyuDfU+(C-c)u2   dx.

The following result [2] is typical of those to be extended to unbounded domains.

Theorem A. Let R be a bounded domain in En whose boundary P has a piecewise

continuous unit normal. Suppose by = By=0 in (1), (2), /'= 1, 2,..., «. If there exists

a nontrivial solution u of lu=0 in R such that u=0 on P and K[w]=;0, then every

solution of Lv = 0 vanishes at some point in R.

In [7] the author extended this to the general second-order linear elliptic equations

(1) and (2). Theorem A generalizes a theorem of Hartman and Wintner [4] in

which the condition F[«]§0 is replaced by the pointwise conditions C^c and

(fly—Ai}) is positive semidefinite in £. In the case «=1, Theorem A reduces to
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Leighton's generalization [5] of the classical Sturm-Picone theorem. In this case,

because the solutions of second order ordinary linear differential equations have

only simple zeros, it is easy to obtain the following modification of Theorem A :

If there exists a nontrivial solution of lu=0 in (a, ß) such that u{a) = u{ß) = 0 and

V[u] >0, then every solution of Lv=0 has a zero in {a, ß). In the case « = 2, Protter

[6] obtained pointwise conditions on the coefficients in (1) and (2) to ensure the

conclusion of Theorem A.

Our purpose here is to extend Theorem A to unbounded domains in En. Appar-

ently no general results are known even in the case « = 1. Our results will constitute

an extension of the Sturm-Picone theorem in 4 directions : (i) to «-dimensions ;

(ii) to nonselfadjoint differential equations; (iii) to coefficients satisfying a general

condition of the type V[u]^0; and (iv) to unbounded domains.

However, differential equations of order higher than 2 and general boundary

conditions will not be considered here.

Let Da denote the «-disk {xe En: \x—x0| <a} and let Sa denote the bounding

(«- l)-sphere, where x0 is a fixed point in En. Define

Ra = RnDa,      Pa = PnDa,       Ca = Rn Sa.

Clearly there exists a positive number a0 such that 7?a is a bounded domain with

boundary Pa u Ca for all a = a0.

Let Q[z] be the quadratic form in « +1 variables zx, z2,..., zn+1 defined by

n n

(4) '   Q[z] =  2 AtiztZj-2zn+x 2 B^ + Gz2^,
i.l = l (=1

where the continuous function G is to be determined so that this form is positive

semidefinite. The matrix Q associated with Q[z] has the block form

ß = (-*  ~g)'     '-<**

where BT is the «-vector {Bx, B2,..., Bn). Let B¡* denote the cofactor of — 7?¡ in

Q. Since A is positive definite, a necessary and sufficient condition for Q to be

positive semidefinite is det Q = 0, or

(5) G det {Au) = - 2 BM-
i=i

The proof is a slight modification of the well-known proof for positive definite

matrices [3].

Let Ma be the quadratic functional defined by

(6) Ma[u] = f   F[u] dx,

where

(7) F[u] = 2 AijDiUDjU-2u 2 BlDiu + {G-C)u2.
i.l i
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Define M[u] = lima^œ Ma[u] (whenever the limit exists). The domain 35 M of M is

defined to be the set of all real-valued continuous functions u in £ u £ such that

u has uniformly continuous first partial derivatives in £a for all a^a0, M[u]

exists, and u vanishes on £. Define

(8) [", V]a = « 2 AUniDlV ds
JCa        i.i

where («¡) is the unit normal to Ca ;

(9) [u, v] = lim [u, v]a
a-* <x>

whenever the limit on the right side exists.

Lemma 1. Suppose G satisfies (5) in R. If there exists u e 35 M not identically zero

such that M [u] < 0, then every solution v of Lv = 0 for which [u2¡v, v] 2:0 vanishes

at some point ofRuP.

Proof. Suppose to the contrary that there exists a solution v ̂ 0 in £ u P. For

u e 35M define

X* = vDy(u¡v),

Y^v-^A^Dp,       i=l,2,...,n.
i

The following identity in £ will now be established :

(10) 2 AyjXiXi-2u^BiXl + Gu2+ 2 Dy(u2Y*) = /,[i/] + «a»-1L».
i.i i i

The left member of (10) is equal to

-2 2 Ay¡(vDyU - uDyv)(vD)U - uDjV)-2 BiivDyU - UDyV)
V    i,l V    i

+ Gu2 + T 2 AvDiuDiv + ̂  2 ivDy{AyiDjv)-AyjDyvDjv).
V    i.i V      ¡.1

Since {An) is symmetric, this reduces easily to the right member of (10). Since

Lv=0 in £,

(11)    f   F[u]dx = j   \jiAijXiX1-2uJiBiXi + Gu2\dx + j   ^DfyPY^dx.

The first integrand on the right side is a positive semidefinite form by the hypothesis

(5). Since u=0 on Pa, it follows from Green's formula that

f   2 A("2 Y') dx = f        2 "2"*Y* ds
JRa    i JPavCa V

=       — y AyMyDjV ds.
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Hence (8) and (11) yield

f   F[u] dx = [u2lv, vL,
JRa

Since [u2jv, v] = 0 by hypothesis,

M[u] = lim  f   F[u] dx = 0.
a-<=° jRa

This contradiction establishes Lemma 1.

Lemma 2 (self-adjoint case). Suppose 7?t=0 in (2) and (7), i= 1,2,...,«. 7/

¿«ere exists u e S)M no? identically zero such that M [u] ̂  0, then every solution v of

Lv=0for which [u2jv, v]^0 vanishes at some point of Ru P.

Proof. In this case we can take G=0, and the first integrand on the right side of

(11) is a positive definite form. Hence

Í 2 AvXW i 0,
«a £7

equality holding iff X{ is identically zero for each 1=1,2,...,«; i.e., « is a constant

multiple of t>. The latter cannot occur since u = 0 on P and v^OonP, and therefore

F[u] dx > [u2¡v, v]a.
JRa

It follows that M[u]>0, contrary to the hypothesis Af[i/] = 0.

In addition to (6) consider the quadratic functional defined by

ma[«] = 2awAw7Lw — 2u2_ibiDiu — cu2\ dx,

whose Euler-Jacobi operator is / and let «i[w] = lima_.c0 ma[u] (whenever the limit

exists). The domain ®m of m consists of all real-valued continuous functions u

in R u P such that u has uniformly continuous first partial derivatives in Ra for

all a^a0, m[u] exists, and u vanishes on P. The variation of m[u] is defined as

V[u] = m[u]-M[u], that is

(12)    V[u]=  i \^{ai)-Alj)DluDjU-2u^{bi-Bi)Diu + {C-c-G)u2\ dx,

with domain % = %m n ®M. The analogues of (8), (9) for the operator / are

{u, v}a =       « 2 aaniDjV ds,
•lca     ¡J

{u, v} = lim {«, v}a.
a-* oo

Theorem 1. Suppose G satisfies (5). If there exists a nontrivial solution we® of

lu = 0 such that {«, wJ^O and V[u]>0, then every solution v of Lv = 0 for which
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[u2/v, v]ïzO vanishes at some point of Ru P. The same conclusion holds if the

conditions V[u]>0, [u2¡v, v]^0 are replaced by V[u]^0, [u2¡v, v]>0 respectively.

Proof. Since «=0on £a, it follows from Green's formula that

ma[u] = -      uludx+{u,u}a.

Since lu=0 and {u, u} z¿ 0, we obtain in the limit a ->• oo that m[u] S 0. The hypothesis

V[u]>0 is equivalent to M[u]<m[u]. Hence the condition M[u]<0 of Lemma 1

is fulfilled and v vanishes at some point of £ u P. The second statement of Theorem

1 follows upon obvious modification of the inequalities.

Theorem 2 (self-adjoint case). Suppose ¿>¡ = £¡=0 in (1) a«c7 (2), i= 1,2,...,«.

If there exists a nontrivial solution «e33 of lu = 0 such that {u, u}z%0 and V[u]^0,

then every solution v of Lv = 0 for which [u2/v, v]^0 vanishes at some point of

£u£.

This follows from Lemma 2 by a proof analogous to that of Theorem 1.

In the case that equality holds in (5), that is

G = - 2 2W/det {Ay,),
(=i

we define

n

S = 2 Dy(by-Bi) + C-c-G.
i = l

It follows from (12) by partial integration that

(13) V[u]=\ r2(%-^i;)A"£y/ + 8M2j dx + a,

where

Q = lim  f   y(By-by)u2nyds.
a->»   JCa    y

L is called a " strict Sturmian majorant " of / when the following conditions hold :

(i) (ayj — Ayj) is positive semidefinite and 3 2:0 in £; (ii) 0 2:0; and (iii) either S>0

at some point in £ or (% — Atj) is positive definite and c^O at some point. A

function defined in £ is said to be of class C2,1(£) when all of its second partial

derivatives exist and are Lipschitzian in £.

Theorem 3. Suppose L is a strict Sturmian majorant of I and all the coefficients

ayj involved in I are of class C2,\R). If there exists a nontrivial solution u e 35 oflu = 0

such that {u, u}zi0, then every solution v of Lv = 0 for which [u2/v, v]^0 vanishes at

some point of £ u £.

Proof. V[u] exists since m g 35, and hence each term on the right side of (13)
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exists by the strict Sturmian hypothesis. Since au e C2,1{R), i,j=l,2,...,n,

Aronszajn's unique continuation theorem [1] guarantees that the nontrivial

solution u cannot vanish identically in any open subset of R. In the case that

S>0 at some point in R it then follows from (13) that V[u]>0. In the case that

S = 0 in 7? it follows from (13) and the positive definite hypothesis on {an —An)

that F[w] = 0 only if 7)¡w=0 for each i'= 1, 2,..., « in some open set S of R, that

is, u is constant in S. Since c=¿0 at some point x0 e S, the differential equation (1)

would not be satisfied at x0. Hence F[«]>0 also in the case that 8=0. The con-

clusion of Theorem 3 then follows from Theorem 1.

Theorem 4 (self-adjoint case). Suppose bi = Bt=0 in (1) and (2), :'= 1, 2,..., «,

C^c, and {a^ — A^) is positive semidefinite in Ru P. If there exists a nontrivial

solution ue'Si of {I) such that {u, u}^0, then every solution v of {2) for which

[u2\v, v] = 0 vanishes at some point of RU P.

This is an immediate consequence of Theorem 2. We assert that the same

conclusion holds even if {Ai}) is only positive semidefinite, provided F is a strict

Sturmian majorant of / and all the coefficients ay are of class C2,1{R). In fact,

under these assumptions K[«]>0 as in Theorem 3, i.e., M[u]<0 by the proof of

Theorem 1, and Lemma 2 remains valid for positive semidefinite {Aif) provided

the hypothesis Af[w] = 0 is replaced by M[u]<0.

With trivial modifications the above theorems and proofs remain valid in the

case that F is a bounded domain, i.e., Ca is void for a = a0. In particular Theorem 2

implies Theorem A and Theorem 1 implies the author's recent result [7] for the

general elliptic equations (1), (2) on bounded domains.

In the case «=2 considered by Protter [6], the condition 8^0 of Theorem 3

reduces to

{AXXA22-A2X2)^ Dtf-Bd-rC-c\ = AXXB22-2AX2BXB2 + A22B\.

If F is a bounded domain, Theorem 3 then reduces (with trivial modifications)

to the author's result in [7].

It is interesting to note the following one-dimensional instances of Theorem 2,

in which R is an open interval {a, ß). When «=1 and bx = Bx = 0, the differential

equations (1), (2) have the form

(14) {au')' + cu = 0,       a > 0,

(15) {Av')' + Cv = 0,       A > 0.

Theorem 5. If there exists a nontrivial solution u of (14) in {a, oo) such that

u{a)=0, a{x)u{x)u'{x) -> 0 as x -> oo, and

(16) P [{a-A)u'2 + {C-c)u2]dx = 0,
Ja



284 C. A. SWANSON [February

then every solution v of (15) for which A(x)u2(x)v'(x)/v(x) has a nonnegative limit as

x -> oo has a zero on [a, oo). Unless v is a constant multiple of u, v has a zero in

(a, °o).

Proof. The first statement follows immediately from Theorem 2. To prove the

second statement, recall from the proof of Lemma 1 that for all a 2t a0,

Since the solutions of second order ordinary linear differential equations have only

simple zeros, an application of L'Hospital's rule yields

*-* f(x)

Thus the limit of the first term on the right side of (17) as a -> oo is nonnegative.

The second term is nonnegative for all a and zero iff « is a constant multiple of v.

Hence M [u] >0 unless v is a constant multiple of u. This contradicts the hypothesis

(16).
The next result applies to the case that a, ß may be singular points of the differen-

tial equations (14), (15); the possibility that they are ±oo is not excluded. The

proof is similar to that of Theorem 5 and will be omitted.

Theorem 6. If there exists a nontrivial solution u of (14) in {a, ß) such that

a(x)u(x)u'(x) -> 0 as x -> a and as x —>- ¿8, and

(18) f  [(a-A)u'2 + (C-c)u2]dx > 0,
Ja

then every solution v of (15) for which A(x)u2(x)v'(x)lv(x) has a nonnegative limit as

x -> ß and a nonpositive limit as x —> a has a zero in (a, ß). If the left side o/(18) is

only nonnegative, the same conclusion holds unless v is a constant multiple of u.

In the special case that a, ß are ordinary points of (14) and (15), this reduces to

the following generalization of the classical Sturm-Picone theorem ; our result is a

slight extension of Leighton's theorem [5].

Theorem 7. If there exists a nontrivial solution u of (14) in [a, ß] such that

u(a) = u(ß) = 0 and the left side o/(18) is nonnegative, then every solution of (15)

except a constant multiple of u has a zero in (a, ß).

As an example of Theorem 5, consider the differential equations

(19) w" + (2«+l-x> = 0,

(20) v" + [2« +1 - x2 +p(x)]v = 0,

on a half-open interval [a, oo), where p(x) is a polynomial. Equation (19) has the

well-known solution u(x) = exp ( — x2/2)77n(x), where 77n(x) denotes the Hermite
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polynomial of degree «. Clearly we®. Since every solution v of (20) satisfies

v'{a)lv{a)~q{a) as a -> oo, where q{a) is a polynomial, it follows that the hypothesis

u2{a)v'{a)lv{a) ->■ 0 as a -> oo is fulfilled. Hence if a is a zero of 77n(x), then every

solution of (20) has a zero in (a, oo) provided

/•oo

p{x)u2{x) dx > 0.
Ja
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