COMPARISON THEOREMS FOR ELLIPTIC EQUATIONS
ON UNBOUNDED DOMAINS

BY
C. A. SWANSON()

Comparison theorems of Sturm’s type will be obtained for the linear elliptic
partial differential equations

6)) = Y DfayDu)+2 > bDu+cu=0,
t,7=1 i=1

) Lv= Y D(A;Dp)+2 > BDp+Cv =0
t,4=1 i=1

on unbounded domains R in n-dimensional Euclidean space E™. The boundary
P of Ris supposed to have a piecewise continuous unit normal vector at each point.
Points in E™ are denoted by x=(x!, x%, ..., x") and differentiation with respect to
x* is denoted by D,, i=1, 2, ..., n. The coefficients a;, b;, ¢, Ay, B;, and C in (1)
and (2) are assumed to be real and continuous on R U P, and the matrices (a;;)
and (4,,) symmetric and positive definite in R. A “solution” of (1) (or (2)) is
supposed to be continuous in R U P and have uniformly continuous first partial
derivatives in R, and all derivatives involved in (1) (or (2)) are supposed to exist,
be continuous, and satisfy the differential equation at every point in R.

Some recent results of Clark and the author [2], [7] apply to bounded domains
R in E™ In the self-adjoint case b;=B,=0, i=1, 2,..., n, the variation of lu is
defined as
3) Viu] = J;: [ z (ai,—A,,)D‘uD,u+(C—c)u2] dx.

i,j=1
The following result [2] is typical of those to be extended to unbounded domains.

THEOREM A. Let R be a bounded domain in E™ whose boundary P has a piecewise
continuous unit normal. Suppose by=B;=0 in (1), (2), i=1, 2, ..., n. If there exists
a nontrivial solution u of lu=0 in R such that u=0 on P and V[u]ZO0, then every
solution of Lv=0 vanishes at some point in R.

In [7] the author extended this to the general second-order linear elliptic equations
(1) and (2). Theorem A generalizes a theorem of Hartman and Wintner [4] in
which the condition V[u]=0 is replaced by the pointwise conditions C2c and
(a;— Ay;) is positive semidefinite in R. In the case n=1, Theorem A reduces to
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Leighton’s generalization [5] of the classical Sturm-Picone theorem. In this case,
because the solutions of second order ordinary linear differential equations have
only simple zeros, it is easy to obtain the following modification of Theorem A:
If there exists a nontrivial solution of u=0 in (e, B) such that u(«)=u(8)=0 and
V[u]>0, then every solution of Lv=0 has a zero in (e, B). In the case n=2, Protter
[6] obtained pointwise conditions on the coefficients in (1) and (2) to ensure the
conclusion of Theorem A.

Our purpose here is to extend Theorem A to unbounded domains in E®. Appar-
ently no general results are known even in the case n=1. Our results will constitute
an extension of the Sturm-Picone theorem in 4 directions: (i) to n-dimensions;
(ii) to nonselfadjoint differential equations; (iii) to coefficients satisfying a general
condition of the type V[u]=0; and (iv) to unbounded domains.

However, differential equations of order higher than 2 and general boundary
conditions will not be considered here.

Let D, denote the n-disk {x € E™: |x—x,| <a} and let S, denote the bounding
(n— 1)-sphere, where x, is a fixed point in E™. Define

R, = RN D, P, =PnN D, C.=RnNnS,.
Clearly there exists a positive number a, such that R, is a bounded domain with
boundary P, U C, for all a=a,.
Let Q[z] be the quadratic form in n+ 1 variables z,, z, . . ., z, +, defined by

n n
@ - Qlz] = z Ayjzizy—2zp 41 Z Biz;+Gz3 11,
5= =1

i 1

where the continuous function G is to be determined so that this form is positive
semidefinite. The matrix Q associated with Q[z] has the block form

0= (5 o) A-w

where BT is the n-vector (By, B,, ..., B,). Let B¥ denote the cofactor of —B; in
Q. Since A is positive definite, a necessary and sufficient condition for Q to be
positive semidefinite is det 9 =0, or

) Gdet(d,) 2 — > BB
i=1

The proof is a slight modification of the well-known proof for positive definite
matrices [3].
Let M, be the quadratic functional defined by

(6) M,[u] = | F[u]dx,
where ‘

) Flu] = 3 AyDuDu—2u Y BDu+(G—C).
iJ i
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Define M[u]=lim,.., M [u] (Whenever the limit exists). The domain ®, of M is
defined to be the set of all real-valued continuous functions # in R U P such that
u has uniformly continuous first partial derivatives in R, for all a=a,, M[u]
exists, and u vanishes on P. Define

@® ol = [ w3 dynDods
Cq 1,5
where (n,) is the unit normal to C,;
&) [, v] = lim [u, 0],
a— 0

whenever the limit on the right side exists.

LEMMA 1. Suppose G satisfies (5) in R. If there exists u € Dy not identically zero
such that M[u]<O0, then every solution v of Lv=0 for which [u%[v, v]=0 vanishes
at some point of R U P.

Proof. Suppose to the contrary that there exists a solution v#0 in R U P. For
u € D, define

X‘ = UD;(u/U),
Y‘=U—12A“Dﬂ), i= l,2,...,n.
]

The following identity in R will now be established:

(10) > A4,X'X'-2u) BX'+Gu+ > D(u*Y') = F[u]+uv~"Lo.
[8} i i

The left member of (10) is equal to

1 2u
i ;2,: Ay(vDju—uDw)(vDu—uDw)— > Z By(vDu—uDy)

2
+Gu?+ 2—;'4 Z A,,D,uD,v + :—2' Z (ng(AuDjU) - AuD‘UDIU).
1,7 [13)

Since (4,,) is symmetric, this reduces easily to the right member of (10). Since
Lv=0in R,

(1) fR Fluldx = L [2 A XX =2u> B,X‘+Gu2] dx+ Lu 2, Dw YY) dx.

1 1%

The first integrand on the right side is a positive semidefinite form by the hypothesis
(5). Since u=0 on P, it follows from Green’s formula that

f ZD,(u"’Y‘) dx=f zuzn,Y’ds
Rq PauCq 4

2
= fc gv— z A‘,n‘D,v ds.
a 1%
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Hence (8) and (11) yield
J; Flu] dx =z [W?|v, v],.
Since [42[v, v]20 by hypothesis,
Ml = lim L Flu] dx 2 0.

This contradiction establishes Lemma 1.

LEMMA 2 (SELF-ADJOINT CASE). Suppose B;=0 in (2) and (7), i=1,2,...,n. If
there exists u € Dy not identically zero such that M [u} <0, then every solution v of
Lv=0 for which [u?|v, v] 20 vanishes at some point of R U P.

Proof. In this case we can take G=0, and the first integrand on the right side of
(11) is a positive definite form. Hence

[ Saxxrzo,
Rg 4,5

equality holding iff X* is identically zero foreach i=1, 2,.. ., n; i.e., u is a constant
multiple of v. The latter cannot occur since #=0 on P and v#0 on P, and therefore

Flu] dx > [u?|v, v],.
Rq

It follows that M [u] >0, contrary to the hypothesis M [1] <0.
In addition to (6) consider the quadratic functional defined by

mgu] = L [z ayDuDu—2u z b,D(u—cuz] dx,
e Li.f i

whose Euler-Jacobi operator is / and let m[u]=1im,_, ., m,[u] (whenever the limit
exists). The domain ®,, of m consists of all real-valued continuous functions u
in R U P such that u has uniformly continuous first partial derivatives in R, for
all a=a,, m[u] exists, and u vanishes on P. The variation of m[u] is defined as
V{ul=m[u]— M[u], that is

12) V[ = f [2 (@~ Ay) DuDu—2u’S (b,—B,)Diu+(C—c—G)u2] dx,
R 11, i
with domain ®=9D,, N Dy. The analogues of (8), (9) for the operator / are
{u, v}o = f u z a,jn Do ds,
Cq i,
{u, v} = lim {u, v},.

THEOREM 1. Suppose G satisfies (5). If there exists a nontrivial solution u € ® of
lu=0 such that {u,u}<0 and V[u]>0, then every solution v of Lv=0 for which
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[4?[v, v] 20 vanishes at some point of RU P. The same conclusion holds if the
conditions V[u]>0, [u?[v, v]Z0 are replaced by V[u]=0, [u?|v, v]1>0 respectively.

Proof. Since u=0 on P,, it follows from Green’s formula that
mau] = — f wlt dx + {1, 1o,
R

Since /u=0 and {u, u} £0, we obtain in the limit a — co that m[u] <0. The hypothesis
V[u]>0 is equivalent to M[u]<m[u]. Hence the condition M[u]<0 of Lemma 1
is fulfilled and v vanishes at some point of R U P. The second statement of Theorem
1 follows upon obvious modification of the inequalities.

THEOREM 2 (SELF-ADJOINT CASE). Suppose by=B;=0 in (1) and (2), i=1,2,...,n.
If there exists a nontrivial solution u € D of lu=0 such that {u, u} <0 and V[u]20,
then every solution v of Lv=0 for which [u?|v, v120 vanishes at some point of
RUP.

This follows from Lemma 2 by a proof analogous to that of Theorem 1.

In the case that equality holds in (5), that is
G=—- 12 B;B¥|det (A4;;),
we define
8= ‘2 Dyb;—B)+C—c—G.
It follows from (12) by partial integration that

13) Viu] = L LZ’ (@~ Ay) DD+ 8u2] dx+Q,

where
Q=1 f E B,—b))un, ds.
alm P (B,—b))u?n, ds

L is called a ““strict Sturmian majorant”’ of / when the following conditions hold:
(i) (a;;— Ay,) is positive semidefinite and 20 in R; (ii) Q=0; and (iii) either §>0
at some point in R or (a;— A,;) is positive definite and ¢#0 at some point. A
function defined in R is said to be of class C%'1(R) when all of its second partial
derivatives exist and are Lipschitzian in R.

THEOREM 3. Suppose L is a strict Sturmian majorant of | and all the coefficients
a;;involved in | are of class C**(R). If there exists a nontrivial solution u € ® of lu=0
such that {u, u} =0, then every solution v of Lv=0 for which [u*|v, v] =0 vanishes at
some point of R U P.

Proof. V[u] exists since u € D, and hence each term on the right side of (13)
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exists by the strict Sturmian hypothesis. Since a;;€ C*X(R), i,j=1,2,...,n,
Aronszajn’s unique continuation theorem [1] guarantees that the nontrivial
solution u cannot vanish identically in any open subset of R. In the case that
8>0 at some point in R it then follows from (13) that V[u]>0. In the case that
8=0 in R it follows from (13) and the positive definite hypothesis on (a;;— 4,,)
that V'[u]=0 only if Du=0 for each i=1, 2, ..., n in some open set S of R, that
is, u is constant in S. Since c¢#0 at some point x, € S, the differential equation (1)
would not be satisfied at x,. Hence V'[u]>0 also in the case that §=0. The con-
clusion of Theorem 3 then follows from Theorem 1.

THEOREM 4 (SELF-ADJOINT CASE). Suppose by=B;=0in (1) and (2), i=1,2,...,n,
Czc, and (a,;— Ayj) is positive semidefinite in RV P. If there exists a nontrivial
solution ue D of (1) such that {u, u} <0, then every solution v of (2) for which
[4?/v, v] =0 vanishes at some point of R U P.

This is an immediate consequence of Theorem 2. We assert that the same
conclusion holds even if (4,,) is only positive semidefinite, provided L is a strict
Sturmian majorant of / and all the coefficients a;, are of class C*(R). In fact,
under these assumptions ¥ [u]>0 as in Theorem 3, i.e., M[u] <0 by the proof of
Theorem 1, and Lemma 2 remains valid for positive semidefinite (4,;) provided
the hypothesis M [u] <0 is replaced by M[u]<0.

With trivial modifications the above theorems and proofs remain valid in the
case that R is a bounded domain, i.e., C, is void for a2 a,. In particular Theorem 2
implies Theorem A and Theorem 1 implies the author’s recent result [7] for the
general elliptic equations (1), (2) on bounded domains.

In the case n=2 considered by Protter [6], the condition §=0 of Theorem 3
reduces to

2
(Aquz“Afz)(z Dt(bz_Bt)'l'C—c) 2 A11B3—24,,B,B;+ 43,B1.
=1 ‘

If R is a bounded domain, Theorem 3 then reduces (with trivial modifications)
to the author’s result in [7].

It is interesting to note the following one-dimensional instances of Theorem 2,
in which R is an open interval (o, B). When n=1 and b, = B, =0, the differential
equations (1), (2) have the form

(14) (au')' +cu =0, a>0,
(15 Av")Y+Cv =0, A>0.
THEOREM 5. If there exists a nontrivial solution u of (14) in (a, ) such that

u(e) =0, a(x)u(x)u'(x) - 0 as x — oo, and

(16) f " la= A +(C—cy?] dx 2 0,
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then every solution v of (15) for which A(x)u?(x)v'(x)[v(x) has a nonnegative limit as
X — 00 has a zero on [«, ). Unless v is a constant multiple of u, v has a zero in

(o, 00).

Proof. The first statement follows immediately from Theorem 2. To prove the
second statement, recall from the proof of Lemma 1 that for all a=ay,

¢ AX)u*(x)v’ (x)] J’ 2( )
(17) f Flu] dx = [ o 42(%)” ax.
Since the solutions of second order ordinary linear differential equations have only
simple zeros, an application of L’Hospital’s rule yields

lim AP (x)'(x)

x—=a U(X) =0.

Thus the limit of the first term on the right side of (17) as a — oo is nonnegative.
The second term is nonnegative for all @ and zero iff u is a constant multiple of v.
Hence M [u] > 0 unless v is a constant multiple of ». This contradicts the hypothesis
(16).

The next result applies to the case that «, 8 may be singular points of the differen-
tial equations (14), (15); the possibility that they are +oo is not excluded. The
proof is similar to that of Theorem 5 and will be omitted.

THEOREM 6. If there exists a nontrivial solution u of (14) in («, B) such that
a(x)u(x)u'(x) — 0 as x — o and as x — B, and

(18) J'B [(@— Ay'®+(C—c)u?) dx > 0,

then every solution v of (15) for which A(x)u?(x)v'(x)/v(x) has a nonnegative limit as
x — B and a nonpositive limit as x — « has a zero in («, B). If the left side of (18) is
only nonnegative, the same conclusion holds unless v is a constant multiple of u.

In the special case that o, 8 are ordinary points of (14) and (15), this reduces to
the following generalization of the classical Sturm-Picone theorem; our result is a
slight extension of Leighton’s theorem [5].

THEOREM 7. If there exists a nontrivial solution u of (14) in [«, B] such that
u(e)=u(B)=0 and the left side of (18) is nonnegative, then every solution of (15)
except a constant multiple of u has a zero in («, B).

As an example of Theorem 5, consider the differential equations
(19) W+Q2n+1-xHu =0
(20) v"+[2n+1-x24+p(x)lv = 0

on a half-open interval [«, c0), where p(x) is a polynomial. Equation (19) has the
well-known solution u(x)=exp (—x?/2)H,(x), where H,(x) denotes the Hermite
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polynomial of degree n. Clearly u € ®. Since every solution v of (20) satisfies
v'(a)/v(a) ~q(a) as a — oo, where g(a) is a polynomial, it follows that the hypothesis
u*(a)v'(a)/v(a) — 0 as a — oo is fulfilled. Hence if « is a zero of H,(x), then every
solution of (20) has a zero in («, o) provided

J’°° p(uA(x) dx > 0.
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