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1. Introduction. For a certain class of ordinary differential equations (see (1))

we construct changes of variables to obtain new systems of differential equations

which exhibit the stable and unstable manifolds in a canonical way, and which

linearize or normalize the equations when restricted to the stable or unstable

manifold. Here we are concerned with systems which can be expanded in power

series with variable coefficients. When the coefficients are constant our results in

part reduce to those of Poincaré [6], Dulac [2], and C. L. Siegel [9]. Our results

differ from those of Sibuya [7], [8], in that we have added a 0-equation, included

perturbation results, and have worked in the context of changes of variables.

In this paper 6 is restricted to be a real scalar variable, but our main interest lies

in the case when 6 is a complex vector-valued variable. This case is discussed in

[4]. The results depend heavily on the techniques developed here.

Although our results are closer to Sibuya's, our main theme, changes of variables,

is based on the work of C. L. Siegel [9]. Our techniques are classical in nature and

in certain cases some of our results overlap the recent (nonclassical in nature)

work of Belaga [1] and C. L. Siegel [10]. A more adequate bibliography and history

concerning changes of variables and linearization is given in [3].

This paper constitutes in part the author's thesis [3] written under the direction

of Professor S. P. Diliberto.

2. Notation. Let 6 be a real scalar, z=(zu ..., zp) a complex vector, and q a

nonnegative integer. We define r"*(z) to be the class of functions which satisfy (i),

(ii), and (iii) below.

(i) F= F(6, z) is a complex vector-valued function or a complex matrix-valued

function (dim F unspecified) defined and continuous for all real 6 and for z in

some neighborhood of z=0.

(ii) F has a convergent power series expansion in z (components of z) about the

point z=0; the coefficients in the expansion are continuous, bounded, vector-

valued or matrix-valued (as the case may be) functions of 6; there are no terms of

degree less than q in the expansion of F.

(iii) For some K >0 components of Fare majorized by

K(z, + ■ ■ ■ + zp)*[\ - K(z, + ■ ■ ■ + z,,)]-1

uniformly in 8. The constant K depends on F.
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Given G{0, z) e F"{z) there exists G'{z) (primes will always designate majorants)

such that

G{6, z) « G'{z)

where the symbol « means G and G' belong to the same Y class, dim G=dim G',

and G is majorized componentwise by G' in the sense of Cauchy.

If He T"{z) is a vector or matrix whose coefficients in its expansion are con-

tinuously differentiable functions of 0, and if the term-by-term derivative of H

with respect to 6 also belongs to Y"{z), then we write He e r*(z).

3. Main theorems. Our interest lies in real systems of differential equations.

However, in order to introduce the Jordan canonical form for the matrices involved

{A and B in (1) below), we lose the real character of the equations. Nevertheless,

because we started with real equations, we may restrict 0 to be real even though the

differential equation for 0 in (1) may be complex.

Consider the system of ordinary differential equations

0 = l + @{0,x,y)

(1) x = Ax+X{0,x,y)

y = By+Y{0,x,y)

where A and B are, respectively, mxm and nxn constant matrices in Jordan

canonical form; /l = diag (Al5..., Am) + subdiag {yu ..., ym_i) with ^(A,)<0 and

y,=0 or y (j=l,..., m); B=diag{p,1,..., /¿n) + subdiag (81;..., 8n_x) with

^(^)^0 and 8^=0 or 8 {j= 1,...,«); y and 8 are sufficiently small positive con-

stants (to be specified below); 0 is a real scalar; x and y are complex vectors;

0 6 r\x, y); X, Ye Y2{x, y). In addition we assume with no loss of generality

that the eigenvalues of A have the following ordering

(2) J>(Am) ï ^(Am_x) í      S âi{X,) < 0.

Let a=(a1,...,am) represent /«-tuples of nonnegative integers and define

1 «I =<*iH-r-am. Let (C;), 1 íkjúm, represent the following condition on a.

[m

2«,A,-Ay   ^0.
1=1

Notice that (2) implies (d) holds for all |a| > 1.

Theorem 1. If conditions (Q) (j=2,..., m) hold for all \a\ > 1, then for system

(1) there exists a unique change of variables

u = x-P{0,x)

(3)
v=y-Q{0,x)
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such that

ù = Au+U(8,u,v)

(4) v = Bv+V(8,u,v)

U(8, u, 0) s 0,    V(6, u,0) = 0

where P, Pe, Q, ô9er2(.x); U, VeT2(u,v). Moreover, if system (1) is periodic

(almost periodic) in 8, then the change of variables (3) and the transformed system

(4) are also periodic (almost periodic) in 8 with the same period (frequencies).

Before giving the proof of Theorem 1, let us describe what alterations occur

when not all conditions (C¡) (j=2,..., m) hold for all |a| > 1.

Theorem 2. If some condition (C¡), 2¿j^m, does not hold for all |a| > 1, then for

system (1) there exists a nonunique change of variables

u = x-P(0, x)

v=y-Q(8,x)

such that

ù = Au+U(8, u, v)

v = Bv+V(8,u,v)

U(6, u, 0) = 0(8, u),    V(8, u, 0) s 0

where the components of 0=(0U ..., 0m) are polynomials of the form

t?i = 0,

Ü¿8, «) - 2 ¿U.«,- , (ÖK1 • • ■ "?'-V       (j = 2,...,m)

the summation in (5) being taken over all |a| > 1 which do not satisfy condition (C¡).

The properties of P, Q, and V, and the remaining properties of U are the same as

those in Theorem 1.

Proof of Theorem 1. Suppose P, Q, U, and V exist as formal power series with

undetermined coefficients. Differentiating both sides of (3), we find that (1), (3),

and (4) imply

P = AP+X-U,
(6)

Ó = BQ+Y-V.

From (3) we see that v=0 if and only if y= Q(8, x). Putting v = 0 in (6) and using

the property U(8, u, 0) a 0, V(8, u, 0) = 0 given in (4), we find that (6) reduces to

(7) PB{\ + 0(0, x, Q)} + Px{Ax+ X(8, x, Q)} = AP+ X(8, x, Q),

(8) QB{ 1 + 0(0, x, Q)} + Qx{Ax+X(8, x, Q)} = BQ+ Y(8, x, Q)
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or, equivalently,

8êP'+ ZX>x>8x-tP>-X>Pi

(9) = h-x^-i- 2 ii-iXt-x^P,-&(8,x, Q)yePi

+ *"/*, x,Q)-2 Xt{0, x,Q)^-Pi       (J = 1,..., m),
1 = 1 0xl

O ffl pt

(10) = yy-ißy-!- 2 S'"i*,-i ¿ Q>- 0(ö> * ß) á Q>

+ y}{0, x, Q) - 2 x&ß, x>Q)¿tQt    U - i.»),

where 80=y0=0. Notice that (7) and (9) contain both P and Q, but (8) and (10)

contain only Q. For this reason we solve (8), or equivalently (10), first. Consider

Q as a formal power series with undetermined coefficients.

ßX«,*) = 2 Q'.°WX°    (;= i. •••,«)
|a|>l

where jc^jc-fi- • -x%». With this notation we have from (10)

(U) gfl ô/.a + ^.«ô/.<t = Zy.«

where

m

Mí.« =   2  alA«-^
1 = 1

and ZUa=ZUa{0) represents the coefficient of xa in the right side of (10). Since by

hypothesis ^(A,) < 0 and 3&{p.¡) è 0, it follows that ¿%(jj.¡¡a) < 0; and hence, by Lemma

1 (below) if ZUa is a bounded, continuous function of 0, then (11) determines QUa

uniquely as a bounded, continuously differentiable function of 0. Moreover, if

ZUa is periodic (almost periodic) in 0, then Qft„ also is periodic (almost periodic)

with the same period (frequencies). Thus, by following along the order relation

-< (below), the coefficients of Q are computed recursively from (10).

Order relation. Let -< represent the following order relation on subscripts. If

|a| < |«'|, then {j, «)-<(/'. a). If \a\ = |a'| and ./</', then (j, «)-<(/, a'). If |a| = |a'|

andy'=y", then (j, a1;. ..,am)<{j, «i,..., «,_! + !, a,-1,..., am).
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Lemma 1. Consider the one-dimensional differential equation

(12) z = az+f(t),

where a is a complex number, at(a)^0;f(t) is a bounded, continuous, complex valued

function of t defined for all t real. The unique bounded solution of (12) is given by

z = W),   '

(13) ¿(î) = f     e-"°f(t+o)do
J ± co

where the lower limit on the integral is chosen +oo ifat(a)>0 and — oo if 0t(a)<O.

Moreover, if f(t) is periodic (almost periodic), then <f>(t) also is periodic (almost

periodic) with the same period (frequencies). From (12) and (13) we have the following

estimates on the size of<f> and<f>.

U\\ s WOl-l/ll.

ui â{\a\\ma>\-i+mft
where ||-||=sup( |-|.

The proof of Lemma 1 is straightforward.

Having established Q as a formal power series with coefficients which are con-

tinuously differentiable vector-valued functions of 8, we must show that the power

series Q and its term-by-term derivative QB converge. But notice from (8) that the

convergence of Q implies the convergence of QB. To show the convergence of Q

we will need

Lemma 2. For some K>0 sufficiently large the inequalities

(15) KaM^.Jr+l   <K

(i6) mmji-1 < m-*

hold for (j= 1,..., n) and all \a\ > 1.

The proof of (15) is elementary, and the proof of (16) is classical. One can easily

adapt the arguments involved in the inequality (2.1) on page 109 of [5] to show

our inequality (16).

Choose 0', X', and Y' such that 0(0, x, y)« Q'(x, y), X(8, x, y)«X'(x, y), and

Y(8, x, y)«. Y'(x,y). Let Q' = Q'(x), dim g' = dim Q, be the formal power series

defined by

d a _   „., ̂     a

(17)

+ Y¡(x, Q!) + 2 *l(x, Q') ¿ e;l      (y=i,..., n).
1 = 1 oxl       J
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The coefficients of Q' are computed recursively from (17) in a manner similar to the

way that the coefficients of Q were computed from (10). Clearly the coefficients of

Q'j (j= 1,..., ri) are nonnegative constants. Let

Q'Àx)=  2  ßi.«*8       U= 1, •••,«)
I«I>1

represent the formal power series for Q'. From (17)

(18) Q'Ua = K\a\^Z'Ua

where KZ'Ua represents the coefficient of xa in the right side of (17). Let || • || =sup91 • |

and suppose

(19)

From (11) and Lemma 1

IIZ/..II = 3.-

Ißy.«ll ^ l^/.JI^II^.J
and

o

80 Q'-" {^.«l-l^y.«)!"^!}^..!!.

Thus from Lemma 2, (18), and (19)

lßy.«ll = ßi.a
and

ßy.« è |«|ßy...

Since (19) holds for |«| = 2, it follows by induction that

ß(Ö, x) « Q'{x).

Let i be a one-dimensional variable. Clearly, when we put t, = xx+ ■ ■ ■ + xm,

Q'{x1,...,xm)«Q'a,...,0.

Define

©'({, y) = ©'({, ...,t,y), X"{1, y) = X'{i, ...,t,y),

and

Y"{i,y)= Y'{C,...,i,y)

where we have replaced x, (/= 1,...,/«) by £ in 0', A", and F'. If in (17) we put

Xi=x2= • • • =xm = £, then we obtain

£ 2^ßi = ̂ ^-^ßi-i+i28'-i^ß/+öUß'K2ä7ß>
(20)

1-1 ö*l &X¡ ' ffí dXi

+ Y"{l,Q')+%x;{i,Q')I-Q'¡
i=i Sx, C/=i,...,»)
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where ß' = ß'(£, • • -, 0- Define ß"=ß"(ö, dim ß" = dim ß', by the functional

equation

I jY QÎ- Qi - 2k[@'(Í, Q'% I Q]+ Yftt, Q") + Xïa, Q") | Oí]

(7=1,...,").

For the purpose of showing that ß"(£) majorizes ß'(£,..., £) we write (21) as

(22) ijiQi = \Q"i + \la\0:i + Kl--]

where [• • •] represents the expression in brackets in the right side of (21). With no

loss of generality we may assume that

max [Ky, K8] < J.

Furthermore, with no loss of generality we may assume that X[ = • ■ • = X'm and

YÍ=-=Yñ. Thus Ari=.=J\r; and Y[=--- = Y"n, and it follows that

Qi = • • • = ßn- A direct comparison of (20) and (22) along with the additional

fact that

£¿¡«& •■••<>-»«

now shows that

ßU.,D«ß"(0.

At this point it is convenient to write (21) in vector notation.

(23) 1&-Q" = 2K[@"(i, axa;-*- i"«, Q") + X¡(í, Q")Q¡]

Let ß" = £ß*. From (23) we obtain

(24) Qf = 2«-2[6U ÍQ*){tQ* + t2Qf}+ Y"(i, ÍQ*) + Xl(C, tQ*){Q* + ZQ?}].

Since ©'({, y) e F\i, y) and *"({, y), F'({, j>) e r2(£, y), one easily puts (24) in the

form

(25) Qf = G(l Q*)

where G is analytic in (£, Q*) in some neighborhood of £=0, ß* =0. Since analytic

systems of differential equations have analytic solutions, (25) or (24) determines

ß* = ß*(ö, ß*(0)=0 as an analytic function of £ in some neighborhood of £ = 0.

For £=*!+ ■■■+xm we have shown that Q(8, x)«Q'& ..., Q«ß"(D = £ß*(ö-

Hence, Q(8, x) e T2(x) and, by our earlier remark, 8Q(8, x)/88 e r2(*).

The construction and convergence of P follows a similar pattern. Let

P¿0,x) = 2 pU<f)x"      C/-'i.....m)
|o|>l
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represent the expansion of P with undetermined coefficients. From (9)

o

(26) Qßl'i.a + ^i.al'i.a ~ Zj.a

where
m

Xha = 2_ «¡A( —Ay
¡ = 1

and ZUa represents the coefficient of x" in the right side of (9). In order to compute

PUa by means of Lemma 1, we require that ^(AyJ^O. This inequality is assured

by the hypothesis that conditions {C¡) {j=2,..., m) hold for all |a| > 1. Therefore,

by following along the order relation -<, we can compute the coefficients of P

recursively. Moreover, as before, these coefficients will reflect the periodic (almost

periodic) properties of system (1). The proof of the convergence of P is similar to

the proof of the convergence of Q, and the convergence of Pe then is implied by (7).

The existence of U and V with the stated properties is implied by the existence of

P and Q. This completes the proof of Theorem 1.

Proof of Theorem 2. Because of the ordering (2) of the eigenvalues of A, if

a = {au ..., am), \a\ > 1, does not satisfy condition (Cy), thenoc; = ai+1= • ■ ■ =am=0.

Thus 0 has the form given in (5). The equation that P must satisfy now will be the

same as (9) with the term -¿7/0, x-P) added to the right side. As before,

the coefficients of P are computed recursively from (26), except that whenever

^(A/a) = 0 we choose the coefficient 0j¡a such that ZUa vanishes. This allows us to

take PUa s 0 as a solution. At this point nonuniqueness occurs because other choices

for 0ha and Pj¡a also suffice. Since 0 is a polynomial, it has a majorant, and

therefore in constructing a majorant for P there are no new difficulties. This com-

pletes the proof of Theorem 2.

The equation y= Q{0, x) describes the stable manifold of system (1), whereas

the change of variables u=x—P{0, x) accomplishes a linearization or normali-

zation of system (1) when restricted to the stable manifold. In an entirely analogous

manner we can find the unstable manifold of the new system

0=1 + &{0, u, v)

(27) ù = Au+U{0,u, v)

v = Bv+V{0,u,v)

and construct a change of variables which linearizes or normalizes this system when

restricted to the unstable manifold. The composition of two changes of variables,

the first given in Theorem 1 or 2 and the second analogous but constructed with

respect to the unstable manifold of system (27), gives the proof of Theorem 3

(below) in the general case.
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Consider the system

8= l + Q(8,x,y,z)

x = Ax+X(8, x,y,z)

(28)
y = By+Y(8,x,y,z)

¿ = Cz+Z(8,x,y,z)

where A, B, and C are constant matrices in Jordan canonical form;

A = diag (Al5..., Afc) + subdiag (yu ..., yk-i)

with ^(A,)<0 and y,=0 or y (j= l,...,k);

B = diag (fiu ..., /¿m) + subdiag (8i, • • •> 8m-i)

with @(lij)=0 and 8,=0 or S (/- 1,..., m);

C = diag (vlt..., vn) + subdiag (eu ..., «„.J

with ^(vy)>0 and e,=0 or e (7= 1,..., m); y, 8, and c are sufficiently small positive

constants; 6 is a real scalar; x, y, and z are complex vectors; 0 e T1^, j, z);

X, Y,Ze T2(x, y, z). In addition we assume with no loss of generality that the

eigenvalues of A and C have the following order.

0t(\k) = • ■ • = ^(Ai) < 0 < âë(Vl) =      ^ ¿%n)

Theorem 3. For system (28) í/¡ere exùrs a change of variables

u = x—P(0, x,z)

v = y-Q(8,x,z)

w = z—R(8, x, z)

such that

ú = Au+ U(8, u, v, w)

v = Bv + V(8, u, v, w)

w = Cw+ W(8, u, v, w)

U(8, 0, 0, w) = 0, U(8, u, 0, 0) = 0(8, u)

V(8, 0, 0, w) = V(8, u, 0, 0) = 0

W(8, 0, 0, w) = ÏÏ(8, w), W(8, u, 0, 0) = 0

where P, PB, Q, QB, R, RB e r2(x, z); U, V, We T2(u, v, w); the components of 0are

polynomials of the form

01 = 0

018, u) = 2 CU.«,- iW«?1 ■ • -""-"i1       (7 = 2,..., A:)



1967] CHANGES OF VARIABLES NEAR A PERIODIC ORBIT 325

the summation being taken over all k-tuples of nonnegative integers a = (ai,..., ak),

|a| > 1, which do not satisfy condition (C/) below; the components of W are poly-

nomials of the form

W1 = 0

W0, w) = 2 WhBl.„_ x(0Mi• ■ • wj'.Y       (j = 2,..., n)

the summation being taken over all n-tuples of nonnegative integers ß = {ßlt..., ß„),

\ß\ > 1, which do not satisfy condition {Cf) below. If conditions (C/) (j=2,..., k)

hold far all \a\ > 1, then 0=0. If conditions {Cf) (j'=2,..., ri) hold for all \ß\ > 1,
then W=0.

r !l
içjy.st

{Cf):®

2 c^-A,
! = l

n

2 ßivi~vt

#0,

*0.

W-Tie« the coefficients of 0, Ai", Y, andZ in system (28) are periodic {almost periodic)

in 0, then the coefficients of the change of variables and of the transformed system

are also periodic {almost periodic) in 0 with the same period {frequencies). If the

coefficients in (28) have period to in 0, conditions {C}) and{Cf) can be replaced by con-

ditions {Cf period tu) and {Cf period to), respectively.

k

{Cjperiodw): 2 ai\~M ^niu"1 x integer,
1 = 1

n

{Cf period io): 2 ßivi~vi ¥* 2niw~1xinteger.
¡=i

When the coefficients in (28) are constant, the coefficients of the change of variables

and of the transformed system also are constant; and conditions {C}) and {Cf) can

be replaced by conditions {C} constant) and {Cf constant), respectively.

k

{Cj constant): 2 a|A( —Ay ̂ 0,
1=1

n

{Cf constant): 2 ßi^-"i ¥= 0.
i=i

Proof. As mentioned above, the composition of two changes of variables based

on Theorems 1 and 2 accomplishes the proof of Theorem 3 in the general case.

The fact that conditions (C/) and {Cf) can be replaced by conditions {Cj period tu)

and {Cf period tu), respectively, when the coefficients in (28) have period œ in 0

follows from Lemma 3 below. When the coefficients in (28) are constant, the

conditions {Cf constant) and {Cf constant) determine whether or not coefficients

in the changes of variables are computable. Thus these conditions can replace {Cf)
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and (Cf), respectively. Convergence proofs are only slightly modified when these

conditions for the periodic and constant case are used. This completes the proof

of Theorem 3.

Lemma 3. Consider the one-dimensional differential equation

(29) z = az+f(t)

where a is a constant and f(t) is a complex-valued continuous function with period

oj in t. If a¥= 2ttíüj"1 x integer, then the unique solution z = <f>(t) of (29) with period

oí in t is given by

tff) = (e-^-l)-1 i" e-aaf(t+a)da.

The proof of this lemma is not difficult and is left to the reader.

4. Perturbation theory.   Consider the system

8= l + Q(8,x,y,e)

(30) x = Ax+X(8,x,y,e)

y = By+Y(8,x,y,e)

where A and B are constant mxm and nxn matrices, respectively, in Jordan

canonical form;

A = diag (A1;..., Am) + subdiag (y1;..., ym_i)

with ^(A,)<0 and yy=0 or y (7= l,..., m);

B = diag (/xj,..., /in) + subdiag (8U ..., Sn_j)

with 0t(p,j)>Q and 8¡=Q or S (7=1,...,«); y and 8 are sufficiently small positive

constants; 8 is a real scalar; x and y are complex vectors; e is a complex pertur-

bation parameter (e could be a vector; theorems and proofs would be similar);

0, X, Ye T\x, y, e); X(8, x, y, 0), Y(8, x, y, 0) e T2(x, y).

Theorem 4. There exist unique functions x=£(8, e) and y=r¡(8, e) with f, £e, -n,

t]B g r1(e)for which the x and y equations in (30) are satisfied. If system (30) is periodic

(almost periodic) in 8, then f and rj also are periodic (almost periodic) in 8 with the

same period (frequencies).

Remark. To be more precise one should say that

M = {(8, x,y)\8 arbitrary, x = ¿(0, s), y = ^(0, e)}

is an invariant manifold for system (30). On M system (30) reduces to

0= l + 0(0,^(0,e),^(0,£)),

and if i/i(t) is any solution to this reduced equation, then 8 = ifi(t), x=f(i/r(r), e),

y—r¡(ili(t), e) is a solution of (30) lying on M. Since Ç, t¡ e T^e), it follows that
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è{>l>{t), «) and t?(i/i(í), e) are bounded functions of t, and this in fact gives a charac-

terization of M. The manifold M is composed of those solutions of (30) which

exist for all t: -oo<t< +oo, have their {x,y) component bounded for all t, and

remain near {{0, x,y)\0 arbitrary, {x, y)=0} for all t.

If we eliminate t in (30), we obtain

dx      A   ,
j}-Ax+■•••

*-*+■•■

and for this system x = £{0, e), v = i?(0, e) represents the unique bounded solution

having the property that (£, 77) -► 0 uniformly in 0 as e -> 0. We have not used this

approach because when 0 has more than one dimension, it is not possible to elimin-

ate t in this manner. (This case will be treated in [4].)

Proof. Consider £ and -q as formal power series in e with undetermined coeffi-

cients. Since f and r¡ satisfy the x and y equations of (30), we have

f,{l + 0(0, (, t,, «)} = Ai + X{0, (, v,e)

,S{1 + 0(0, t, v, «)} = BV+ Y{0, t, r¡, e)

or equivalently,

(31)

OßVi-Pfli = 8j-l->lj-i+Y{0,C,ri,e)-®{0,¿;,T),e) — -rii (J = 1, •••,«)•

From (31) by means of Lemma 1 the coefficients of £ and 17 can be computed

recursively. To show convergence let

O+ep,*,*«)}-1- i + 0*(«u,j,«).

Equations (31) can be written

(32)

,0 Éy-Ayíy = {yy-lfy-1 + Xtf, f, ,, £)}{1 + 0*(0, f, * .)}

+ A,f,0*(0,£,,«)       (j=l,...,m)

^ ,y-Wi = {8,_ 1%_, + F/0, f, t,, £)}{1 + 0*(0, f, % .)}

+ lxjVi&*{0,Ç,r1,e)        (j=1,...,k).

Choose 0', A", and Y' such that 0*(0, x,y, e)«Q'{x, y, e), X{0, x, y, b)<kX'{x, y, e),

and Y{0, x, y, e)<< Y'{x, y, e); and such that the components of X' and Y' are all
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equal. Define p and q, dim p = dim £, dim q = dim 17, as formal power series in e

with constant vector-valued coefficients by the following functional equations :

Pi = K[{YPi + X'iip, ?,«)}■{! + ®'(P, ?, ')) + NPi@'ip, q,e)]      (j - 1,..., m)
(33)

fl, = £[{3^ + F/(p, g, .)}.{1 + &(p, q, e)} + Nqß'(p, q, .)]      (7 - 1.n).

Kand /Yare large positive constants. If/sTy and K8 are less than 1, then the implicit

function theorem proves the existence of p=p(e), q=q(e), analytic in e in some

neighborhood of the origin and vanishing at the origin. Using Lemma 1 it is easy

to show by induction that £(8, e)«p(e) and rj(8, e)«q(e), provided K and N are

sufficiently large, their size being determined only by the eigenvalues of A and B.

By choosing y and 8 sufficiently small, Ky and K8 will be less than 1. Thus

f, r¡ e r1(s) and by (32), £B,T)Be T1(e). The remarks on periodicity and almost

periodicity follow from Lemma 1. This completes the proof of Theorem 4.

Let z=(x, y) and £ = (£, y). By introducing the new variable

p = z-t(8,e)

we obtain from (30) and the equations above (31) an equation of the form

(34) dpldd = (E+F(8, e))p+P(8, p, e)

where E=diag(A, B); FeT^e); P e T2(p, e) n T2(p). At this point we need

Sibuya's linear change of variables.

Although E=diag(A, B) in (34), it will be useful to consider a more general

situation in Theorem 5 below. Consider the linear system

(35) dp\d8 = (E+F(8, e))p

where £=diag (E1U ..., Enn); Ej} (j= 1,..., n) are constant square matrices not

necessarily of the same dimension ; the maximum of the real parts of the eigen-

values of Ejj is less than the minimum of the real parts of the eigenvalues of Ekk

when j<k; FeF^e).

Theorem 5. For system (35) there exists a unique linear change of variables

(36) p = (I+G(8,e))q

such that

(37) dqld8 = (E+H(8,e))q

where I is the identity matrix; C?w=0 (7=1,..., n); H=diag(Hlu ..., Hnn);

G,GB, He r^e). If (35) is real, so are (36) and (37). If F is periodic (almost periodic)

in 8, then G and H are periodic (almost periodic) in 8 with the same period (frequencies).

Here we are using a partition of the matrices G and H which corresponds to the

partition of E. For a proof of Theorem 5 see [7, pp. 128-145].
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Now, if in (34) we introduce the linear change of variables

p = {I+G{0,e))q

as described in Theorem 5 with respect to the linear part of (34), we obtain an

equation of the type

(38) dq\d0 = {E+ H{0, e))q + Q{0, q, e)

where H=dia,g{Hlu H22); dim/i11 = dim^ and dim H22 = dim B; HeV^e);

Q e T2{q, e) n Y2{q). Setting q = {r, s) where dim r = dim x and dim i = dim.y, we

obtain from (38) a system of the type

0 = l + O(0,r,J, e)

(39) r = {A + A°{0, e))r+R{0, r, s, e)

s = {B+B°{0, e))s + S{0, r, s, e)

where 0> e Pi/, s, ¿); A0, B° e Tl(e); R, S e T2(r, s, e) n T2(r, s).

Theorem 6. For system (39) there exists a change of variables

u = r-M{0, r, s, e)

(40)
v = s - N{0, r, s, e)

such that

ù = {A + A°{0,e))u+U{0,U,V,e)

V = {B + B°{0, e))v+V{0,U, V,e)

(41)
(7(0, 0, V, e) = 0,     U{0, U, 0, e) = O{0, U, e)

V{0, 0, V, e) =  V{0, V, e),     V{0, U, 0, e) = 0

where

M, Me, N, Ne e r2(r, s, s) n T2{r, s);U,Ve T2{u, v, e) n F2{u, v).

Assuming that the eigenvalues of A and B are ordered so that

<%{\m) í      = 0t{\) < 0 < M{^) ^      <, ®{^,

then the components of 0 are polynomials.... (77je remainder of the statement of

the theorem parallels the statement of Theorem 3.)

Proof. Since (40) represents a composition of changes of variables similar to

the situation occurring in Theorem 3, we will only show the first step. Namely,

rather than (40) we will find a change of variables

w = S-Q{0,r, e)

such that

w = {B + B°{0, e))w+ W{0, r, w, e),    W{0, r, 0, e) = 0,



330 AL KELLEY [February

where ß, QB e T2(r, c) n T2(r); We T2(r, w, *) n T2(r, w). As in Theorem 3, all

other changes of variables necessary to effect (41) are similar to this one. The

equation that ß must satisfy is

ße{l + <D(0, r, Q, e)} + Qr{(A + A°)r+R(8, r, Q, •)} = (B+B°)Q + S(8, r, Q, .)

or equivalently,

w p w q

= Yi-iQi-i- 2 s'-ir'-i =■ Ö/- 2 fl°*r* »7 Qi
1 = 1 °M fc,T=l örl

(42)

+ 2 b%Q,-<K0, r, Q, e) ye Qj + Sß, r, Q, e)

-%Rl(8,r,Q,e)-?-Qi       (7=1,...,«)
i=i ori

where A° = (a°k) and B° = (b°¡). Following along an order relation similar to -<

(one must take into account that ß is now a power series in (r, e) rather than just r),

the coefficients of ß can be computed recursively from (42) with the aid of Lemma

1. Choose A', B', <D', R', and 5" such that

A°(8, e) « A'(e), B°(8, e) « B'(e), <D(0, r, s, ¿) « <5'(r, s, e),

R(8, r, s, e) « R'(r, s, e)   and   5(0, r, s, e) « S'(r, s, e).

In addition we require that the components of A' are all equal, the components of

B' are all equal, the components of R' are all equal, and that the components of S'

are all equal. Let Q' = Q'(r, ¿), dim ß' = dim Q, be the formal power series in (r, e)

defined by the functional equation

m íí *TC. í} TB f\

2n-ñ-Q', = K Y1-1Q1-1+ Zs,-irl-i7r:Qi+ 2 «i^ärft
(Si      0rl L 1 = 1 0r! fc,T=l ori

(43) + 2 b'n Q\ + 0'(r, Q', .) £ r, ¿ ßi + SJC, ß', •)
1 = 1 ¡ = i    »r,

+ 2^,ß'^)^rß;(=1 °ri
(7=1,....").

As in Theorem 1, with Lemmas 1 and 2 one establishes that

ß(0, r, •) « ß'(r, e).

Let I and 77 be one dimensional variables. When we put C=r¡=r1+ ■ ■ ■ +rm + e

it is clear that

Q'(ri,..-,rm,*)« QXi,--,lvl
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Let $"(£, s, Ti) = <P'(¿,..., (, s,fj) and similarly define R" and S" when we have

replaced r, (/= 1,..., m) by f and e by -n in <D', R', and 5". Define A"=A"(r¡) = A'(rj)

and B" = B"{r¡) = B'{r)) when we have replaced e by 77 in ^' and B'. Define

Q" = Q"{ê, v)> dim g" = dim Q', by the functional equation

(44) lß<~ Q" = 2^t^"f ßi + ̂ 'ß" + *U ß'> ̂ ißi

+ S"{t,Q",v) + Rl{t,Q",v)Qíl

Since the components of A" are all equal, and similarly for B", R", and 5"; one

observes that the components of ß" are all equal. Hence, using the techniques of

Theorem 1, it follows that

Q'(i,...,i,r,)«Q"(t,y).

Up to this point we have paralleled the arguments of Theorem 1, but to complete

our proof we must introduce a technique used by C. L. Siegel in [9]. From (44)

we write

(45) £ß?-ß" = Fß; + G

where FQl represents all terms with Q"( as a factor and G represents the remaining

terms. Let

Q" = 2 Î ß«.^v-
<r = 2 ß = 0

From (45) we have

(46) 2 2 («-i)ß:.*.v = ̂ 22 «ß;.,.*-y+<?.
a = 2 ß = 0 a = 2 (? = 0

If we equate the {p., v)th coefficient on both sides of (46), we obtain

= \Ft 2-iLrß^<r-y+-LrGl

^2Íf¿ 2ß;.,i"-y+G
L     I=2( = 0 J«,v

where [•••!#,» represents the coefficient of (¡"if of the total expansion (one must

expand F and G, multiply and collect terms) in the brackets. Therefore it follows

that

ßU v) « ßU 1)

where ß is defined by the functional equation

ß = 4K[{A" + B")Q+ $>"{{, Q,V)Q + S"{t, &rj)+Xl($, &**-*&
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Let ß"=fß*, then

ß* = 4K[L4" + 2?")ß* + <D"(i, iß*, ,)ß*+fl5U Iß*, ij)

+ r1Äl(i,iß*,1/)ß*].

Since S"(i,s,r¡), R'{({, s, 17) e r2(£, s, 17) n r2(f, s), the convergence of ß* in a

neighborhood of £=17=0 is an immediate consequence of the implicit function

theorem. This completes the proof of Theorem 6.

In order to develop a perturbation theory for systems of the type considered

in Theorem 3, we require periodicity in 0 and a restriction on the purely imaginary

eigenvalues. Consider the system

0=1 + 0(0, x, y, z, e)

x = Ax+ X(8, x, y, z, e)

(47)
y = By+Y(8,x,y,z,e)

z = Cz+Z(8, x, y, z, e)

where 0, X, Y, and Z have period w in 0; A, B, and C are the matrices in (28)

with the additional property that no eigenvalue of B is equal to l-nim'1 x integer;

0 is a real scalar; x, y, and z are complex vectors; e is a perturbation parameter;

0, X,Y,Ze Y\x, y, z, e) ; X(8, x, y, z, 0), Y(8, x, y, z, 0), Z(8, x, y, z, 0) e T2(x, y, z).

Theorem 7. For system (47) there exists a change of variables

u = x-£(8, e)-P(8, x, y, z, e)

(48) v = y-r,(8, e)- Q(8, x, y, z, e)

w = z-i(8,e)-R(8,x,y,z,e)

such that

ù = (A+A°(8, e))u+ U(8, u, v, w, e)

v = (B+B°(8, e))v+ V(8, u, v, w, e)

w = (C+C°(8, e))w+ W(8, u, v, w, e)

U(8, 0, 0, W, e) = 0,     U(8, U, 0, 0, e) =  0(8, U, e)

V(8, 0, 0, w, e) = V(8, u, 0, 0, e) = 0

W(8, 0, 0, w, e) = W(8, w, ¿),    W(8, u, 0, 0, ¿) = 0

where ¿, &, 77, ,7B, I lB e Y\¿);P,PB, Q, QB, R,RBe T2(x, y, z, e);A°, B°, C° e I»;

U, V, We Y2(u, v, w, e) n Y2(u, v, w); the components of 0 are polynomials....

(The remainder of the statement of the theorem parallels the statement of Theorem 3

restricted to the periodic (or constant) case.)
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Proof. The change of variables (48) represents a composition of changes of

variables, the situation being somewhat more involved than in Theorem 3. How-

ever, only one technique is needed here which has not been discussed above. The

functions £, r¡, and £ in (48) satisfy the x, y, and z equations in (47). If we assume

that i, r], and £ are formal power series with undetermined coefficients, then from

the equations

(,-A(= X-Qie

r¡e-Br¡ =   Y-@r)e

£9-C£ = Z-0£e

one can compute the coefficients of £, r¡, and £ recursively. Since A has eigenvalues

with negative real parts and C has eigenvalues with positive real parts, the coeffi-

cients of i and £ can be computed as in Theorem 4. Let

7,(0, e) = 2 VÁ0V-
a = \

By equating coefficients of e, one obtains equations of the form

(49) d^\d0-B^=fv       (v-1,2,...)

where /„ is a known function of 0 with period kj when all the coefficients £«, r¡a,

£a, a<v, have been computed. The unique solution of (49) having period a> in 0

is given by

t,v(0) = («-*»-/)-* £ e-B°fv{0+o) da.

The hypothesis that no eigenvalue of B is equal to 2ttíüj ~x x integer assures us that

{e~Ba — I) is nonsingular.

The convergence of the formal power series f, r¡, £ is accomplished along the

lines of Theorem 4. Using Theorem 5 and the techniques developed in the proof of

Theorem 6, one can now complete the proof of Theorem 7.
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