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Introduction. The purpose of this paper is to study noncommutative C*-

algebras as Banach spaces. The Gelfand representation of an abelian C*-algebra

as the algebra of all continuous complex-valued functions on its spectrum has made

it possible to apply the techniques of measure theory and the topological properties

of compact Hausdorff spaces to the study of such algebras. No such structure

theory of general C*-algebras is available at present. Many theorems about the

Banach space structure of abelian C*-algebras are stated in terms of topological

or measure-theoretic properties of their spectra; although much work has been

done of late in studying an analogous dual object for general C*-algebras, the

generalization is far from exact. For this reason we shall confine our study

primarily to W*-algebras in which the lattice of self-adjoint projections will be used

as a substitute for the Borel sets of the spectrum of an abelian C*-algebra. Using

a theorem of Takeda [15] we shall be able to extend some of our results to general

C*-algebras.

In [10] Sakai proved that any C*-algebra which is the dual of some Banach space

has a representation as a H/*-aIgebra on some Hubert space. Dixmier [3] has

proved the converse assertion, so it is possible to consider W*-algebras in a quite

abstract fashion. It is this point of view which will predominate in this paper.

Let F be a Banach space and suppose that the Banach space dual F* of F is a

H/*-algebra, which will be denoted by M. In §1 we list some theorems and defini-

tions about the topological properties of F and M as well as some related results.

In §11 we give a number -of characterizations of the weakly relatively compact

(abbreviated "wrc") subsets of F. These are applied to prove a conjecture of Sakai

[13] that the Mackey topology of M agrees with the strong* topology on the unit

sphere of M (see §1 for definitions). We conclude the section with an example

which clearly shows the difference between the abelian and nonabelian cases and

serves as a counterexample to other possible conjectures.

In §111 we move to the dual M* of M where the situation becomes much more

difficult. We are able to extend several of the characterizations of §11 to give con-

ditions for weak relative compactness in M*. Also we give two formulations of the

Vitali-Hahn-Saks Theorem for the noncommutative case and mention an open

problem which remains in this area.

Certain special algebras are the objects of study in §IV. We obtain a non-

commutative version of Phillips' Lemma [9] for M/*-algebras with sufficiently many
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finite-dimensional projections. We also consider dual rings (in the sense of [7])

which are C*-algebras and show that certain of the properties of Banach spaces

considered by A. Grothendieck in [6] hold for such algebras.

The author would like to express his appreciation to Professor W. G. Bade for

suggesting the problems investigated in this paper and for guiding his efforts during

its preparation^).

I. Preliminaries. Let M be W*-algebra and F the unique [11, p. 1.22] Banach

space such that F* = M. S denotes the unit sphere of M and P the set of self-adjoint

projections in M. We assume the reader is familiar with the general properties of

W/*-algebras. F has a natural embedding in M* and we shall identify F with its

image in M * when convenient.

A positive functional/in M* is called normal if/lies in F. It is called singular if

there does not exist a positive normal g in M* such that/^g. A set K in F is called

invariant if for each a in M and/in K the functional/(a) and/(a) lie in K. By

[11, p. 1.26], if/is inf,then/=/i-/2' + /(/r-/2'), where the functionals/!',/^,/;,^'

are positive and unique with the property ||/í-/2'|| = ||/í|| + ¡/ál and \\fî-fi\\

= ¡/; 1 + l/î|. We define [f] =f[ +f2 +f¡ +fí for any /in F. If F is in M*, then/
has a unique decomposition f=fn+fs (or/„+/), where/71 is in F and/5 is a linear

combination of singular positive functionals [16].

Remark 1.1. We note for the sequel that it is an immediate corollary of the

work of Grothendieck [6] that if M is abelian and A' is a bounded set in M*, then

K is weakly relatively compact iff for each sequence (pn) in P of pairwise orthogonal

projections f(pn) -*■ 0 uniformly for/in K.

We shall abbreviate the phrase "weakly relatively compact" with "wrc."

The weak* topology (a(M, F)-topology) on M is the linear topology generated

by the seminorms |/()| for all/in F. The strong topology (j-topology) is generated

by the seminorms |/(a*a)|1,2=|löH/ for all positive / in F. The strong* topology

(j*-topology) on M is generated by the seminorms \\a\\'f =f(a*a + aa*)112 for all

positive/in F. The Mackey topology on M is the topology of uniform convergence

on the wrc sets of F.

Remark 1.2. In [11, p. 1.64] Sakai shows that whenever M is represented as a

weakly closed algebra of operators on some Hubert space, the weak* topology of M

agrees with the weak operator topology on the bounded sets of M. It follows from

this that the s-topology agrees with the strong operator topology on bounded sets

of M, and the i*-topology agrees with the strong* operator topology on bounded

sets of M.

II. Weak compactness in F. In this section we shall prove a number of equiva-

lent conditions for a set K in F to be weakly relatively compact, and then we shall

0) This paper is a part of the author's doctoral dissertation at the University of California,

Berkeley. During the preparation of the paper the author was partially supported by a National

Science Foundation Graduate Fellowship.
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give some applications—primarily generalizations of some theorems of Sakai

[13, 14].

Proposition ILL Let f be in M*. Then fis in Mf iff for each nonzero p in P there

exists q in P such that p^q>0 andf(q) = 0.

Proof. First suppose that/is in M*. Then by [11, p. 1.26], since M* is the

predual of M**, we have f=f¡-f¿ + i(fî —fZ), where each of/i',/2' etc. are positive

and singular [12] and [16]. Thus, by [17], if we are given p^O in P, we may find

q0 in P such that 0<q0^p and fl(qo) = 0. Similarly find qx in P such that

<7i^0 and (h=<7o and/á(<7i)=0, etc. Finally we get q^O in P such that q^p and

/(<7) = 0.
Now suppose that/satisfies the other condition. We show that/is in Ms*. By

[16]/=/n+/s (uniquely), where/, is in Fand/ is in A/*. We must only show that

/n=0. We may assume that the positive part/¡i of/n is ^0. Let p be the support

projection of/ij. It is well known [3, p. 62] that/, is faithful on p. Choose by the

method of the first part of this proof a projection q in P such that 0<q¿p and

[fs](q) = 0. Then /=/, on q and hence is faithful on q, which contradicts the hy-

pothesis.    Q.E.D.

Theorem II.2. A bounded set K in F is weakly relatively compact iff one of the

following holds:

(1) The restriction of K to each maximal abelian *subalgebra of M is weakly

relatively compact.

(2) If{pn} is an orthogonal sequence in P, then lim„-, «, f(Pn) = 0 uniformly for f

inK.

Remark. That (1) implies that K is wrc was first proved by Takesaki [16]. We

include a proof of Takesaki's result for completeness.

Proof. By Remark 1.1 (1) and (2) are equivalent, so we only need to show that

(1) implies that K is wrc, since the reverse implication is trivial. Consider K as lying

in M*, and let/be in the weak* closure of Kin M*. Since Kis bounded, its weak*

closure is weak* compact; so if we can show that/lies in F (considering F as lying

in M*) we shall have proved the theorem. But by hypothesis the restriction of/

to a maximal abelian *subalgebra M' lies in F restricted to M'. Thus/S is singular,

but/s is normal on each M'. Suppose there exists/) in P such that/s(/?)^0. Let

{qe} be a maximal orthogonal family in P such that each qe, is ^p andfs(qe) = 0.

Then by Proposition II. 1 we have that lub {qe}=p. If M' is a maximal abelian

*subalgebra containing {qe} and p, then since/ is normal on M', we have/s(/>)

=fs(lub{qe}) = 0. This contradicts fs(p)¿0. Thus/s(/?) = 0 for ¡dip in P, so/s=0

by the spectral theorem.    Q.E.D.

Our next result goes in the other direction in that we give a condition which is

superficially stronger than weak relative compactness. Parts of the proof are

adaptions of an argument of Sakai [13] for a special case.
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Theorem II.3. A bounded set K in F is wrc iff: (3) there exists positive g in F such

that given a>0 there exists ß>0 such that if a is in S and g(a*a+aa*)<ß, then

|/(a) | < a for each f in K.

Proof. It is immediate that (3) implies (2), so we need only prove the converse.

This will be broken up into three lemmas.

Lemma II.3a. Suppose {an} is a self-adjoint sequence in S which converges to 0 in

the s-topology. Then given 8 > 0 there exists a sequence {pn} in P such that s: /?„->/,

and \\anpn\\ ¿8 for each «=1,2,_

Proof. Let Xbe the characteristic function of the interval (- 8, S). Then for each

n we define pn = X(an) by the functional calculus for a self-adjoint operator. Thus

if p'n = I-pn,

%-2(al) ^p'n^O       for each n.

Since s: an -* 0, we have that the left member of the inequality converges strongly

to 0. Hence s: p'n -> 0, so s: pn -> /. Also it is immediate that |aB/>»|| ̂  8 for each

n.   Q.E.D.

Lemma II.3b. Let {/„} be a sequence in F converging weakly to some f0 in F.

Suppose {an} is a sequence in S such that both the sequence {an} and the sequence {a*}

converge strongly to 0. Then

lim f(an) = 0       uniformly for i = 0, 1, 2,_

Proof. We first make a number of reductions to simplify the proof. Since the

{/„} are bounded, we may assume that they lie in the unit sphere of F. Set

/=2n°=i [/n]2_n. Let p be the support projection for/ Then/n(a)=/n(/?a/>) for any

am M and each « = 0, 1,... ; so we may restrict attention to the algebra pMp, or

instead merely assume (as we shall do) that/is faithful on M. The self-adjoint and

skew-adjoint parts of the sequence {an} both converge strongly to 0, so we may

assume that each an is self-adjoint.

Define a new norm | ||' on M by ||a||'=/(a*a)1/2, a in M. Define a metric

d( , ) on S by d(a, b)= ||a —ô||'. Then by [3, p. 62], the metric d gives the strong

topology on S. Thus S is a complete metric space with the metric d.

Let a > 0 be given and define

Ht - {a in S : \f{a)-f0{ä)\ ú a      for ally ^ /}•

Clearly each Ht is strongly closed since the {/„} are strongly continuous on S. Also

S is the union of all the Ht for i= 1,2,..., since the {/„} converge weakly to/0.

Thus we may apply the Baire Category Theorem and get that there exists a0 in S,

ß>0 a real number, and an integer j0 such that if a is in 5 and d(a, fl0) = |8, then a

is in H,0. That is, under those conditions, \f(a)-f0(a)\ ¿a for ally!/). We now

apply Lemma II.3a to get that there exists a sequence {pn} in P such that pn con-

verges strongly to / and || anpn \\ = a/6, for each «=1,2,_
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Therefore, replacing/—/, by g}, we can write

I (/ -fo)(an) I ^ I gj(pnanpn) | +1 gj[{I-pn)anpn] \ +1 g,[pnan(I-pn)] \

+ \gil(I-Pn)aAI-Pn)]\

^ «+\gAV-Pn)an(I-Pn)]\.

Now put bn=pna0pn + (I-pn)an(I-pn). Then bn is in S and

d(bn, a0) = \\{I~p^aoPn+pnao(J-pù + iJ-p^a(AJ-p^-{I-P^aAI-P^Ï

ï3\\I-pn\\>+\\(I-Pn)aoPn\\'.

Since (/—/>„)->• 0 strongly, we may conclude by [11, p. 1.15] that there exists

«o such that «^«o implies \\I-pn\\' ¿ß/4 and \\(I-pn)a0pn\\'<ß/4. Then for

n > n0 we have that d(bn, a0) < ß so

\gj(bn)\  =  \gAPnaoPn)+gj[(I-Pn)aÁI-Pn)]\   i  «

for j>j0 and n>n0. Similarly,

d(pna0pn,a0) % 3||/-pB||' < ß

for « > «o and pna0pn is in 5, hence

\gi(Pna0Pn)\ ^ «       for y > j0 and « > n0.

Therefore we have

\gA(I-Pn)an(I-Pn)]\ ^ 2a,       for./ > 7o and n > nQ.

Thus we finally get |#/</„)I = 3« for j>j0 and n>n0. Since a>0 was arbitrary,

we are done.   Q.E.D.

Lemma II.3c. Let K be a wrc set in F. Given e>0 there exists 8>0 and a finite

subset K' of K such that if a is in S and [f](aa* + a*a)<8, for all f in K', then

\f(a)\<eforallfinK.

Proof. Suppose the lemma is false for some a>0. Then by induction we can

construct sequences {/,} in K and {a,} in S such that |/ + !(at) | ̂  a and [/](aftf, + a¡af)

<2~' for all i£j. By the Eberlein-Smulian Theorem [4, p. 430] there is some sub-

sequence of {/} which is weakly convergent. For notational simplicity we assume

that {/} converges weakly to /0. Using the symbols / and p as in the last lemma we

have

Xafai + atf) = f [/](«?*,+ a;af)2-< Ú V 2-iUà{afai + ajaf)+   f   |/î|2"«
i = l i=l i = j + l

= (2"0+î^T/2'(sup{|l/l! =/isin^)-
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Therefore/(a*a3+a,af)->0 as y-s-00. By [3, p. 62] we have that the sequence

{püjp} is strong* convergent to 0. Thus Lemma II.3b gives that \f{pa,p)\ = |/¡(a,)|

-> 0 (asy -> 00) uniformly in i. This contradicts |/i+i(a()| ! a for all i= 1,2,_

Q.E.D.
Proof of the theorem. Let <xn = 1 /« and choose ßn and K'n={/", ...,/„„} for each

« = 1,2,... by Lemma 11.3c. Set ̂ =2n°=i 2_n £¿T= 1 2"'/"). It is clear that g is the

desired positive element of F.   Q.E.D.

The next condition we shall prove is much like (3) but is formally weaker. It is

primarily of interest because it can be used as a condition for weak relative com-

pactness in M*.

Theorem II.4. A bounded subset K of F is wrc iff: (4) Each sequence {/,} in K has

a subsequence {fj such that given a>0 there exists an integer n0 and a relatively

o(M, F)-open set V in S which is nonvoid and such that if a is in V, then

K/<„ -/<J(a)l = a>       f°r al1 n> m = "o-

Proof. Suppose K is wrc. If {/„} is a sequence in K, there is a weakly convergent

subsequence {/„,} in {/„} by the Eberlein-Smulian Theorem. Given a > 0 we define

Gn = {a in S : M,-fk)(a)\ á <* for all/ k ä «}.

Clearly each Gn is o(M, F)-closed and S is the union of all the Gn. Since S is

a(M, F)-compact and Hausdorff for the a(M, F)-topology, an application of the

Baire Category Theorem gives the desired integer n0 and relatively a(M, F)-open

subset of S.

Now suppose that K satisfies (4). By the Eberlein-Smulian Theorem we need only

to show that for each sequence {/} in K there is a subsequence {/¡J of {/} which is

wrc. Let {/,} be a sequence in K and choose a subsequence {/n} by (4). Let {pk}

be a sequence in P which decreases down to 0. By Theorem II.2, we need only show

that ftn(pk) ->■ 0 (as k ->■ 00) uniformly for « = 1,2,_ Let a > 0 be given, and

choose «0 and V by (4). Let a0 be a fixed element of V. Set bk =p'ka0p'k +pk. Then

for some k0, if k > k0 we have that bk is in V and also p'ka0p'k is in V. Thus if n > n0

and k> k0, |(/n —/¡n )(pk)\ ^2a. Since f,n (pk) -> 0 as k -*■ 00 we have the desired

uniformity.   Q.E.D.

Remark. It should be noted that Theorem II.3 is a direct generalization of the

results of [1] for the case of weak compactness in Lx spaces. We shall extend the

theorem in the next section to give a criterion for weak compactness in the dual

space of an arbitrary C*-algebra, thus giving a complete generalization of the

commutative case.

The next corollary is merely a listing of some other equivalent conditions for

relative compactness in F. They are all intermediate between conditions (2) and (3)

in the sense that each one immediately implies (2) and is implied by (3). Condition

(7) is the converse of a result of Takesaki [16] and (9) is the extension of a result of

Umegaki [18] to general W*-algebras.
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Corollary II.5. A bounded subset K of F is wrc iff any one of the following

conditions is satisfied.

(5) If{pn} is an increasing sequence in P, then limn-. „ f(pn) exists uniformly for

fin K.
(6) If{an} is an increasing bounded sequence of self-adjoint elements of M, then

the limit off(an) exists uniformly for f in K.

(7) Same as (5) with arbitrary nets instead of sequences.

(8) Same as (6) with arbitrary bounded nets instead of sequences.

(9) There exists positive g in F such that given a > 0 there is ß > 0 such that if p

is in P and g(p)<ß, then \f(jp)\ <afor each fin K.

(10) Same as (9) with p being any positive element ofS, instead of being restricted

to lie in P.

It is interesting to compare the following theorem with the examples at the end

of this section, for in doing so one can see very clearly the exact way that "non-

commutativity" enters the picture.

Theorem II.6. Let {pB} be an arbitrary family of orthogonal projections in P with

lub {pd} = I. A bounded subset K of F is wrc iff:

(11) Given a > 0 there is a finite setpu .. .,pnin {pe} such that ifp = lub {pu ..., pn}

andp'=I—p, then \\Rp-LP'f\\ ̂afor each fin K.

Proof. Clearly (11) implies (2) so we need only show that if K is wrc, then K

satisfies (11).

Let e>0 be given. Choose a positive g in F by Theorem II.3 for the set K. Then

there exists 8 > 0 such that if a is in S and g(aa* + a*a) < 8, then |/(a)| < e/4 for all

/ in K. Since g is normal there exists a finite set pu..., pk in {/>„} such that if

p=Px+ ■ ■ ■ +pk, then g(p')<8/2. Thus for any positive a inp'Mp' with ||a|| ^ 1 we

have g(a*a + aa*) < 8. Hence |/(a)| < e/4 for any positive a in p'Mp' with ||a|| ;£ 1.

Thus for any b in p'Mp' with ||6|| á L \f(b)\ <e. This is equivalent to the assertion

of the theorem.   Q.E.D.

The next three results are all applications of conditions (l)-(ll) above. Theorem

II.7 is a conjecture of Sakai [13], and Theorem II.8 and its corollary are extensions

of a proposition of Sakai [14].

Theorem II.7. The Mackey topology coincides with the strong* topology on S.

Proof. By [11, p. 1.16] the Mackey topology is stronger than the strong*

topology. Thus we need only show the other inclusion.

Suppose K is a wrc subset of F and {ae} is a net in S which converges to 0 in the

s*-topology. Let a>0 be given. Then by Theorem II.3 there is a positive g in F

and a ß>0 such that if a is in S and g(a*a + aa*) < ß, then |/(a)| <<x for each/in

F. Thus if we choose 60 such that if 6^00, then g(a*ae + aeaf)<ß; then we may

conclude that if öä 0O, \f(ae)\ <a for all/in K. Thus {ae} converges to 0 in the

Mackey topology.   Q.E.D.
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Theorem 11.8. Let X be a Banach space such that X* is weakly sequentially

complete (i.e., each weakly Cauchy sequence in X* converges to an element of X*).

Let T be a continuous linear operator from X into F. Then T is weakly compact (i.e.,

T maps the unit sphere of X into a wrc set in F).

Proof. Let B be the unit ball of X. By Theorem II.2 we need only show that

T(B) is weakly relatively compact when restricted to each maximal abelian *sub-

algebra N of M. Let N be such a subalgebra. Then N is the dual space of some

Banach space G which is a quotient space of F.

Let rr be the quotient map of F onto G. If A is the composition of T and tt, we

have that A maps A'into G so A* maps 7Y into X*. But it is shown in [4, p. 494] that

any such map as A* is weakly compact (in fact that any bounded linear map of an

abelian C*-algebra into a weakly sequentially complete Banach space is weakly

compact). Thus by [4, p. 485], A is also weakly compact. But this means exactly

that T(B) restricted to N is wrc; thus T(B) is wrc by Theorem II.2. Hence T is

weakly compact.    Q.E.D.

Corollary II.9. Let N be a C*-algebra. Then any bounded linear map T of N

into F is weakly compact.

Proof. By a result of Sakai [12], which we shall prove in the next section, N*

is weakly sequentially complete ; so the theorem applies to show that T is weakly

compact.   Q.E.D.

Remark. It has been conjectured by Sakai [14] that the result of Grothendieck

mentioned in the proof of Theorem II. 8 extends to arbitrary C*-algebras. Theorem

II.8 seems to be the best result known for the general case at present.

We conclude this section with an example of the pathological properties of the

noncommutative case. This has been constructed by many workers in the field and

has been published in Sakai [12].

Example 11.10. Let H be a separable Hubert space and B(H) the algebra of

bounded operators on H. Let {xn} be an orthonormal basis for H, and define

operators {an} in B(H) by:

ön(*k) = (xki *n)*l-

Dixmier [3] proves that B(H) is the dual of the space TC(H) of trace class operators

on H with the duality given by

a(f) = tr(/a)

where a is in B(H),f is in TC(H), tr denotes trace, and (fa) is defined by operator

multiplication. Now the operators {an} may be thought of as lying in either B(H)

or TC(H). Set fn=a$, and consider the sequence {/„} in TC(H). Clearly {/„} con-

verges weakly to 0 in TC(H) and {an} converges to 0 in the strong operator topology
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of B(H). (Note, however, that {a*} does not converge strongly to 0 in B(H).) How-

ever, the sequence {an} does not converge to 0 uniformly on the set {/„} for we have

aJJn) = tr(o?fln) = 1

for each «=1,2,_

III. Properties of M*. In this section we generalize several results from the last

section as well as prove by a new method the result of Sakai [12] that Fis weakly

sequentially complete. We also give a complete generalization of the Vitali-Hahn-

Saks Theorem.

Theorem III. 1. Let {/.} be a sequence in M* such that {fk} converges to 0 in the

weak* topology. Let fk =fk +f¿ be the decomposition into normal and singular parts

as in [16]. Then {fk} converges to 0 in the weak topology of M*, and hence {fk} con-

verges to 0 in the weak* topology.

Proof. By the definition of the natural embedding of Fin M *, it is clear that {fk}

converges weakly to 0 iff it converges weak* to 0. Since {fk} converges weak* to 0,

the uniform boundedness theorem gives that the sequence {fk} is bounded in M*;

and hence by [16] the sequence {fk} is also bounded in M*, and similarly for {/*}.

By the spectral theorem, every operator in M can be uniformly approximated by

linear combinations of elements of P; thus we need only prove that {fk(p)} con-

verges to 0 for each p in P.

Define/= 2"= i [/fc]2"fc, and let p be any projection in P. Note we use [15] in

order to apply [11, p. 1.26] to M*. Note also that if o is in P and/(ff)=0, then

fk(q) = 0 for each A: =1,2,.... Let {pB}een be a maximal family of orthogonal

projections in P satisfying:

(') fiPe) = 0,        (") Peep

for each 0. Then by [17], lub {/><,} =/?. Define set functions Afc on the subsets of

Qby

where / is any subset of Q. Then the sequence {AJ consists of bounded finitely

additive set functions on Q. (with uniformly bounded total variation since {/.}

is bounded); also lim*.-.«, Afc(/)=0 for each subset / of D. Thus we can apply [2,

p. 32] to get that lim^ £,*» |Ak({0})| =0. Since Ak({6})=fk(pe)=fi?(pe) by ('), we

have that Joe« \fk(Pe)\ -> 0 as k -» oo. Hence we have

iï(p) = An {2 Pe) = 2 -/¡to*) -* °    as k -" °°-

This gives the theorem.   Q.E.D.
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Theorem III.2. Let M be a C*'-algebra on a Hubert space H with the property

that each self-adjoint element in M can be uniformly approximated by linear com-

binations of pairwise commuting self-adjoint projections in M. Let N be the weak

closure of M in B(H). If p is a self-adjoint projection in N, then p is the limit in the

strong operator topology of a net of projections in P.

Proof. Let p be a self-adjoint projection in N. Let a > 0 be given and let i¡x,

..., T)n be elements of norm 1 in H. We must show that there exists q in P such that

|| (p-q)r)i || <a for each /= 1, 2,..., r. By Kaplansky's Density Theorem [8] there

exists a net {aB} of self-adjoint elements in S which converges strongly to p. Also

by Lemma 1 of [8] we have that {a2} converges strongly to p2 =p. Thus we may

assume that each ae is positive. By the hypothesis we may assume

i=i

where the p\ are pairwise orthogonal projections in P for each 0 and the 7rf are

positive scalars less than or equal to 1. If 0</< 1, define

a'e = 2 târf '■ n° = A / = L • • .,««}•

It is clear from a simple calculation that both ae - (ae)n and a'e — (a'e)n are positive

operators for each positive integer n and also that

ae-(ae)n £ <4-(<4)n.

For fixed n the left-hand side converges strongly to p —pn = 0. Thus the right-hand

side converges strongly to 0. But lim,,.,,» ||(aé)"|| =0 uniformly in 0 since \\(alä)n\\

¿ln and 0</< 1. Thus {ale} converges strongly to 0. Now fix / so that l-/<a/4.

Choose 0O such that if 0^ 80 then ||aé(%)|| <«/4 for each /= 1,..., r. Choose 61 ä 60

so that if öä 6U then ||(/>—a«)^)!! <a/4 for each /= 1,.. .,r.

Fix 0^0i and we get the following inequality for q=^{p] : wf>/ and

j= 1,..., ne} and each i=l,.. .,r:

lip-qhtW á \\(p-ae)vi\\ + \\(ae-qht\\

é «/4+ ¡(9-^ + ̂ )11 + ||<4fri)|| < 3«/4 < a. Q.E.D.

Corollary III.3. F is weakly sequentially complete.

Proof. Let {/„} be a sequence in F, and consider {/„} as lying in M*. If {/„} is

weakly Cauchy, it is bounded by the uniform boundedness theorem. Thus {/,} is

weak* Cauchy and bounded in M*, so {/„} converges weak* to some/=/?l+/s in

M* (since bounded sets of M* are weak* compact). Thus {/-A}={(/n-/fc)+/s}

converges weak* to 0. By Theorem ULI we have (fn-fk) converges weak* to 0.

Thus/s = 0, so/is in F, and {fk} converges weakly to/   Q.E.D.
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Corollary III.4. Each projection p in M** is the strong limit of a net in P when

M is considered as lying in M** by the canonical embedding.

Proof. This is immediate from [15], Theorem III.2, and the fact [3, p. 57] that

the strong topology on the unit sphere is preserved under isomorphism.   Q.E.D.

Theorem III.5. If{fn} is a sequence in Mf, then any weak* limit point of {/„}

lies in Mf.

Proof. Set /=2"=i([/c]/|[/c]|)2-fc. Then if p is in P and /(/>) = 0, then

fk(p) = ® for k=l, 2,.... Also/is in Mf, since Mf is uniformly closed. Suppose

that some net {/„} in {/,} converges weak* to some g=gn+gs in M *. We must show

that gn = 0; to do that it suffices by the spectral theorem to show that gn(p) = 0 for

each p in P.

Letp be in P and choose an orthogonal set {pe} in P which is maximal with respect

to the following properties :

(')    The {pe} are orthogonal.

(")    Each pe is ¿p.

O   f(Pe)=gs(Pe) = 0.

This is clearly possible by Zorn's Lemma, and by [17] we have lub {pa}—p- Thus if

{qà} is the net of finite sums of the elements of {pe}, then

g"(p) = ]imt g\qt) = lim, [gn(q*)+gs(q*)]

= lim, {lim^/^o,)} = 0,

since f(pe) = 0 for all 6 implies/(a,) = 0 for all <f> implies/,(ö,)=0 for all n.   Q.E.D.

Now that we have some preliminary results out of the way we are ready to

formulate and prove the noncommutative version of the Vitali-Hahn-Saks Theorem

(cf. [4, p. 158] for the formulation in the commutative case).

Theorem III.6. Let {/„} be a sequence in F and suppose that limn-, x fn(p) exists

for each p in P. Then :

(')    sup{||/n|| :«=1,2,...}<oo.

(")    There exists f0 in F such that {/„} converges weakly tofQ.

('") If S ö any positive element of F such that g(p) = Q implies [/„](/>) = 0 for p

in P and each n= 1, 2,... then given a>0 there is ß>0 such that if p is in P and

g(p)<ß, then \fn(p)\ < afar « = 1, 2,....

Proof. To prove (') it is clearly enough to prove that {/„(a)} is a bounded set of

numbers for each self-adjoint a in M (by the uniform boundedness theorem). But

the classical Vitali-Hahn-Saks Theorem together with Dixmier's characterization

[3, p. 117] of abelian W/*-algebras gives that {||/n||} is bounded on each maximal

abelian *subalgebra of M. Since each self-adjoint element of M lies in such a

subalgebra, we get (').

Since {||/„||} is bounded and the limit of {/„(/>)} exists for each p in P, it follows
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from the spectral theorem that the limit of {/„(a)} exists for each a in M. Since

bounded sets of M* are weak* relatively compact, there exists/0 in M* such that

{/,} converges weak* to/0. But if {/„} is contained in F, then {/,} is weakly Cauchy,

so by Corollary III.3, we have that/, lies in F, and {/„} converges weakly to/0.

By (") the sequence {/„} is wrc in F. By the proof of Lemma II. 3c if /

= 2n°= i 2 " "[/,], then given a > 0 there is ß > 0 such that if p is in P and f(p) < ß, then

\fn(p)\ <a, f°r eacn «=1,2.But ifp is in P and g(p) = 0, thenf(p)=0, so by

Proposition 5, p. 62 of [3], we have that given ß>0 there is 7r>0 such that if p is

in P and g(p)<n, then f(p)<ß. Thus if p is in P and g(p)<n, then/(/>)<ft so

|/B(/0|<afor«=l,2,....   Q.E.D.
We shall now apply Phillips' Lemma [9] to show that a somewhat weaker version

of the Vitali-Hahn-Saks Theorem holds in M *.

Theorem III.7. Let {bn} be a sequence of positive elements of M such that 2"= i bn

converges in the s-topology. Let {/,} be a sequence in M* such that limn_œ fn(p)

exists for each p in P. Then limm_ M 2™= i \fk(bn) | exists uniformly for k = 1, 2,....

Proof. By [5, p. 199] we get that {/„} is a bounded sequence. Thus by the spectral

theorem {/,} is weak* Cauchy, so there exists/in M* such that/, -»-/(weak*), by

the weak* compactness of bounded sets in M*. Define measures mn on the subsets

of the positive integers by

mn(J) = (fn-f)(2h\,

for a set / of positive integers. Then {mn} are uniformly bounded finitely additive

measures and mn(J) ->■ 0 for all sets J of positive integers, so we may apply Phillips'

Lemma to get 2k°=i |(/n — f)(bk)\ -*■ 0 as k -s- oo. But since 2k°=i bk exists, it follows

that 2k°=i 1/(^)1 exists, and hence 2k°=i \fn(bk)\ exists uniformly for n = \, 2,_

Q.E.D.

Corollary III.8. Let {/,} be a sequence in M* such that lim„_ „/„(/>) exists for

each p in P. If{pk) is an increasing sequence in P, then limfc-, M fn(pk) exists uniformly

for n=\, 2,....

Proof. Set qk=pk + i-pk. Then {qk} is an orthogonal sequence in P, so 2k°=i Ik

exists. Apply the theorem to {qk}.   Q.E.D.

Next we give some characterizations of the weakly relatively compact sets in

M*. Naturally it would be desirable to be able to extend all of the conditions of

§11 for weak relative compactness in F directly to M*, with only minor notational

changes. This seems to be an extremely difficult problem. It can be shown that

suitable modifications of each of the conditions of §11 (except (11)) is a necessary

condition for weak relative compactness in M*, but we are able to show sufficiency

for only a few of them (notably (3), (4) and (9)). The problem is closely related to
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showing that weak* sequential convergence in M* implies weak sequential con-

vergence in M*. This is proved in the abelian case by Grothendieck [6].

Theorem III.9. A bounded subset Kof M* is wrc iff it satisfies any one of the fol-

lowing conditions:

(1) Both {/" :fis in K} and{fs :fis in K} are wrc.

(2) There exists positive gin M* such that given a > 0 there is ß > 0 such that if a

is in S and g{aa* + a*a)<ß, then \f(a)\ <afor all fin K.

(3) Same as (2) with a restricted to be self-adjoint.

(4) Same as (2) with a restricted to be positive.

(5) Same as (2) with a restricted to lie in P.

(6) For any sequence {/„} in K there is a subsequence {/„,} £>/{/„} such that given

a > 0 there is an integer i0 and an open set V for the M*-topology of S {which is non-

void) such that if a is in V and i>i0,j>iQ, then \(fn¡ -fnj){a)\ ^«.

Proof. (1) is a simple consequence of [16] and the Eberlein-Smulian Theorem.

By the Takeda Theorem [15], and Theorem II.3, it is clear that (2)-(6) are all

necessary. The sufficiency of (2), (3), and (6) is immediate from the Kaplansky

Density Theorem, which implies that S1 (considered as lying in M**) is dense in the

a(M**, A/*)-topology of the unit sphere of M**; so we need only apply [15] and

the relevant theorem from §11. Theorem III.2 and the spectral theorem provide the

appropriate density conditions for (4) and (5).   Q.E.D.

Remark. It should be noted that conditions (2), (3), (4), and (6) make sense if

M is an arbitrary C*-algebra, and in fact the proof given is clearly valid for this

situation. This theorem can then be considered an exact noncommutative generaliz-

ation of the similar results of [1] for the abelian case.

Remark. By considering the embedding of M in M** and applying [15], it is

easy to see that conditions (5)-(9) of Corollary II.5 are necessary conditions for

weak relative compactness in M*. That they are also sufficient remains a conjecture.

We conclude the section by extending a result of Dixmier [3, p. 56].

Corollary III. 10. Let M and N be W*-algebras and let Tbe a weak* continuous

linear mapping from M toN {e.g., T is a positive normal map). Then T is s*-continuous

on S.

Proof. It is immediate that Fis continuous for the Mackey topologies of M and

N. Thus Theorem II.7 applies.   Q.E.D.

IV. Some special algebras. In this section we shall restrict attention to some

special C*-algebras and obtain sharper results than in the general case.

Theorem IV. 1. Suppose M satisfies the condition that for every p in P there exists

q in P such that q^p, fl^O, and the algebra qMq is finite dimensional. Then given a

sequence {/„} of positive functionals in F such that lim„_ „/„(/>) exists for each p in

P, then there exists fin F such that Mm^^ ||/k—/|| =0.
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Proof. By Theorem III.6, we know that there exists / in F such that {fk} con-

verges weakly to /in M*. We need only to show that this implies that

limfc_œ ll/fc—/|| =0. Let {pe} be a family of elements of F satisfying

(')    The {pe} are orthogonal.

(")   lub {Pe}=I.

("*) The algebra peMpe is finite dimensional for each 0. Such a family {pg} exists

by the hypothesis and Zorn's Lemma. Since the set {fk} together with / is weakly

compact, we may apply Theorem II.6 as follows. Given a > 0 there is a finite set

pBl, ...,pBrin {p„} such that if/? = lub {pBl,.. .,pBr), and p' = I-p, then \\R„.Lp.fk\\

<afor k=\, 2,..., and also \\Rp.LP'f\\ <a. Let A = sup {¡/J : k=\, 2,...}; then

A is finite since {/J is wrc. Since pMp is finite dimensional, the weak and the norm

topologies coincide on pMp, so there exists an integer k0 such that if k > k0, then

for any a in S

\\ifk-f)(pap)\\ < «•

Thus for any a in S and k > k0 we have the inequalities

\(fk-f)a\ è \(fk-f)(pap)\     +\(fk-f)(pap')\

+ \(fk-ß(p'ap)\ + \(fk-f)(p'ap')\

S «+\(f*-fKpap')\

+ \(fk-f)(p'ap)\+2a.

But by the Schwartz inequality we can write

\(fk-f)(pap')\ Û \fÁpap')\ + \f(pap')\

z [A/ki/or+iW)]1'2

¿ 2(A1'2)(a1'2).

Similarly we have

\Uk-f)(p'ap)\ è 2(Ai")(a1'2).

Combining the above estimates we get

\(fk-f)a\ Û 3a+4(A^)(a^).

Since a > 0 was arbitrary and a was any element of S we have that

lim HA-/)) = 0. Q.E.D.
fc-»oo

Remark. This theorem can be considered a noncommutative version of [2, p. 33].

It is clear from Example 11.10 that we cannot prove a stronger theorem for the

general case, at least in the sense that the condition of postivity is essential for the

truth of the present theorem.
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The next result concerns C*-algebras which are H/*-algebras only in the finite-

dimensional case. We shall consider dual rings (in the sense of Kaplansky [7])

which are C*-algebras. First we shall need a definition and a result from [7].

Definition. Let {Hx}xeX be a family of Hubert spaces. Let C{HX) denote the

algebra of compact operators on Hx. The C«, direct product of the algebras

{C{HX)} is the set A of all elements {ax} in the Cartesian product of the {C{HX)}

with the following property: Given S>0, then {x : \\ax\\ > 8} is a finite set. A has a

natural structure as a C*-algebra.

Theorem (Kaplansky). Let A be a dual ring which is also a C*-algebra. Then

there exists a family {Hx} of Hubert spaces such that A is isomorphic to the Cœ

direct product of the {C{HX)} as in the above definition.

We show that such C*-algebras share some very strong properties with abelian

C*-algebras. The work for the abelian case was done by Grothendieck [6].

Theorem IV.2. Let N be a dual ring which is also a C*-algebra. Then a bounded

set K in N* is wrc iff for each sequence {pn} of orthogonal self-adjoint projections in

N we have that the limit of{f{pn)} = 0 uniformly for f in K.

Proof. Let N be the Cm sum of {C{He)}. Then it is easy to verify that N* is

isometrically isomorphic to the Lx direct sum of {TC{He)}, where TC{He) is the

Banach space of trace class operators on H„. Also the second dual A7** of A7 is seen

to be isometrically isomorphic to the complete bounded direct product of {B{He)},

where B{He) is the algebra of all bounded operators on He. Let K be bounded

in TV*.

Since N** is a W*-algebra, if K is assumed to be wrc, the theorem follows from

Theorem II.2.

Now assume that K satisfies the condition of the theorem. If K is not wrc, we

may apply Theorem II.2 and get that there exists a sequence {qn} of orthogonal

self-adjoint projections in N** and a > 0 and {/,} in K such that |/„(ön)| > « for each

ii =1, 2,.... By the above characterization of N**, for each self-adjoint projection

q in N** there exists an orthogonal family {pE} of self-adjoint projections in A^such

that if A7 is considered as lying in JV**, then lub {pe}=q- Thus for each «= 1, 2,...

we may choose a self-adjoint projection pn in N such that pnSqn and \fn{q„-pn)\

<a/2.

Since the {q„} are orthogonal and pniqn for each «, we have that the {pn} are

also orthogonal. By the above inequalities we may write for each « = 1, 2,...

«/2 >   l/n(<7n-/>n)|   1   | [|/n(<7n)| " \Á(Pn)\]\.

But by hypothesis there exists «0 such that if « > «0, then

\fn{pn)\ < a/2.



1967] THE DUAL SPACE OF AN OPERATOR ALGEBRA 301

Since \fn(qn)\ >a for each n= 1, 2,... we have for n>nQ

a/2 >  |a-o/2| = a/2,

a contradiction. Thus K is wrc.   Q.E.D.

Theorem IV.3. Let N be a C*-algebra which is a dual ring. Suppos- that T is a

bounded linear map of N into a weakly sequentially complete Banach space. Then T

is weakly compact.

Proof. We use the notation of the proof of the last theorem for the structure

of N* and N**. Let F map N into X as in the hypothesis. Consider T* mapping

X* into N*. By [4, p. 485] we need only show that T* is weakly compact. Let K

be the unit ball of X* and let K' = T*(K), a subset of AT*. By Theorem IV.2, we

need only show that if pn is a sequence of orthogonal self-adjoint projections in N,

then {/(/>„)} converges to 0 uniformly for/in K'. Let {/>„} be such a sequence, and

let N' be the C*-subalgebra of N generated by {/>„}. Clearly N' is an abelian

C*-algebra. Then by [4, p. 494] we have that the restriction of T to the subalgebra

7v" is weakly compact. Thus K' restricted to 7v" is weakly relatively compact. By

Theorem II.2 we see that this implies that {f(pn)} converges to 0 uniformly for /

in K'.   Q.E.D.

In closing we remark that many of the results have applications outside the scope

of the present paper. As an example we note that Theorem III.2, combined with

the method of [19] yields the following theorem. Let N be an A W*-algebra and P

the set of self-adjoint projections in TV. Then TV' is a W*-algebra iff there exists a

unitarily invariant, separating family K of positive functionals in N* such that P

is complete in the uniformity generated by the seminorms |/(a*a)|1/2 for all/in K.
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