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I. Introduction. In this paper, we consider the system of n linear ordinary

differential equations

(1.1) X'(z) = (z-* 2 Avzv\x(z) = A(z)X(z),
\ v = 0 1

where q is an integer, and the Av are constant nxn matrices for which the series

converges componentwise in some neighborhood of zero.

We will investigate structural properties induced on A(z) under the assumption

that the solutions to (1.1) have the regular singular behavior near 0. This behavior

may be characterized, for example, by the requirement that all solution vectors to

(1.1) have components which are finite sums of products of analytic functions of z

at 0, complex powers of z, and integer powers of log z. Systems (1.1), all of whose

solutions have regular singular behavior, will be called regular singular systems.

Fundamental solution matrices for such systems can be represented as

(1.2) <D(z) = S(z)zR

in a neighborhood of 0, where S(z) is an invertible matrix of single-valued analytic

functions and F is a constant nxn matrix.

If a¿0, then 0 is a regular point of (1.1), so every fundamental solution has the

representation (1.2) with R=0. lfq= 1, then a classical theorem of M. L. Sauvage

states that every fundamental solution has the form (1.2). (For a modern proof

for this theorem, see [1, pp. 73-74].) Therefore when q£l, A(z) has no further

restrictions, so we will assume henceforth that q ä 2.

In a recent note [2], the author has shown that the n symmetric functions of

A(z) have poles at 0 whose order is somewhat restricted in case A(z) corresponds

to a regular singular system. These conditions force the first q — 1 coefficient matrices

in the expansion of A(z), i.e., the principal part of A(z), to have a special structure.

In particular, for A0 and Ax we have the rather complete information that

(i)  A0 must be nilpotent, and

(ii) tr AqAx=0 for each k = 0, 1, 2,..., n-l, provided q> 2.
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But neither the conditions (i) and (ii) nor the conditions on the principal part

of A(z), although sharp, come close to being also sufficient. We may ask, however,

how many of the matrices Av in the expansion of A(z) are involved in necessary

and sufficient conditions. This is equivalent to the following problem:

If A(z) is an nxn matrix having a pole of order q^2, and if B(z) is an nxn matrix

of functions which are meromorphic at 0, then what order singularity for B(z)

guarantees that the perturbed equation

(1.3) X'(z) = (A(z) + B(z))X(z)

is regular singular simultaneously with (1.1)?

The following theorem answers this question.

Theorem 1. IfB(z) is an nxn matrix having a zero of at least the order (n—l)q — n,

then (1.1) is regular singular if and only if (1.3) is.

Restating this, we can tell how many coefficients of 2 Avzv are involved in

determining regular singular behavior.

Corollary 1.1. If (A)m denotes the truncation of the Laurent expansion for

A(z) after the mth term, then (1.1) and A" = (A)mXare regular singular simultaneously

in case m^n(q— 1).

This bound will be shown to be exact (§IV) for a certain class of matrices.

But we may still persist in asking for the necessary and sufficient conditions. If

A(z) were a companion matrix, then (1.1) would be equivalent to an nth order

linear differential equation. In this case L. Fuchs found that the necessary and

sufficient conditions can be phrased in an exceptionally simple way in terms of

bounds on only the order of the poles of the n symmetric functions of A(z) at 0.

For systems not of this form, there appears to be no correspondingly simple

criteria.

One rather pleasing answer to the problem of representation of these conditions

was found by W. B. Jurkat and orally communicated to the author.

Theorem A (Iurkat). With A(z), we associate a sequence of matrices {9l„}, induc-

tively defined by

(1.4) *,+1 - K+%4;     2*0 = T.

Let p[ytv] denote the order of the pole ofäv at 0. Then (1.1) is regular singular at

0 if and only if

(1.5) p[Hv] iv + M

for all v = 0, 1, 2,..., where M is a fixed constant, independent of v.

We are able to find the exact value for M in case we take into account only the

dimension of the system and the order of the pole of A(z). In our proof, it is also

apparent that the conditions need only be checked for a finite number of v.
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Theorem 2. (1.1) is regular singular at 0 if and only if

(1.6) #,UH(»-1X?-1)

for all v = n, n+l,..., N, where N is a constant depending upon A{z).

In case the leading coefficient matrix A0 is nilpotent of degree n, i.e., it has full

rank, we are able to estimate N (§VI).

Since the coefficients in the expansion of 2IV are homogeneous combinations of

the matrices Av, the following corollary gives an answer to the question of repre-

sentation of conditions.

Corollary 2.1. There exist a finite number of homogeneous polynomial identities

which the first n{q— 1) coefficients of A{z) must satisfy if and only 1/(1.1) is regular

singular. The number of identities is dependent upon properties of A{z).

We remark now that throughout the remainder of this paper, we establish the

convention that a zero of the order n<0 means a pole of the order |n|.

II. Three lemmas. It has been shown by the author [2] and in several earlier

works (see, for example [1, pp. 74-75]) that the regular singular property for (1.1)

at 0 is equivalent to the existence of a substitution X{z) = T{z)Y{z) with the

following properties:

(2.1) T{z)=P{z)D{z), where P{z) and P~\z) are nxn matrices of functions

analytic at 0,

(2.2) F(z) = diag{z"i, za*,..., z""}, aly...,an are integers, and

(2.3) T-\z)A{z)T{z)-T-\z)T'{z) = C{z), the coefficient matrix for the system

corresponding to Y{z), has a pole at 0 whose order is at most one.

J. Horn [3] first investigated transformations of this type (although not in the

factorization (2.1)). If T{z) is an nxn matrix of functions meromorphic in some

neighborhood of 0, det F(z)^0, and if T{z) satisfies property (2.3), we will say that

T{z) is a transformation of A{z) of Horn's type. We denote the totality of all such

transformations by H{A). Then (1.1) is regular singular at 0 if and only if 77(^) is

nonempty.

Given T e H{A), T can be factored in its Smith Normal Form [4, p. 41] as

T{z) = P{z)D{z)Q{z), where P,?'1, Q, and Q'1 are convergent power series, D

is as in (2.2) and, moreover, the integers a¡ are uniquely determined from F when

monotonically ordered as o1áB2í"-áa„. (See [5, p. 384].) T{z) can then be

modified to T{z)Q~\z) and Te H{A) if and only if TQ1 e H{A). We will usually

assume henceforth that we have the later simplified structure (2.1).

The power series P{z) transforms A{z) into

(2.4) Â{z) = F - \z)A{z)P{z) - F " \z)P '(z),

which has a pole of order a and has the property that D e H{Â) if and only if

F e 7704).
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The maximal difference, an — ax, of the exponents determines to a great extent

the structure of Fand will be useful in the examination of the structure of A. After

Moser [4, p. 386] we define the maximal difference to be the span of T and denote

it by s(T). We remark that the span is defined only for matrices T whose inverse

exists and, moreover, s(T) = s(T ~1).

If TeH(A), then unfortunately s(T) is not uniquely determined in terms of

properties of A(z), in fact, if A = A0¡zq when A0 is nilpotent, then there exists

Tx e H(A) such that s(Tx) is larger than any preassigned natural number.

For the applications which we have in mind, some upper bound on the span is

desirable, but we do not need this upper bound on the spans of all Te H(A) (which,

by the above example, is impossible anyway). A bound on the span of one trans-

formation in H(A) proves to be sufficient. Such a transformation and bound are

now constructed in the following lemma.

Lemma 1. If (1.1) is regular singular at 0, there exists TeH(A) such that

s(f)i(n-l)(q-l).

Proof. Let 7) = diag{z*i, zx*,..., zx<>}, where xx^x2^ ■ ■ ■ ̂ xn. If we define

f=PD, where P is from (2.1) and (2.4), then D e H(Â) if and only if

(2.5) D-XÂD

has a pole whose order is at most one. If Â = (âi,)n1 and if we let -pif-¿q denote

the order of the pole of ai;, then (2.5) has at worst a simple pole if and only if the

system of n2 linear inequalities

(2.6) Xj-x, ^ -1-/>»,       lût, j ún

is satisfied by a vector x = (x!, x2,..., xn). Our problem now is to estimate from

above the quantity xn — xx when x is a solution to (2.6) and the components of x

are ordered monotonically.

We first remark that the existence of T=PD, where D has the form (2.2) and

F satisfies (2.3), means that a = (ax, a2,..., an) is a solution to (2.6). We will achieve

our solution by comparing this unknown solution a with a sequence of other

solutions to (2.6).

Without any loss in generality, we may take x^a^O, since only differences of

the components appear in the system (2.6).

Let A: be a fixed integer, 1 g k £ n. We wish to show the existence of

A = (Xx, A2,..., An)

such that

(1) 0 = A1áA2^-.-áAn,

(2) A is a solution to (2.6), and

(3) Xk^(k-l)(q-l).



1967] SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 431

This will be proven using an induction on k. For k = l, we take A = a, in which

case (1) and (2) follow from (2.2) and (2.3) and (3) is trivially true. We assume

(l)-(3) for k and seek to prove them for k+1. To this end we define

(2.7) Af+ 1 = min{Ák + 1-\k,q-l) + Xk

and form the «-tuple A*=(Af,..., A*), where

A? = Af ¡flZiúk,

= Ai-Afc + 1 + Af+1        if*+l g i£ n.

We claim that

(l1) 0=A?<Afá---áA*,
(2') A* is a solution to (2.6), and

(3') X*+ak{q-l).
To prove (1') we note that A?+1 — Af = A,+1 — A,e>0 from (1) in case i^k-l or

i^k+l, and

Af+i-Af = Af+1-Afc = min(Ak+1-Ak,fl-l) £ 0.

Since Af — Af = A¡ — Ay unless

(I) i'áA: and j^k+ 1, or else

(II) i^k+l andj^k,

we need only check these cases in order to verify (2').

Case I.

Af — Af = Ai-A; + Ak + 1-Af+1 ä -l-/ty+(Afc + i-A£+1) ^ -l-/>fl

since (Ak + 1-Af+1)^0.

Case II.

Af-Af = A¡-Afc + 1 + Af+1-A;. = A, — Ay ̂ -l-pn

in case A^+1 = Ak + 1, and

Af-Af =a-l + Ak + A¡-Afc + 1-A;. ä  - 1 -/>„ + (A*-A,) + (As-Xk + J ^ -l-pH

otherwise, since both (Afc — A;) and (A4 — Afc + 1) are nonnegative. Finally we have

Xk + i^q-l + Xk^k{q-l) and the induction is completed. Taking k = n, we have

an n-tuple satisfying our requirements, and hence Lemma 1 is proven.

The bound achieved on s{T) is exact in case we consider systems whose leading

coefficient matrix has full rank. If A{z) = Aa\z", where A0 is nilpotent of full rank,

then for each Te H{A), s{T)^{n—l){q-l) and so our minimal span is exactly

the lower bound also.

In case A0 = H1 © 772 ©• • •© 77s, where each 77j is nilpotent of full rank, then

the bound on s{T) for some Te H{A) can be slightly improved. Since A0 is similar

to Â0, the leading coefficient matrix of Â, we can replace a -1 by a - 2 in the de-

finition (2.7) in exactly s-1 cases, therefore

s{T) á (a-2)(í-l) + (n-J)(a-l) = (n-l)(a- l)-s+ 1.
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The importance attached to the upper bound on the span of a transformation

is now explained by the following lemma, which allows estimation of the order

of the poles (or zeros) which can occur in expressions involving T,T~l and their

derivatives.

Lemma 2. If s(T) â TV* and B has a pole whose order is at most r, then T(m)BT ~1

has a pole whose order is at most N+m + r.

Proof. Since it is easier to apply and no more work to prove, we represent T

in its general factorization

(2.8) T(z) = P(z)D(z)Q(z),

where D(z) has the form (2.2) and P(z) and Q(z) are units in the ring 3? of nxn

matrices whose elements are analytic functions in a neighborhood of 0, i.e., the

leading coefficient matrix in the expansions of F and Q are invertible. Then differen-

tiating (2.8) we obtain

r<m> =      2     cmPwDu)Q(k),       i,j, k è 0,
i+i+k=m

where the cm are nonzero constants. We compute then

(2.9) TWBT =      2     c^P^D^Q^BQ-^D-1?-1.
i+i+k=m

Letting QmBQ~i = B* = (b*vkyx, we note that B% has a pole whose order is at most

r. Also

Du> _, D* diag {z"i_,J..., zan -'},

where D* is an n x n constant diagonal matrix, possibly having some zeros on the

diagonal too, in case the differentiation annihilates some positive powers of z.

Then

D^B^D-1 = D*B%*,       where B** = (b*vkza»-a»-%

and has a pole whose order is at most N+j+r. Equality occurs in case the entry

in the (1, ri) position of B% has exactly a pole of order r. Since D*, P~x, and F(i)

are all in 0t, multiplication by these matrices does not give rise to poles of any

higher order. So for each triple (/,/ k),

CukP^D^Q^BQ-^D^p-1

has a pole whose order is at most N+j+r. Then T^BT'1 has a pole whose order

is at most the maximum of the orders of the pole of each term in (2.9), and there-

fore the order does not exceed N+m + r.

Lemma 2 has an analogy in case T and B are not meromorphic, but are expan-

sible in Laurent series in the variable z1/p, where p is a positive integer. We first
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generalize the notion of span by considering the reduction to Smith Normal Form

relative to the ring Si* of matrices whose elements are convergent power series in

z1/p. The notion of a pole of order q must be replaced by the notion that the

Laurent expansion in z1,p begins with z to the rational power q\p. We state the

corresponding result as

Lemma 3. Let T have span {rn — r¡)¡p and let B have a Laurent series in z1/p whose

leading term contains z to the power — Njp. If the mth formal derivative of T is

denoted F<m), then T^BT'1 has a Laurent series in z1/p whose leading term contains

z to the power r^— N/p — {rn — r^/p — m.

Proof. Let T{z)=P{z)D{z)Q{z), where

D{z) = diag {zri,p,..., zr»"},

be the representation of T in its Smith Normal Form. We perform the change of

variable w=z1/p. Then T{WP)=P{WP)D{WP)Q{WP) = T*{W) has span (r,-^) in

W since D{W v) = diag {W'i,..., Wr»} and F and Q are units in ®. If

CO

B{z)=   2   W*>
t)= -¡v

then

00

B*{W) = B{WV) =   2   B^v
B- -N

has a pole of order TV in W. Using Lemma 2, we conclude that

F*(^)(i)F*(W/)F*(ir)-1

has a pole in If whose order does not exceed / +TV+(/•„ — /■„). But

dm ¿^ d'
-T(WP)  =     >    ("■ M/t-m-m(p-l)    "       T*(W)

d{WT )     Á dW*1   (yV)'

where C¡ are constants. Therefore

m Ji

(2.10)    T^m\z)B{z)T-\z) = 2 CiWi-m-mip-1)-jy-iT*{W)B*{W)T*{W)-1.
¡ = i drr

The general term in the sum on the right-hand side of (2.10) has a pole in W

whose order does not exceed i+N+{rn — ri) + m{p —l) + m — i, hence the right-hand

side of (2.10) has a pole in W whose order does not exceed N+{rn — r^ + mp.

Therefore T{m\z)B{z)T~1{z) has a Laurent series in z1,p whose leading term

contains z to no smaller power than

_^_(^_„,
P        P
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III. Proof of Theorem 1. Assume (1.1) is regular singular. Then according to

Lemma 1, there exists TeH(A) such that s(T)^(n-l)(q- 1). But TeH(A + B)

also, since

T-^A + B^-T-'T' = C+T~XBT

and if we apply Lemma 2 with T replaced by T'1, we find that T~XBT has a pole

whose order does not exceed

(n-l)(q-l)-[(n-l)q-n]= 1.

Therefore (1.3) is regular singular.

Conversely, assume (1.3) is regular singular. Then Lemma 1 provides us with a

UeH(A+B) such that s(U)-¿(n- l)(q- 1). Likewise Ue H(A) by the same argu-

ment as above; hence (1.1) is regular singular and the proof of Theorem 1 is

completed.

IV. An example showing the bound in Corollary 1.1 to be exact.    Let A0 be a

nilpotent matrix of order n which has full rank. Assume A0 is in its Jordan canonical

form

(4.1)

and let

A0

0 1 0

0 0 1

0 • •

LO • •

•■ 0

•• 0

0 1

0 0-

A(z) = A0lz« + R(z),

where R(z) has all entries equal to zero except the function z{n~y)q~n~'i in the (n, 1)

position and q ä 2, as usual.

A necessary condition for (1.1), with a matrix in this form, to be regular singular

is that the determinant of A(z) have a pole whose order does not exceed n. But

det A(z) = z~n~1, therefore (1.1) is not regular singular. However,

and obviously

(A)n(q-1)-1   —  A0¡Z

X' = AolzQX

is regular singular. Therefore we may not truncate the Laurent series for A(z)

before n(q- 1) terms without risking the alteration of the regular singular property.

We present here a sketch of the proof of the necessity of the condition on det A(z)

mentioned above.
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A{z) can be transformed into a companion matrix using the substitution TX= Y,

where

(4.2) F =

in which the row-vectors av are defined by

a0 = (1,0,...,0)

and
av = a-{@ + A)v.

2 denotes the matrix differential operator Q>= diag{d\dz,..., d\dz} and {S/ + A)v

denotes the rth iterate of the right-hand operator {3¡+A).

T, so defined, is an invertible matrix since it is lower triangular with no diagonal

element being identically zero.

Then necessary and sufficient conditions for (1.1) to be regular singular are that

each of the n symmetric functions of TAT-1 + T'T~1 = T{A + T-1T')T-1 have a

pole whose order does not exceed the rank of the symmetric function. Therefore

it is necessary for det {A + T'^T') to have at worst a pole of order n. But by an

elementary computation, it can be shown that det {A + T~1T') = det A + (a function

having a pole of order n).

V. Proof of Theorem 2. The ideas used in the proof are similar to those in the

proof of Theorem A.

If (1.1) is regular singular, then again from Lemma 1 we have Te H{A) such that

s{T)g{n- l){q-1). Solving (2.3) for A, we find

(5.1) A = TCT-i + T'T-1

The sequences {9i„} and {Cv}, associated with A and C, respectively and formed as

in Definition (1.4), are related by the following identities:

k = 0 \k/
(5.2) %=y[\T^Cv.KT-\       v = 0,1,2,....

These can be verified by an easy induction on v.

Since C has a pole of at worst the order one, then C„ has a pole whose order is

at most v since differentiation and multiplication on the right by C can increase the

order of the pole by at most one as v increases to v +1. We now use Lemma 2 to

estimate the order of the pole of terms occurring on the right-hand side of (5.2).

TmCv-kT'1 has a pole whose order does not exceed

v-k + k + s{T) ¿ v + {n-l){q-l).

Therefore p[<iiv]^max0SkSv{p[TmCv.kT-x]}^v + {n-l){q-l) for each v = 0, 1,

2,... and the necessity of condition (1.6) is proven.
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For sufficiency, we turn to a theorem of H. L. Turrittin, which demonstrates the

existence of a matrix P(z), which transforms A into a canonical form B(z), for

which the function /?[33„] is easy to control. This matrix P(z) is, however, unfor-

tunately not meromorphic, but has the form

■w

(5.3) P(z) = 2 /Vk,p,
Jc=0

where p and W are positive integers, Pk are constant matrices, and in some deleted

neighborhood of 0, det P(z) # 0. Turrittin's result [6, pp. 42-46] we now state as :

Theorem B (Turrittin). Corresponding to the system (1.1), there exists a sub-

stitution X(z)=P(z)Y(z), where P(z) has the form (5.3), which reduces (1.1) to the

canonical form

(5.4) Y'(t) = (2 BrA Y(t) = B(t)Y(t),

where

(a) r = z1",

(b) 2?o*0,

(c) h is a nonnegative integer,

(d) B0 is a diagonal matrix with at least one nonzero entry unless « = 0 or 1, and

(e) the series converges elementwise in a deleted neighborhood ofO.

We now make the assumption

(I): (1.1) is not regular singular.

Then (5.4) evidently cannot be regular singular either.

Now define

(5.5) 7J*(z) = P-\z)A(z)P(z)-P-\z)P'(z).

B*(z) is not necessarily meromorphic. It does however have a Laurent expansion

in powers of z1,p. We define p[B*(z)] to be the negative of the smallest exponent of

z which occurs in the expansion of B*(z) in powers of zllp. In case B*(z) would be

meromorphic, this coincides with our earlier definition. For each term in the

sequence {S3*(z)}, defined as in (1.4), we define/»[S3*(z)] analogously and measure

the rate of growth of this function as v increases over the positive integers. How-

ever, we note that the function values are no longer integers, but are rational

numbers.

The matrices B(t) and B*(z) are related by the change of variable t=zllp for the

systems

Y'(z) = B*(z) Y(z)   and   (5.4),

where Y(t)= Y(t"). Therefore

B*(z) = - z-1 + llpB(z111')

= - F0z_1+<1"'l),p-|-(terms containing higher powers of z).
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Then we compute

S3*(z) = — £»z»r-i+o-h>/p] + (terms containing higher powers of z),

since the dominating term of the expansion of each member of the sequence always

arises from Sf-jF*. This happens because differentiation increases the order of

the leading term by one, while multiplication by B* increases the order by

1 +{h— l)lp> 1 since B0 is nonnilpotent. Therefore

(5.6) />[®i"(*)] = v{l+{h-l)lp) ^ v{l + lip),

for all v=0, 1, 2,..., since n^2.

From (5.5), we deduce the following identities relating {93*(z)} and {%,}:

(5.7) ffl*(z) = 2 (¡V'T^»-^;       p - 0,1,2,... .
fc=o \k/

We now make the additional assumption

(II): p[Hv]^v + M for all v=0, 1, 2,..., where M is independent of v. Then we

prove that

p[{P-Jkmv_kP] è v + M0

for all v = 0, 1, 2,..., where Af0 is independent of both k and i>. Applying Lemma

3 (with P replaced by F "1), we obtain

(5.8) PliP-^Wv-kP] ^ v-k + M+k+s{P~1)

and we define M0 = M+s{P~1). But (5.8) implies that p[^8v{z)]úv+M0 for all

v—0, 1, 2,.... This is contradicted by (5.6) since

v{l + l/p) > v + M0

when v>pM0. Therefore (I) and (II) are incompatible; hence if (1.1) is not regular

singular, then there is no fixed constant such that (II) holds for all positive integers

v.

To conclude our proof, we note that />[%„] á vq, since the dominating term of

2i„ is Alz~vq. So the condition (1.6) does not impose any restrictions upon the

coefficients of the expansion of 9I„ unless vq>v + {n— l){q— 1), i.e., v>n— 1.

Therefore conditions (1.6) must be verified for only

v = n, n+1,.. -,pM0 = N

in order to conclude that (1.1) is regular singular.

VI. A bound for N in case A0 is nilpotent of full rank. We assume, without loss

of generality, that A0 is in its Jordan canonical form (4.1), since by a constant

similarity transformation we could achieve this and the span of such a trans-

formation is zero, therefore not affecting any of our estimates. Furthermore, we

let T* be the transformation

(6.1) T* = DT,
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where 7) = diag {1, z", z2",..., z{n~X)"}, and T is the matrix defined as (4.2), where

A(z) now denotes any matrix of the form

(6.2) A(z) = A0lz' + A1lz^-1+---,

where A0 has the form (4.1). It can be verified by a direct computation that T*(z)

has the expansion

(6.3) T*(z) = I+Txz + T2z2+---,

where Tx, T2,... are uniquely determined constant matrices, for which the series

(6.3) converges elementwise in some neighborhood of 0. Then obviously s(T*)=0.

Let

(6.4) V = (TAT^+T'T-^Y = CY,

where C(z) = (Ci;(z))", has the following structure :

(1) CiA + x(z) = z-" for i=l, 2,...,n-1,

(2) C¡y = 0 for all i>n and ./#/' + 1, and

(3) Cnk(z) is some function having a pole of no higher order than q—l,

k = 1, 2,..., n.

We now wish to reprove the sufficiency of Theorem 2 in such a way as to obtain

a bound on both p and M0 which arose in the theorem of Turrittin. It should be

noted here that the techniques are essentially due to Turrittin, modified to suit our

situation.

So we assume that (1.1) is not regular singular. Therefore (6.4) is not regular

singular since Y and X are related by TX= Y.

If we form the diagonal

73 = diagiLz^V2'1-*, ...,z(n-1,(1-5)}

and make the substitution Y=ÚU, then

(6.5) £/' = (D-1CD-f)-1D)U

can not be regular singular either. But if each function Cnk(z) had a zero of at least

the order (n — k)(q— 1)- 1, for k = 1, 2,..., n, then the coefficient matrix of the

system (6.5) would have a pole of order one, which would violate our assumption.

Therefore we may assume that, consistent with our assumption that (1.1) is not

regular singular, for some k, l^k^n, Cnk(z) has a zero of at most the order

(n-k)(q-l)-2.

We now use a shearing transformation

(6.6) S(z) = diag {1, z\ z2\ ..., z<" "1)9},

where g is a real parameter which remains to be determined.
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Then

S-îCS-S-^' = F =

0

0

0

(->    7(n-l)g

Z o-q

1

0

0

0   (n-2)gz-

Cnkz
(n - k)g

0

0

Cnn + (n-l)gz-

We seek to select g in (6.6) in such a way that the leading coefficient of F, say F0,

is nonnilpotent. This can be assured by choosing g with the property that at least

one term in the nth row of F has a series expansion whose leading term has exactly

the same order as the.terms on the first super diagonal and no term in the nth row

has a leading term of any higher order. Then F0 is a companion matrix with at least

one term in the wth row, therefore not all eigenvalues of F0 are zero, and hence

F0 is nonnilpotent.

If we let ynk denote the order of the zero of Cnk(z), then the conditions above

may be phrased in terms of the following inequalities: We seek g=g0 such that

(6.7) -q-go = Ynk + (n-k)g0 for some k, 1 £ k ¿ »,

while

(6.8) -q-go è Yn., + (n-j)go for all j, 1 ú j Ú n.

Our restrictions on the functions Cnk(z) may be phrased as :

(6.9) ynk^ -q+l

for all k= 1, 2,..., n, and

(6.10) yn)tg(„_A:)(a-l)-2

for at least one value k=k0, l^k0^n.

Since F=C when g = 0, the inequalities (6.8) are satisfied initially due to the

condition (6.9). We then make g decrease until we attain the first critical value g0

for which the equality (6.7) holds. Then

(6.11)

Therefore

go
-q-Ynk -q-Yn

n-k+l      n-j+l'
1 Ú j ?£ n.

-go = q< a-
n-k + 2

n-k+l

due to (6.10), and hence the leading term in the expansion of Fis F0z~"~go, where

(6.12) q+go ^ l + l¡n.
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If {g„} denotes the sequence associated with Fas in Definition (1.4), then from (6.12)

we have

(6.13) p[%v] = v{q + g0)^v{l + lln).

Furthermore, s{S{z))= —g0{n— 1), therefore

(6.14) s{S{z)) ú{q-l- l'in){n- 1) = (n- l)g-n+ 1/n.

Just as in the proof of Theorem 2, we again have the relations:

(6.15) &, = 2 (¿) {S-^Cv.kS,       v - 0, 1, 2,....

Since C and A are related as in (6.4) by a transformation whose span is zero, if

we assume (1.6), then

Picv] gp+(„-ix?-i)

for all v also. Now using our bound (6.14) on the span of S (and hence of S'1),

we apply the result of Lemma 3 to conclude that

/^p-'f'C,-^] â k + v-k + {n-l){q-l) + {n-l)q-n+lln.

Therefore p[%v] ̂  v + 2{n - 1 )q - 2n + 1 + 1 ¡n.

But from (6.13), we see that

r(l + l/n) > i'+ 2(/i-l)fl-2/i+l +1/n

when v^2n2{q— l) + n{2q— 1). Therefore if (1.1) is not regular singular, condition

(1.6) will be violated for at least one v,

v = n,n+l,...,2n2{q-l) + n{2q+l).

Hence for sufficiency of the condition in Theorem 2, we need only check (1.6)

for these values of v.

The sharpness of this bound is not claimed and, in fact, it is felt by the author

that this bound is much too generous. The result however, does complete Jurkat's

theorem to a form which is now aesthetically more pleasing, at least in this special

case. When the leading coefficient matrix has a more general structure, then the

situation necessarily becomes more complicated.

VIL A further application of Lemma 1. In his work on the problem, Horn

showed that for each system (1.1) which is regular singular, there exists Te H{A)

such that
M

(7.1) T{z)=    2   T»z">
V -M

however no bounds on M were given. Lately, J. Moser has asked [5, p. 380] if it

is possible to tell, in advance of constructing the transformation for a given

system, how many terms in the expansion are required. We give here an upper

bound on the number of terms which are necessary.
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7/(1.1) ¡'s regular singular, there exists TeH(A), with T having the Laurent

expansion (7.1), in which M=n(q—l).

Proof. From Lemma 1 we have T* e H(A), T*=PD, where F is a unit in 3i,

D is a diagonal having span s(D)^(n—l)(q— 1), and D e H(Â).

We first seek to replace F by a polynomial truncation F(m) after the mth term in

the expansion. Let

(7.2) A(m) = F(m)/4F(m)—F(m)Flm).

We must choose m so large that D e H(Âim), where the only information we have

about D is s(D)^(n-l)(q-l).

If P=2v=oPvZv, then F - * = 2 "= o Ffz", where P* depends only upon F0,

Px,..., Pv. This is seen by investigating the system of matrix equations which

define the coefficients of F_1.

Therefore if we let Â — ÂM = C{m>, then C(m) has a zero of at least the order m—q.

Then D~lC{m)D has, according to Lemma 2, a pole whose order does not exceed

(n-l)(q-l)-(m-q). If (m-q)-(n-l)(q-1)^ -1, i.e., if m^n(q-l), then

D e H(Â(m)), hence

(7.3) T = P«n_X)q)DeH(A).

We are still free to choose an= —(q— 1) if we wish. This means that ax^n(l— q),

therefore

-q+l

D=   2   D°zV-
V = n(l-q)

Then T, defined as in (7.3), has the expansion (7.1) with M replaced by n(q— 1).
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