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1. Summary of results. It is known from number theory that the rational

integral solutions of the Diophantic equation in two unknowns of second degree,

viz.

(1.1) ■my2 = ± 1,

where m is not the square of a rational integer, are obtained from the numerator

and denominator of the convergents in the development of m112 as a periodic

continued fraction. (1.1) is known as the Pellian equation.

Let m be a natural number which is not the «th power of a rational integer. In

the present paper we solve, in rational integers, the Diophantic equation in n

unknowns of degree n ̂  2

(1.2)

with the notation

(1.3)        D(m;xx,...,xn)

D(m; xx,...,xn) = ±1,

Xi X2 X3

mxn xx      x2

WXn_!     «ÎXn        xx

mx3       mXi   «1x5

mx2       mx3   mx4

-*n -1     Xn

xn-2     *n -1

xn - 3     Xn _ 2

XX

«IX.

x2

Xi

(1.2) is also solved by means of the convergents appearing in the Jacobi-Perron

algorithm whose theory was developed by the author in a series of previous

papers [1 (a)-(q)]. For « = 2 (1.2) becomes the Pellian equation, viz.

Xx    x2

«ix2   X!

—     V2x\-mx2 = ± 1.

For this reason (1.2) is called the generalized Pellian equation. It is remarkable

that by means of the periodic Jacobi-Perron algorithm, which solves (1.2) it is

possible to find an infinite system of integral solutions for a generalized Pellian

equation of a much broader type. Let

(1.4) m = Dn+d; D, d,n natural numbers; « ^ 2; d\D.
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Then, in addition to (1.2) an infinite system of solutions is found for the Diophantic

equation

(1.5) D(m;xx,...,xn) = (-l)Mn-1}dk       (k = 1,..., n-1).

We shall call (1.2) the generalized Pellian equation of zero-type, and (1.5) the

generalized Pellian equation of ¿-type. Further let

(1.6) m = Dn-d; D, d, n natural numbers; n ^ 2; d\D.

For such m we shall call (1.2) the generalized Pellian equation of minus zero-type

and shall use the notation ± zero-type for m = Dn±d.

Connections between the integral solutions of the generalized Pellian equation

of ± zero-type and the structure of units of the field Q(mlln) are revealed. I want

to express my gratitude to the referee of this paper for having drawn my attention

to this important fact and for the many valuable remarks and hints which helped

to improve my results.

2. Units and Diophantic equations. Let m be a positive rational, n a natural

number 3: 2, and write

(2.1) w = mlln.

Let w be a positive real nth degree irrational. In the field Q(w) every number Y

has the form

(2.2) X = Xx + x2w+x3w2 + • • • + xnw" "x       (xx,.. ■, xn rationals).

We shall prove that the norm of X is expressed through the components xt

(i= 1,..., n) by the formula

(2.3) 7V(Y) = F(m;x1,...,xn).

The conjugate roots of wn = m are

(2.4) wk = ukw;   u = exp [2nkiln]       (k = 0, 1,..., n-1),

and N(X) has the form

n-l

(2.5) 7V(Y) = n (xx + x2wk + x3w2k + • ■ ■ + xnwnk ' *).
k = 0

Since 7V(Y) is a rational number and wk an nth degree irrational, only integral

powers of wk can appear on the right-hand side of (2.5). Since

n-l

n Msk = (-i)s(n-i),
k = 0

(2.6)

7V(Y) = 2 ( - Ds(n - "«**?+ x + 2 xjx1x22 ...x{n,       0 á A.j» < n.
5 = 0
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Thus the powers x" (/= 1,..., «) do not appear under the second sigma sign, and

xx has the coefficient 1. Since x1 + x2w + x3w2+ • • • +x„wn"1 is in Q(w), so is

Uk=i (xx+x2wk+x3wl+ ■ ■ ■ +xnw£-1), so that

N(X) = (xx+x2w+--- +xnwn-1)(yx+y2w+ ■ ■ ■ +ynwn~1)

CVi, • • •, yn rationals).

On the right-hand side of (2.7) all the powers of w but wn must vanish. This gives

the following system of « linear equations in the y¡ (i= 1,..., «)

' xxyn + x2jn_!+ x3yn_2+--- + xn_xy2+xnyx =0,

mxnyn + xxyn_x+ x2yn.2+■ ■ ■ + xn_2>'2 + xn_1>'1 = 0,

mxn-xyn+mxnyn-x+   x1>'n_2+ • • • +   xn.3y2+xn.2yx = 0,
(2.8)     {

mx3yn    +mxiyn.x + mx5yn.2+---+   xxy2    +x2yx     =0,

■mx2yn    + mx3yn _ x + mxxyn _ 2 + ■ • • + mxny2    +xxyx     = N(X).

The solution of (2.8) (under the presumption that X is not identically zero) is

given by the formula

/■> q\               „       N(X)An,n + x-k(m; xx,..., xn)        ,,       . .
(2'9) »--D(m;xx,...,xn)-       & - l,...,n).

Here An¡n+x-k(m; xx,..., xn) denotes the algebraic component of the element

ûn,n+i-k in the determinant D(m; xx,..., xn) = |ajy|. From (2.7) we obtain, in

view of (2.6), that the highest power of xx in the expression of yx is x"-1 with

coefficient 1 ; the highest power of xx in the development of An,n(m; xx,..., xn)

is also x" "1 with coefficient 1. Thus we obtain from (2.9) N(X)/D(m ; xx,..., xn) = 1

which proves (2.3). Formula (2.9) takes the form

(2.10) yk = An¡n+X„k(m;xx, ...,x„)       (k=l,...,n).

Now let X be in the ring R(w) of the field Q(w). Then the x, (i=l,..., «) are

rational integers. Let Xe be a unit in R(w) of the field Q(w). A known theorem

about the norm of a unit, combined with formula (2.3) states

Theorem 1. Let m be a natural number and w = mlln a real nth degree irrational.

A necessary and sufficient condition that the number Xe = xx + x2w + x3w2+ • ■ •

+ xnwn~1 in the ring R(w) be a unit of the field Q(w) is the solution of the Diophantic

equation D(m; xx,..., xn)= ± 1 in rational integers xt (i=l,...,«).

With Xe the number Are_1= Ye is also a unit in Q(w). Combining (2.7) and (2.10)

we obtain from Theorem 1.

Corollary 1. If the n-tuple (xx, x2,..., xn) ii a solution of D(m; xx,..., xn)

= ± 1, then the n-tuple

Cvi, J2, • • -, Jn),       yk = An,n+x-k(m; yx, ...,yn)

is another solution of that equation.
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Following Dirichlet's fundamental theorem about units of a field the number

of basic units of Q(mlln), m a positive rational, equals [n/2]. Here [x] denotes, as

customary, the greatest rational integer not exceeding x. Thus every unit supplies,

through its positive and negative powers, two infinite systems of solutions of

D(m; Xx, ■ ■., xn)= ± 1 in rational integers. In this paper we shall find a unit in

R(w). Whether the other independent units of the field Q(w) are in the ring R(w) is

an open and challenging question.

3. The algorithm of Jacobi-Perron.   This is defined in the following way: let

(3.1) if», «*»,...,«&,       (»à 2)

be a set of n — 1 real numbers ; from it new sets of n -1 numbers each are obtained

by the following rule:

1
fl(1,+,1) ="n-l    — aT-bf

(3.2) ar»=   k^_¿V       (k = l,...,n-2),

ti*-Vn       (i=l,...,n-l;v = 0,l,...).

The algorithm is called periodic, if there exist nonnegative integers s and natural

numbers t such that

(3.3) a\t+v) = a\v)       (i = 1,..., n-l; v = s, s+l,...).

Let

(3.4) min s = S;       min t = T.

Then the S sets

(3.5) «Í«, a?»,...,«?»!       (v = 0,l,...,S-l)

are called the pre-period of the algorithm, S is called its length; the F sets

(3.6) <, af \..., d*l x       (v = S,S+l,...,S+T-l)

are called the period of the algorithm, Fis called its length. The sum F+Fis called

the length of the algorithm; if S=0, the algorithm is called purely periodic.

For n=2 the algorithm becomes the Euclidean algorithm; for n=4 it was first

introduced by Jacobi [2]; its theory for any n^2 was masterly developed by

Perron [3]. If the rational integers A\v) are defined by the recursion formulas in

the following way

A? = l;A^ = 0       (/# v;i,v = 0, l,...,ii-l);

(3.7)
Aiv+» = Aw+ 2 Vj»Af**>      (i = 0,...,n-l;v = 0,l,...),
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then, as has been proved by the author [l(m)] the formulas hold:

[April

(3.8)

^<i>) Aiv + li ^(w + ri-l)

A(v)        A(v + »      ...      ¿£,+»-1)

(V + Tl-1)
-1     -«n-1 -<^n-l

n-1

(_l)«(n-D (t, = 0,l,...)

(3.9) a¡°> =-^-       (i= l,...,«-l;t; = 0,l,...).

AV+ 2 a^(ou+í>

The key to the solution of the Diophantic equations (1.2) and (1.5) depends upon

the following theorem of the author [1(a)].

Theorem. Write

(3.10) w = (Dn + d)lln,       D, d, n natural numbers; d\D; D ^ (n-2)d; « ^ 2.

The Jacobi-Perron algorithm of then—I numbers

(3.11) w, w2,...,*'"-1

is periodic and the lengths of the period and preperiod are respectively

T = n; S = n-1   for d > 1;
(3.12)

7- 1; 5-n-1   for d= 1.

7« case d>\ the a\n'1+v) (i=l,...,« — 1; v=0, 1,.. .,«-1) have the form

a(n-i)       =d-i V (n~l~l+j)wi-'Di       (i= 1,...,«-1),

i=o \       7        /

y=o \       7        /

í=o \       7       /

J n-l-fc + s  /lc_s,j\

aWlk+s = a""1     2 .+-/W»-i-*+->Z>'
7=0 \        J I

(s=\,...,k),k=l,...,n-2.

In case a"= 1 the a|n_1) have the form as the ain) in (3.13). The very simple form of

the period is stated explicitly in the original form of this theorem.

4. The generalized Pellian equation of zero-type.   In this chapter we shall solve

the generalized Pellian equation of ± zero-type and prove, to this end,

(3.13)

ain)

„(n + k) _
"i —
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Theorem 2. An infinite system of solutions of the generalized Pellian equation

of + zero-type, viz. D(m; xx,..., xn) = +1 is given by the formula

(4.1)    xk-"2 (" *\&Air**-l*n
3=0    \     J      J

(k = 1,...,«; s = 1,2,...).

The numbers A03n+k 1+i) as defined by (3.7) are obtained from the periodic Jacobi-

Perron algorithm of the numbers w, w2,..., wn~x; w, D, d, n have the meaning of

(3.10) and d> I.

For d= 1 the generalized Pellian equation

(4.2) D(m; xlt..., xn) = (-1)*»-»       (s = 0,l,...)

has an infinite system of solutions given by the formula

(4.3) xk = "y  ("~k)DWrs+k-1+'>       (k=l,...,n;s = 0,l,...).
i=o   \   J    I

Proof. We shall introduce the notation

n — k

Xk

(4.4)

= "f I" tfc)^i"+'"U''       (A:-l,i=0,...,n-l;S=l,2,...),
j=o \  J   I

xk   — xk (k=l,...,n).

We shall make use of formula (3.8). For v=sn (s=l,2,...) we obtain, since
(_1)Sn(n-l)=1)

A(sn)       ^(sn + 1)      . . .      ^(sn + n-1)

A(sn)       ^(sn + 1)      . . .      ^(sn + n-1)

(4.5)

A(sn) A(sn+1)
■rln-1      An-\

A(.sn + n
An-x

=   1.

If we add to the kth column vector of the determinant (4.5) successively the

D(Cn-k.i) multiple of the k+lth vector, then the F»2(C„_fcfl) multiple of the

k+2th vector,..., and finally the Dn~k(Cn^k¡n.k) multiple of the k+(n-k)

=nth vector (k = l,..., n — 1), the determinant (4.5) with the notation of (4.4)

takes the form

(4/,)

Xx

xx1'

x?>

%2

X22> v<2)

xf-»   xf-" r(n -1)

We shall now make use of formula (3.9) and obtain for v=sn

(4.7) ai°> =

A?n)+ 2 afn}A\sn+fí
j=i

A0sn>+ 2 a?*Aon+n

0'=1.n-l).

j=i
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But since the period of the Jacobi-Perron algorithm of the numbers w,w2,...,wn~1

has the length « for d> 1, we obtain a$sn)=af > (/— 1,...,«-1) and formula (4.7)

takes the form

n-1

A¡sn>+ 2 ayn)4sn+,)

(4.8) ai°>-g-       (i = 1,...,«-1).

Asn>+ 2 a?yA<¡r+i>
i=i

Substituting in (4.8) the values from (3.13), viz.

ojo) _ wi.   a(n) _ V ln~l~l+J\wi-tDi       (/ = l, ...,„-1),
i = 0 \ j /

we obtain

(4.9)   w< = —::\;r;„_!",J——   (í=i,..,«-d.

i = l   \u = 0 \ M / /

Arranging the numerator and denominator of (4.9) in powers of w, we obtain

easily, with the notation of (4.4),

M Ml i 40 + X(20W + X3iV2+-..+X«)Wn-1 ... „
(4.10)        w* = —-=-2—5-  n . (i = 1,..., n— 1).
V        ' X1 + X2W + X3W2 +-r-X„Wn-1 V '

If we multiply in (4.10) wl by the denominator and take in account that

w*=Dn+d=m, we obtain, arranging this product in powers of w", k^n — 1,

X? + X$>W + X$>Wa + • • • + X^Wn'1

(4.11)
= XiVv' + XaW1"1"1-!-hXn.jW"   l + w(x„_f + 1 + Xn_i + 2W-|-+XnWi   X).

Since, as was proved by the author in previous papers [1(g), (h), (m)] w is

an nth degree irrational, the coefficients of equal powers of w on both sides of

the equation (4.11) must be identical, which gives, for each i, the following n

equations

xf = mxn-i+s       (s = l,...,i),

(4.12) x\%t = xt (i = l,...,B-i),

i = 1,...,«-1.

Substituting the values of (4.12) in (4.6) we obtain the determinant (1.3) which

proves Theorem 2, for d> 1.
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For d= 1 the period is of length 1 and a¡n+s)=a\n\ (i= 1,..., n-1 ; s=0, 1,...)

so that formula (3.9) takes the form, for v = n+s,

n-l

A\n+S)+ 2 af+s>A\n+s+»

„(0)_Izl_ai    — W=ï

A0n+» + 2 a?+!»A0n+s+n

}=i
n-l

A\n + S)+  2 ûyn)^n + s + i)

J=i
(5 = 0, 1, . . .).

^(on+s)+ 2 a$nl40n+s+i)

y=i

With the value v=n+s the determinant (3.8) equals (-if+*-»=(-i)*-i).

We then proceed exactly as in the case of d> 1 with the only exception that in

the determinant (4.5) we have to write n+s instead of ns to obtain formula (4.3)

for the solution of the equation (4.2). This completes the proof of Theorem 2.

It should be noted that formula (4.1) is also valid for i=0. In this case the

generalized Pellian equation of + zero-type has the solution :

Xi = l ;      x2 = x3 = • • • = xn = U.

Recent results of the author [l(m)] have shown that the restriction D^d(n—2)

can be dropped; only d\D is necessary.

Example.   n = 3; 7J>=2; d=l; m = 23 + l=9. The generalized Pellian equation

takes the form, since (-l)s(n-1)=(-l)2s=l,

Xi X2     Xq

JWXq        X\    x%

mx2   mx3   Xx

= N(xx + x2mll3 + x3m213)

= xl + mx2 + m2x3> — 3mx1x2x3 = 1,

= Xx"l-9x2-I-olx3 — 27xiX2x3 = 1.

From (4.3) we obtain a solution for s=0, n = 3, after calculating the necessary

A\v) from the pre-period and period of the periodic Jacobi-Perron algorithm of

the numbers w, w2, w = 9113,

Xx = 649;       x2 = 312;       x3 = 150;

and for the triple (yu y2, y3), yk = A3A_k(9; xx, x2, x3), k = l,2, 3,

Ji = l;     y2 = 12;     y3 = -6.

5. The generalized Pellian equation of ¿-type.    We shall introduce a combined

sigma sign used by the author in a previous paper [1(f)], viz.

i-l|n t-1 n

2 a¡ = c 2 ai+ 2a<>       (t=l,...,n);
i = 0|c i = 0 i = i

(5.1)
t-l|n

i = 0|c

at = 2 a»      f°r t < I.



84 L. BERNSTEIN [April

In this chapter we shall prove

Theorem 3. An infinite system of solutions of the generalized Pellian equation

ofk-type is given by the formula

(5.2)

k-u|n-u  /n_u\
Xu=     2 .   )7)^<o5n+2'l-'c+u-1+«;

j = 0\d     \   j    I

(u = 1,..., n; s = 0, 1,...), k = 1,..., n— 1.

The numbers A(on + 2n~k + u'1+n as defined by (3.7) are obtained from the periodic

Jacobi-Perron algorithm of the numbers w, w2,..., wn_1; w, D, d, n have the

meaning 0/(3.10) and d>\.

Proof. We shall introduce the notation

(5.3)

x«> =     2 •   )DiA(r+2n'k+v-1+i\      (5-0,1,...);
/ = 0|d     \   7   /

v(0) _  „  . (u = 1,..., n; i = 0, 1,..., n— 1), k = !,...,«—!.

If we multiply each of the first k column vectors of the determinant (3.8) by d and

substitute sn + 2n-k for v we obtain, since (_!)<■»+»-»»»-n = (-1)«»-»

(5.4)

J^(sn + 2n-k)

(]A(sn + 2n-k)

J/i(sn + 2n-l)     ^(sn + 2n)

íí^(sn + 2n-l)       A(sn + 2n)

A(sn + 3n-k-l)

A(sn + 3n-k-l)

A A(sn + 2n-k) AA<.sn + 2n-l)      J(sn + 2n) A(.sn + 3n-k-l)\
UAn_x a/in_i ^*n-l ^n-1

= (-ir-V;   up- 1,...,n-1.

If we add to the ith column vector of the determinant (5.4) successively the

-D(G„-i,i) multiple of the i+lth vector, then the 7)2(Cn_ii2) multiple of the

i+2th vector,..., and finally the 7)n_i(Cn_i>n_¡) multiple of the i+(n — i) = nth

vector, (i= 1,..., n— 1) the determinant (5.4), with the notation of (5.3) takes the

form

(5.5)

Xj.

xi1'

x2

Y(l)
x2 v(l)

-*n

x(n-l)     ^(n-1, i-O-l)

=  (-l)«"-!)^

We shall again make use of formula (3.9) and obtain, forv=sn+2n—k and remem-

bering that a(*n + 2n-k) = a(2n-k) for £g„; _/=!,..., «- 1,

(5.6) aS0) =

A(.sn + 2n-k)t     X"  a(2n-k)A(sn + 2n-k + i)

A(sn+ 2n-k)  i     X*   ~(2n-fe)^(sn +

(i= !,...,«-!).

2n-fc + i)

} = 1
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From (3.13) we obtain, substituting there n-k for k (n—k=l,..., n—2)

af«-k, =  2 in~X-]+V\wi-»D°       (j=l,...,k-Y),
D=0    \ V I

k-l + s /„_!._ -i   ,,\

(5.7)      aj^ríi - d-1   2 \wk-i+s-vDv
v=0   \ V /

(s = 1,...., n — k), k = 2,..., n—1.

Since «3a»-»»«!»-» (j = l,..., n-l) we obtain from (3.13)

(5.8) a(2n-i) = d-x V /"    1    l+Awí-íZ)'       (i = 1,..., n-l).
/=0   \ J I

Substituting the values of afn " fc) (j= 1,..., n — 1 ; k = 1,..., n — 1) from (5.7) and

(5.8) in (5.6) we obtain, arranging the numerator and denominator in powers of

w, with the notation of (5.3) and substituting w' for a¡0) (/= 1,..., n-1)

(5.9) w' =-5-—.¡—       (i = 1,..., n— 1).
V      ' Xi + X2W + X3W2-|--..-|-XnM>n-1 V '

From (5.9) we obtain, as in the previous chapter,

xf = mxn-l+q       (q = l,...,i),

(5.10) *fti.-*<      (7= 1,...,«-/),

i = l,...,n-l.

Substituting the values of the x^° (r=l,..., n; i—% ..., n—l) from (5.10) in the

determinant (5.5), we obtain

(5.11) D(m;xx,...,xn) = (-l)«-»rf*.

With (5.11) and (5.3) Theorem 3 is completely proved. From Theorem 3 we im-

mediately deduce

Corollary 2. If the n-tuple (xlt x2,..., xn) is a solution of the generalized

Pellian equation of k-type, D(m; x1;..., x„) = (— l)k(n~vdk, then the n-tuple

(ji, y2, ■ ■ ■, yn), yk=An,n+1-k (*-1, •••»») is a solution of

(5.12) D(m; ylt..., yn) = (-l)«»-»¿«»-«

Proof. From

N(Xx + X2W + X3W2-x-r-Xn^""1)

= (xx+x2w+x3w2-\-\-xnwn-1)(y1+y2W+y3w2-\-+ynwn~1)

= (-l)*<"-»rf*,
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we obtain

7vYx1+x2H'+X3W2+-r-x„wn-1)N(yx+y2w+y3w2+ ■ ■ ■ +ynwn'1)

= N((-l)kin-»dk) = (-l^nin-l^nk _ ¿nk^

dnk

N(yx+y2w+y3w2+ ■ ■ ■ +ynwn~1) = (_1)fc(„-1)¿te

= (_ ]U(n-l)¿Wn-l)_

Example.   « = 3;D=aT=2;m=23+2;we choose k = 1. The generalized Pellian

equation of 1-type takes the form

D(m ; xx, x2, x3) = ( -1)1(3 " "d = d;       x? + 10x¡ + lOOxi - 30x!X2x3 = 2.

From (5.3) we calculate for j=0

xx = 15178;       x2 = 7045;       x3 = 3270.

A solution of the Diophantic equation

D(m; yx, y2, y3) = (-1)«-»,/«»-»,

viz.

y\ + lOyl + I00y% - 30^^,^ = 4

is given by

yi = 184;       >-2 = -10;       y3 = -35.

We shall now investigate the generalized Pellian equation of minus zero-type.

On the basis of previous results obtained by the author [1(b), (f)] we shall first

state the following

Theorem. Write

w = (Dn-d)lln;       D, d, n natural numbers; d\D;
(5.13) '

D Z 2(n-l)d;       n à 2.

The Jacobi-Perron algorithm of the n—\ numbers

w, w2,..., wn ~1

is periodic and the lengths of the pre-period and period are respectively

T=n2;   S = (n-1)2      for d > 1;

7-n;    S = («-l)2      ford=\.

In case d>\ the a\n2) have the form

(5.14) ai"2> = 2 ("    \ Í+ÍV-\D-iy       (i = 1,..., «-1).
1-0 \ J I
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7n case d= 1 the a\n3 ~n) also have the form (5.14)

(5.15) oj"*-' = 2 ("   l ■ ̂ ^-'(D-l)'       (i= l,..., n-l).
i=o \       J '

Comparing the ain2) and aj"2 ~n) from (5.14), (5.15) with the a¡n) from (3.8), we see

that the only difference between the + zero-type and — zero-type cases of the

generalized Pellian equation in this respect is that in the latter case D — 1 has to

be substituted for D. We can, therefore, state

Theorem 4. y4n infinite system of solutions of the generalized Pellian equation

D(m; Xx,..., xn) = 1 of minus zero-type is given by the formula

(5.16) xk = "2 ln~k)(D-iyA0°»2+k-i+»       (k=l,...,n;s=l,2,...).
i=o \   J   1

The numbers A0sn2 +k~1+i) as defined by (3.7) are obtained from the periodic Jacobi-

Perron algorithm of the numbers w, w2,..., wn_1; w, m, D, d, n have the meaning

of (5.13) and d>\. For d=l the same equation has an infinite system of solutions

given by the formula

(5.17) xk = 2 (n~k)(D-iyAf+*-1+»       (k = l,...,n;s^n-l).
i=o \   J   I

Example.   n=3; D=2; d=l; m=23—1 = 7. The generalized Pellian equation

of minus zero-type takes the form

xí + 7x¡+49xi-21x^2X3 = 1.

From (5.17) we calculate for s=n— 1 with the A\v) from [1(b)]

Xi = 44;   x2 = 23;   x3 = 12.

From w=(Dn±dyn, d, D, n as before, we deduce

w = (iyi±dyik;   w = wnlk;   D1 = Dn'k;   k\n, k > I;

(5> 8) d\Dx;       m = Dkx±d = m.

The Jacobi-Perron algorithm of the numbers w, w2,..., w"'1 is periodic with

length of pre-period S=k-1 and length of period T=k or F= 1. We can, therefore,

formulate theorems for the solution of the generalized Pellian equation

D(m,Xx,...,xk) = ± 1,

analogous to Theorem 2 and Theorem 4, the essence of the new theorems being

the fact that the solubility of D(m; x±,..., xn)= ± 1 by means of a periodic

Jacobi-Perron algorithm implies the solubility of D(m; xl7..., xk)= ± 1, k\n. The

units

Xe = Xx + X2W + X3W2+ ■ ■ ■ +xkwk~1

are in the ring R(w) and create, therefore, possibly new units of the field Q(w).
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6. Concluding remarks.    Calculating, for « = 3, the values of yt from (2.10) by

means of the x¡ (i= 1, 2, 3) from (4.1) where we take s= 1, we obtain easily

(6.1) tt-1;       y2 = lD2\d;       y3 = -3D/d.

Therefore, a unit in Q(m113), m = D3 + d, w=m113, has the form

Ye = l+(37)2/a>-(37)/a>2 = (D3 + d-3Dw2 + 3D2w-D3)ld

= (w3-3Dw2 + 3D2w-D3)¡d=(w-D)3¡d,

and it is easy to prove by this method that a unit in Q(mlln), m = Dn+d, w=mlln,

has the simple form

(6.2) Ye = (w-D)nld.

From what was said at the end of the last paragraph, other units of Q(mlln) are

given by the formula

(6.3) Ye = (ws-Ds)nls¡d;       s\n;       s < n.

For a"=l these units have the form Ye = ws — Ds, s\n, s<n, and from the positive

powers of Ye (for d^ 1) an explicit formula for the solutions of D(m; yx,..., yn)

— ± 1 can be derived. It is equally easy to prove that (6.2) and (6.3) hold for the

case m = Dn—d, too. These results were obtained, by quite a different approach

to the problem, in a joint paper with Helmut Hasse [1(h)], my admired teacher,

where we have developed a theory of units. In our paper a periodic algorithm

of Jacobi-Perron was also the starting point of our investigations. In this context

one is tempted to state that one of the central questions of number theory is not the

calculation of units or the solution of generalized Pellian equations of ± zero-type

but the search for periodic algorithms (of Jacobi-Perron, or others; see the author's

paper [l(m)]) of algebraic numbers. This question is still challengingly open.
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